
Modeling Behavior in Complex and Dynamic Situations - The Example
of Flying an Automated Aircraft

Wolfgang Schoppek, Robert W. Holt, Melanie S. Diez, & Deborah A. Boehm-Davis
University of Bayreuth, Germany and George Mason University, Fairfax, VA

In basic research, cognitive modeling has proven a valu-
able methodology for explicating theoretical assumptions,
testing their dynamic interactions, and exploring the scope
of theories. Cognitive architectures such as ACT-R or
Soar provide a common basis for different models and
enhance communication and exchange of solutions. In
applied contexts too, modeling of real tasks and operators
could further the understanding of human-machine sys-
tems; validated models could provide an objective guide
to design and training decisions. However, as real tasks
typically require more knowledge and are more complex
than laboratory tasks, content independent cognitive
architectures do not sufficiently constrain the modeling of
these tasks. We argue that - despite this problem - models
of behavior in real world tasks should also be developed
within established architectures. In doing so, it is impor-
tant to specify what parts of the model are derived directly
from the architecture and for what parts new solutions had
to be developed. Thus, models benefit from the broad
empirical confirmation of the architecture, which in turn
benefits from the identification of domains where it needs
to be extended. As an example for this approach, we pre-
sent an ACT-R (Anderson & Lebiere, 1998) model that
simulates the interaction between airline pilots and the
flight management system.

Characteristics of the task
The task we modeled is flying down a simulated Boeing
747-400 from the end of the cruise phase to the initial
approach fix using the automation of the aircraft. This
shall be accomplished under a variety of conditions, such
as different ATC clearances or descent profiles. There are
two basic modes of automation that can be used for that
task: A fully automated mode - called VNAV - where the
autopilot receives most of the reference values from a pre-
programmed flight plan; in a semiautomatic mode the
reference values must be provided by the pilot.
 If there are no last minute changes in the flight plan,
VNAV is the preferred mode, because it optimizes the
flight profile. However, if ATC requires quick changes of
the flight plan, the pilot can respond more flexibly using
the semiautomatic mode. In both basic modes, the behav-
ior of automation and aircraft must be monitored and
reference values must be provided in a timely manner.
 When we compare the characteristics of the flying task
with those of more typical ACT-R tasks, such as memo-
rizing lists of words (Anderson et al., 1998) or discrimi-
nating previously learned statements from distracters
(Anderson & Reder, 1999), we find differences in many
dimensions. The time scale for the flying task ranges from

minutes to hours - much longer than the seconds to
minutes of typical ACT-R tasks. Unlike these tasks, the
flying task takes place in a dynamic environment that
changes rapidly and autonomously. An environment like
that often requires revision of plans due to changes in the
situation, interrupting ongoing activities due to unexpect-
ed events, and deferring actions, because opportunities
have to be awaited. There are also differences in the goal
structure. Typical ACT-R tasks can be accomplished with
a well defined goal hierarchy consisting of one main goal
and subordinate goals related in a means-ends fashion.
Flying, in contrast, involves heterogeneous goals that may
compete for limited resources. For example, the goal of
watching the plane pass a critical waypoint competes with
the goal of encoding a new ATC clearance. Finally, much
more previous knowledge must be brought to the flying
task than to a typical ACT-R task.
 All these differences require the modeler to find new
solutions that are not obvious in the architecture and
cannot be derived from existing models that successfully
predict behavior in less complex tasks.

ACT-Fly model
The theoretical background of the model is a combination
of GOMS (Card, Moran & Newell, 1983) and ACT-R.
We developed ACT-R representations of GOMS elements
and a way of translating GOMS analyses to ACT-R code.
With earlier versions of the model, we found that relying
entirely on methods, the model was too rigid to respond to
unexpected events. Specifically, we found that the sequ-
ential structure of methods often did not match the less
predictable order of events in the environment. Another
problem with the method-only controlled version was the
lack of situational awareness. The scope of a method is
typically limited to local aspects of a task, and so there
was no inherent need to create a "big picture". To achieve
more flexibility and better situational awareness, we intro-
duced an additional level to the control structure that
operates in a non-sequential, knowledge based manner.
 The activities demanded from the pilots range from situ-
ation specific decision making (e.g. deciding which mode
to use for a specific leg) to the execution of standard
procedures (e.g. entering an altitude restriction into the
FMC). To account for the variety of actions, ACT-Fly's
control structure is based on a goal stack limited to three
levels with a clear division of responsibilities among the
levels.
 Level 1 can be characterized as the decision making
level. At this level, rule based decisions are made as to
what goals are pursued and what methods are selected to

accomplished these goals. Also, level 1 serves as manager
for level 2. Finally, level 1 contains some basic problem
solving productions. The goal chunk (chunk is the ACT-R
term for declarative memory element) representing this
level stores molar information about the situation, such as
the phase of flight, the position of the aircraft in the flight
plan, or the status of ACT clearances.
 Level 2 can be characterized as the method level. It is the
level of operating described by frameworks like GOMS.
Similar to GOMS, our methods consist of operators, sub-
methods, and selection rules. Level 2 can execute hier-
archical methods of virtually any depth on one level. This
is possible, because subgoals are not stacked on top of
each other, but rather, superordinate goals are released to
memory and retrieved later on. This design has several
advantages. First, the concept of a goal stack has been
criticized for providing unrealistically perfect memory for
goals (Altmann & Trafton, 1999). In ACT-Fly, goals do
not simply appear on top of the goal stack once the
previous goal has been popped, but must be retrieved
from memory - a process that can fail and can predict
certain types of errors. Second, as control is returned to
level 1 after the execution of each submethod, the course
of action can be corrected during the execution of a long
and nested method. With a more traditional goal stack, the
system would be "blocked" for the time such a method is
executed. Thus, our solution makes the model more
flexible and ready to handle interruptions.
 The steps of most methods are represented as declarative
chunks linked through associations. Thus, the retrieval of
the next step is cued by the current method and the
previous step, but is not constrained symbolically. That
enables the model to simulate errors of omission and of
commission in the execution of methods. Another advan-
tage of the associative linking of steps is that methods are
learned "by doing", using the associative learning mecha-
nism of ACT-R. There is an Excel spreadsheet tool avail-
able that allows easy translation of NGOMSL analyses to
ACT-R code. Methods of ACT-Fly serve different funct-
ions. There are methods that perform input operations to
the automation, methods that do mental calculations with
flight parameters to support decisions, and methods that
return classifications of the current situation to maintain
situational awareness.
 Level 3 represents the interface between central cognition
and peripheral systems. Since ACT-Fly does not model
perceptual or motor processes, input-output operations are
simulated on an abstract level. When the model requests
information from the environment, a specialized chunk is
pushed on level 3, completed with the requested infor-
mation (through the TCP/IP-socket connection with the
flight simulator), and the results are transferred to the goal
chunk of level 2. Similar steps are performed for motor
commands. After being popped, the I-O-chunks remain as
episodic traces in memory.
 The design process of ACT-Fly revealed a number of
problems that appeared to be common, or even typical for

complex tasks, but for which there are no standard
solutions in extant ACT-R models:
 Deferring actions: In dynamic systems, effects of actions
often unfold slowly. In these cases, checking the success
of an action must be deferred, while in the meantime other
things are done. The problem for modeling is how the
deferred intention is remembered on time. To simulate
intention memory we use a mechanism that inhibits the
representations of deferred actions for a certain time.
 Expectations: One undesired type of event that can lead
to errors is the “automation surprise” (Sarter & Woods,
1995). It occurs when the behavior of the automation does
not match the pilots’ expectation. We included two mech-
anisms to model expectations. One involves the retrieval
of a chunk that represents a situation-action-situation se-
quence. The other models expectations implicitly through
production rules that respond to “unexpected” outcomes.
 Estimation of time: We identified several processes that
rely on estimation of time: the resumption of intentions,
the periodic repetition of monitoring behaviors, and the
decision to try another method when one method fails
after some repeated applications. We simulated time esti-
mation by using the time function provided by ACT-R.
 To summarize: Most aspects of the task for which ACT-
R did not provide enough constraints followed from the
task's dynamic and the requirement to interleave subtasks
during long time intervals. Although our solutions to the
identified problems are only crude approximations, they
can be regarded as hints how the scope of ACT-R could
be extended to reasoning and action in more complex and
dynamic environments.

Acknowledgments
This research has been supported by grants NAG 2-1289
from the NASA and 99-G-010 from the FAA.

References
Altmann, E. & Trafton, J.G. (1999). Memory of goals: An

architectural perspective. Proceedings of the twenty first
annual meeting of the Cognitive Science Society. (pp.
19-24). Hillsdale, NJ: Erlbaum.

Anderson, J.R., & Lebiere, C. (1998). Atomic components
of thought. Mahwah, NJ: Erlbaum.

Anderson, J.R., Bothell, D., Lebiere, C. & Matessa, M.
(1998). An integrated theory of list memory. Journal of
Memory and Language, 38, 341 -380.

Anderson, J.R. & Reder, L.M. (1999). The fan effect:
New Results and new theories. Journal of Experimental
Psychology: General, 128, 186 -197.

Card, S.K., Moran, T.P. & Newell, A. (1983). The
Psychology of Human - Computer Interaction.
Hillsdale, NJ: Erlbaum.

Sarter, N.B. & Woods, D.D. (1995). How in the world did
we ever get into that mode? Mode error and awareness
in supervisory control. Human Factors, 37, 5 -19.

	I
	Characteristics of the task
	ACT-Fly model
	Acknowledgments
	References

