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Abstract 

This paper reports an experiment that investigated the 
influence of causal interpretation on acquisition and use 
of two knowledge types about a static system: I-O 
knowledge (instances of system states) and structural 
knowledge (knowledge about causal relations within the 
system). One group of subjects saw system states without 
being informed about the causal nature of the material. 
Another group saw the same states as switches and 
lamps. It is assumed that the group without causal 
interpretation can only acquire I-O knowledge. If I-O 
knowledge is the predominant type when dealing with 
small systems, then there should be no group differences 
in a recognition task. Actually, the group with causal 
interpretation discriminates much better between targets 
and distractors, but with longer RTs. This is interpreted 
in terms of structural knowledge acquired by the group 
with causal interpretation, which was used to reconstruct 
system states in cases of doubt. Results of a task where 
subjects had to judge single causal relations support that 
interpretation, but also indicate that the knowledge about 
effects is probably not represented in an explicit, 
symbolic form. An ACT-R model that uses associations 
between events as a subsymbolic form of structural 
knowledge reproduces the data well. Thus, data and 
model support the significance of I-O knowledge but 
also shed some light on the role and the development of 
structural knowledge.  

 

One central question in the psychological research on 
complex dynamic systems refers to the knowledge that 
is used for controlling a system. One important aspect 
of that question refers to the content of the acquired 
knowledge. Subjects may acquire structural knowledge, 
defined as general knowledge about the variables of a 
system and their causal relations. They may as well 
acquire input-output knowledge (I-O knowledge), 
which represents instances of input values and the 
corresponding output values. 

There is evidence for the influence of both types of 
knowledge on performance in system control, but 
currently many authors emphasize the role of I-O 
knowledge, particularly when dealing with small 
systems like the "Sugar Factory" (a dynamic system 
with one input and one output variable, connected by a 
linear equation; Berry & Broadbent, 1988). Computa-
tional models developed on the basis of Logan's 
Instance Theory (Dienes & Fahey, 1995) or ACT-R 

(Lebiere, Wallach & Taatgen, 1998) demonstrate the 
sufficiency of I-O knowledge for the control of the 
"Sugar Factory". The strategy of relying on I-O know-
ledge seems to be preferred by most subjects, even in 
the control of more complex systems. However, in 
systems of at least six variables, high performance is 
usually associated with structural knowledge (Funke, 
1993; Vollmeyer, Burns & Holyoak, 1995). 

A second aspect of the question as to what knowledge 
is used in system control refers to its status as explicit 
or implicit knowledge. In an experiment with the 
"Sugar Factory", Dienes and Fahey (1998) found 
stochastic independence between the solution of studied 
control problems and the recognition of the same situa-
tions as studied. The authors concluded that memory for 
the situations was implicit. This result extends the 
common finding of dissociations between recognition 
and completion tasks (e.g. Tulving & Hayman, 1993) to 
the domain of system control.  

In the present paper these questions were investigated 
by using stimuli that can be either interpreted as states 
of a system or simply as spatial patterns. The rationale 
of the experiment is that learning of instances does not 
depend on the causal interpretation of stimuli. Con-
sequently, if knowledge about instances (I-O know-
ledge) is the main knowledge type learned, there should 
be no effect of causal interpretation on recognition of 
system states. On the other hand, if structural know-
ledge is learned additionally, then causal interpretation 
should have positive effects, particularly in a causal 
judgment task. 

The assumptions about the two knowledge types are 
explicated with a computational model based on the 
ACT-R theory (Anderson & Lebiere, 1998). The model 
reproduces the results of the experiment quite well, and 
can be considered being an explanation for the stochas-
tic independence between completion and recognition 
tasks.  

 

Experiment 
The significance of I-O knowledge and structural 
knowledge was studied with a system consisting of four 
lamps operated by four switches. Figure 1 shows a 
screenshot with the effects of the switches mapped (the 
arrows were not visible for the subjects). Each switch 



affects one or two lamps. Two of the effects are 
negative, which means that the corresponding lamp is 
switched off when the switch is turned on. 
 

 

 
Figure 1: The system used in the experiment.  
The arrows were not visible for the subjects;  

↓ : on relation, ┴: off relation. 

Two tasks were used, each more sensitive to a different 
type of knowledge: A recognition task - easiest to be 
done with I-O knowledge, and a causal judgment task - 
easiest to be done with structural knowledge. Addition-
ally, a pattern completion task was administered, which 
is not expected to be particularly sensitive to one know-
ledge type. 

In the speeded recognition task subjects saw ten 
possible and ten impossible system states two times 
each, and had to decide if they had seen the state in the 
learning phase or not. The items of the speeded judg-
ment task were pictures of the switches and lamps with 
one switch and one lamp highlighted. Subjects had to 
decide if there was a causal relation between the 
highlighted elements. The 16 possible combinations 
were shown twice. In the completion task subjects were 
shown eleven arrays of switches or lamps and asked to 
complete the missing parts, i.e. complete the lamps 
when switches were shown and vice versa. 

Two factors were varied between subjects: (1) the 
possibility to interprete the pictures of system states 
shown in the learning phase as causal, and (2) the 
subject's activity, i.e. if the system states were either 
observed, or produced by operating the switches. I will 
focus on the effects of the first factor (that were the 

strongest ones, anyway), and report the data of the two 
groups who observed the system states in the learning 
phase, either with causal interpretation (ci), or without 
causal interpretation (nci). Each of the groups consisted 
of 12 subjects. 

Other factors were varied within subjects: (1) the 
number of presentations of each state in the learning 
phase (1-2 presentations vs. 3-5 presentations), and (2) 
the number of switches that were "on" in each item of 
the recognition task (1 switch on vs. 3-4 switches on). 

The experiment started with a learning phase where 
subjects saw 40 system states in intervals of four 
seconds. Each possible state of the system was shown at 
least once. The group without causal interpretation (nci) 
was told that they would see spatial patterns, which 
they should memorize. The group with causal interpre-
tation (ci) was informed that the patterns were states of 
a system of switches and lamps. 

Three minutes after completion of the learning phase 
the recognition task was administered followed by 
another 25 system states. Next, subjects worked on the 
completion task. Then the subjects of the group without 
causal interpretation were debriefed about the causal 
nature of the stimulus material. After that the judgment 
task was provided, followed by two other tasks that are 
not reported here. 

Given the assumption that knowledge about the 
system is primarily stored as specific instances, the 
factor "causal interpretation" should have no effects on 
performance in the recognition task. If, however, sub-
jects acquire structural knowledge - which is expected 
only in the group with causal interpretation - that group 
should outperform the nci group, particularly in the 
judgment task.  

As a measure of performance in the recognition and 
judgment tasks, discrimination indices Pr were calcu-
lated according to the Two-High-Threshold-Model 
(Snodgrass & Corvin, 1988). A discrimination index of 
1 indicates perfect discrimination; a value of 0 indicates 
random performance. 

Table 1:  Discrimination indices for two tasks 

 ci nci 
Recognition  M=0.48 

 s=0.23 
 M=0.30 
 s=0.22 

causal judgment  M=0.55 
 s=0.18 

 M=0.17 
 s=0.23 

 
Table 1 shows means and standard deviations of these 
indices. In both tasks the group with causal inter-
pretation is significantly better (F 1,22 = 10.76, p < .01), 
and there is an interaction between task and group 
(F 1,22 = 7.26, p < .05). The ci group is better at judging 
causal relations than at recognition; for the ci group the 
reverse is true. Latencies for hits are longer in the group 



with causal interpretation (ci: 2250 ms, nci: 1493 ms). 
The fact that the variance is also significantly higher in 
the ci group points to the use of different strategies: If a 
system state could not be retrieved in the recognition 
task, subjects of the ci group might have tried to 
reconstruct the state by using knowledge about the 
effects of the switches. That would mean that subjects 
used both, I-O knowledge and structural knowledge. 

This interpretation is supported by the effects of the 
within-subjects factors on recognition performance 
(Figure 2, left panel). If the reconstruction hypothesis is 
true, then there should be an effect of the number of 
switches on in the ci group, because the reconstruction 
process is harder the more switches have to be consi-
dered. Actually, a significant interaction between group 
and number of switches on was found in the proportion 
of hits (F 1, 22 = 6.13, p < .05). States with three or four 
switches in on position are particularly badly recog-
nized by the subjects of the ci group. On the other hand, 
in the group without causal interpretation the influence 
of number of presentations is higher (interaction 
marginally significant: F 1, 22 = 3.63, p = .07). All this 
supports the assumption that the group with causal 
interpretation used I-O knowledge and structural know-
ledge in both tasks. 

Further inferences about the application of one vs. 
two knowledge types can be drawn from contingency 
analyses between the tasks. Since the mapping between 
the items of the recognition task and the items of the 
judgment task is ambiguous, I calculated contingencies 
between recognition and completion. 

If there is only one (explicit) knowledge type, items 
that were completed correctly should also be recognized 
as studied. For two knowledge types, the contingency 
prediction is less clear. If each task is solved with 
different knowledge, stochastic independence between 
the tasks should be the consequence.  

The items of the completion task were entered into 
contingency tables depending on their solution and their 
recognition (e.g. Item 1 was solved correctly and not 
recognized as studied). The entries were summed over 
all subjects of each condition and over all items. Empi-
rical contingencies, measured by ∆p, were compared 
with maximum contingencies that can result with the 
given marginal distributions1. In the ci group the empi-
rical contingency between recognition and correct 
completion is 0.17. This is considerably lower than the 
maximum of 0.65. In the nci group the contingency is 
0.41, which is much closer to the maximum of 0.53 in 
that group. Thus, in the group with causal interpretation 
the solution of completion items does not depend on 
correct recognition of these items as studied, whereas in 

                                                           
1 The maximum possible memory dependence as suggested 

by Ostergaard (1992) could not be calculated because only 
studied items were used in the completion task.  

the group without causal interpretation a moderate 
degree of dependency was found between the two tasks. 
Again, the results are compatible with the assumption 
that the nci group used only one type of knowledge, 
whereas the ci group used two types. 

Discussion 
Overall, the results support the assumption that causal 
interpretation enabled subjects to gain an additional 
type of knowledge. This raises the question about the 
nature of that knowledge. In the introduction I hypo-
thesized that it should be structural knowledge. But 
there is one result that is problematic for this conclus-
ion: Since structural knowledge is ideal for solving the 
judgment task it is surprising that the mean latency for 
hits is as long as 2234 ms (see also Schoppek, 1998 for 
similar results). If subjects tried to retrieve structural 
knowledge right away, the latency should be much 
shorter. A possible explanation is that most subjects try 
to use I-O knowledge first and use knowledge about 
effects only after retrieval of relevant I-O knowledge 
fails. The reason for that might be that knowledge about 
causal relations is not represented explicitly in symbolic 
form, but rather in form of associations between events. 
In the ACT-R theory (Anderson & Lebiere, 1998), 
associations between declarative memory elements and 
their baselevel activations are described as the sub-
symbolic level of declarative memory. This level is 
implicit in the sense that it affects symbolic processing 
(e.g. retrieval) without being directly accessible. In the 
next section I describe a computational model that uses 
the distinction between symbolic and subsymbolic level 
to explain the effects of causal interpretation. 

ACT-R Model 
In order to test how the above interpretation can 

reproduce the data, I developed an ACT-R model that 
simulates the learning phase, the recognition task, and 
the judgment task. There are two versions of the model. 
One of them entails additional production rules for 
modeling causal interpretation. These rules reconstruct 
a system state when no relevant memory representation 
of the state can be retrieved. The state is reconstructed 
on the basis of associations between events.  

In the learning phase a new declarative element 
(called chunk in ACT-R) is created for each system 
state and pushed on the goal stack. After processing the 
goal it represents a system state with its slots holding 
the arrays of switches and lamps. These state chunks 
are the basic units of I-O knowledge. Also in each 
cycle, a change-image is created as a subgoal, repre-
senting the changes between the previous and the 
current system state. Most of the change-images are not 
strong enough to be retrieved later on, but during goal 
elaboration associative weights are learned between 



switch- and lamp-events (e.g. between the events 
"Switch A turned on" and "Lamp 1 turns dark"). After-
wards these associations are used to reconstruct system 
states in the condition with causal interpretation. No 
structural knowledge is explicitly induced, because 
otherwise the model would predict much shorter 
response times in the judgment task. 

Effects of Number of Presentations and 
Number of Switches on Recognition 
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Figure 2: Experimental (left) and model (right) results 

In the recognition task both model versions try to retrie-
ve an instance similar to the probe. The constraints for 
retrieval are either �retrieve a chunk that has the probe�s 
combination of switches in its switches slot� (retrieval 
by input), or �retrieve a chunk that has the probe�s 
combination of lamps in its lamps slot� (retrieval by 
output). The model has a bias towards using the tactic 
of retrieval by input. Partial matching is turned on, 
which means that not only perfectly matching instances 
can be retrieved, but also instances that are similar to 
the retrieval constraints. If retrieval fails, the version 
without causal interpretation guesses, the other version 
starts the reconstruction process. Reconstruction is 
based on the lamp-events that are most strongly 
activated by the switch-events shown in the probe 
("switch on"). The probability of false reconstructions 
rises with the number of switches that are on - an effect 
that explains the bad recognition performance under 
condition ci & 3-4 switches.  

I simulated two samples with 24 cases each2. Some 
results are shown in the right panel of Figure 2. In both 
simulated between subject conditions recognition per-
formance depends more on the number of presentations 
as compared to the real subjects. But the interaction 
between number of switches and causal interpretation is 
well reproduced by the model. In general, the model 
overestimates recognition performance. This effect is 
                                                           

2 Parameter values were as follows: partial matching=on, 
mismatch penalty=2.5, baselevel learning=0.5, retrieval thres-
hold=0.75, parameter learning=off, associative learning=3.0, 
activation noise s=0.5, expected gain noise s=0.5, latency 
factor=2.5. The source code of the model is available at  
www.uni-bayreuth.de/departments/psychologie/cogsci01.html 

mainly due to the excellent recognition of the 
frequently shown system states. Latencies for hits are 
very close to the data: 2314 ms in the simulated ci 
group and 1541 ms in the simulated nci group (note that 
the latency factor was fitted for the nci group only). 

After fitting parameters for the recognition task, the 
model was extended with a few production rules to 
solve the causal judgment task. In that task the model 
tries to retrieve a diagnostic instance appropriate to con-
firm the causal relation. For example, when the item 
requires judging the causal relation between Switch A 
and Lamp 3, the model tries to retrieve a chunk that 
represents the system state with Switch A as the only 
switch on. Assume the model retrieves the appropriate 
state (Switch A on, Lamp 2 on), it will produce the 
answer �no�. If no diagnostic state can be retrieved, the 
model reconstructs the state in the same way as in the 
recognition task.  

In the simulation with this part of the model, I 
assumed that the judgment task was done right after the 
learning phase. Recall that the groups of subjects that 
have been discussed so far did the judgment task later 
in the experiment. Therefore, the simulation results 
were compared to a group of subjects (N=12) who did 
the judgment task in the first place. That group was 
informed about the causal interpretation of the stimuli.                         

The model matches the subjects' data quite close 
without fitting any parameters (Figure 3). Mean laten-
cies for hits were 2305 and 2234 ms in the model's and 
subjects' data, respectively.  

Proportion of Correct Answers in the 
Judgement Task
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Figure 3: Proportions of correct answers in the 
judgment task. A2P through D1P are the five "on" 

relations of the system, A1N and D3N the two "off" 
relations. (A2P: Switch A � Lamp 2 - positive) 

General Discussion 
Model and data support the view that I-O knowledge is 
the primary type of knowledge used when dealing with 
a small system. But longer latencies, together with 



better recognition in the group with causal interpre-
tation point to the use of an additional type of know-
ledge. It has been modeled as subsymbolic associations 
between events, used to reconstruct a mental image of 
the system state in question. 

The results of the group with causal interpretation 
parallel the findings of Dienes & Fahey (1998), but the 
interpretations are slightly different. Dienes and Fahey 
assume that subjects learn a lookup-table of system 
states and conclude from their data that this table is 
stored in implicit memory. The lookup-table is similar 
to I-O knowledge. The difference is that in the present 
conception I-O knowledge is always explicit, and a 
second type of knowledge is assumed � subsymbolic 
associations between events. In this interpretation it is 
the subsymbolic knowledge that would be considered 
implicit.  

Applying the distinction between symbolic I-O know-
ledge and subsymbolic associations between events to 
the "Sugar Factory" could explain the results of Dienes 
& Fahey (1998). If subjects used I-O knowledge about 
past situations in the recognition task and associations 
between events in the control problems, stochastic 
independence between the two tasks could be the 
consequence. The explanatory potential of the subsym-
bolic level of ACT-R for implicit memory phenomena 
has also been demonstrated by Taatgen (1999) with a 
model of word recognition and completion. In his 
model it is the dynamics of baselevel learning rather 
than associative learning that accounts for dissociations. 

The present research yielded effects that are similar to 
those known from other paradigms. It is a common 
finding that providing additional information about 
stimuli enhances memory or other kind of performance, 
e.g. in classification learning (Nosofsky, Clark, & Shin, 
1989), Schema acquisition (Ahn, Brewer, & Mooney, 
1992), or text comprehension (Bransford & Johnson, 
1973; Kintsch & van Dijk, 1978). Also the finding that 
most subjects spontaneously rather use I-O knowledge 
or knowledge about specific instances than using 
structural knowledge or rule knowledge has parallels in 
these paradigms. Nosofsky et al. (1989) found that even 
simple rules defining a concept were only used when 
subjects were explicitly told to do so. Ahn et al.�s 
(1992) subjects used the experimentally provided 
background knowledge only when they were engaged 
in tasks requiring the active use of that knowledge. 

An important question is at what point in the whole 
process the causal interpretation effect arises. The 
present model assumes that the associations between 
events are learned incidentally in both conditions, and 
the effect occurs during recall, when only the ci 
subjects use this knowledge. This assumption shall be 
tested in future experiments.  

The next step in this research is modeling the comple-
tion task to test if the model really predicts the effect of 

causal interpretation on the contingency between 
recognition and completion tasks. Further research is 
also necessary to explore if the effects of causal 
interpretation can be generalized to similar tasks. If the 
effects can be confirmed, the model provides an 
interesting basis for a more general theory about 
implicit memory phenomena.  
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