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Two main types of knowledge are considered relevant to successful control of
dynamic systems: input-output knowledge (I-O-knowledge), which represents
specific input values together with the corresponding output values, and
structural knowledge, defined as general knowledge about the variables of a
system and their causal relations. While I-O-knowledge has proven important
for the control of small systems, structural knowledge is expected to enhance
performance when dealing with more complex systems. In an experiment,
structural knowledge about a complex system was manipulated. Although the
experimental group had better structural knowledge, the control group was
equally successful in reaching new goals. That seems to contradict other
studies where effects of structural knowledge on performance have been
found. To resolve these contradictions, the consideration of a third type of
knowledge - strategic knowledge - is suggested. The postulated effects of
different levels of structural and strategic knowledge are explored with a
computational model. The three knowledge types are used to interpret the
variety of findings within a unitary conceptual framework.
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Introduction

Controlling dynamic systems is an important requirement in many domains. Flying
an aircraft, controlling a central heating system, or intensive medical care are
examples of situations in which human operators have to interact with environments
with a complex causal structure, and where the state of the environment changes,
both autonomously and as a consequence of the operator's actions.

Psychological research on controlling dynamic systems has mainly focused on
how people learn to handle systems that are new to them. A central question
concerns the knowledge that is necessary - or at least sufficient - for controlling a
system. Two main types of knowledge are discussed in the literature: (1) Input-
output knowledge (I-O-knowledge) represents specific input values together with the
corresponding output values. (2) Structural knowledge is defined as general
knowledge about the variables of a system and their causal relations. When
interacting with a new system, a subject might try to memo rize specific output-
input-output sequences of values - then she would acquire I-O-knowledge. A subject
might also try to induce rules about the causal relations between the variables - then
she would acquire structural knowledge.

The distinction between I-O-knowledge and structural knowledge is an example
of the more general distinction between instance vs. abstraction theories of
knowledge (Anderson, 1995). These two classes of theories are discussed
controversially in many domains of cognitive psychology, e.g. categorization
(Medin & Shaffer, 1978; Nosofsky, 1984; Nosofsky, Palmeri, & McKinley, 1994),
or causal judgment (Allan, 1993; Anderson & Sheu, 1995; Schoppek, 1999). Like in
these areas, in the domain of system control most authors emphasize one type of
knowledge, neglecting the importance of the other type. Recently, more authors have
emphasized the instance view rather than the abstraction view (Buchner & Funke,
1993; Dienes & Fahey, 1995; Lebiere, Wallach, and Taatgen, 1998; Gibson,
Fichman, and Plaut, 1997).

In this paper, I argue for the importance of both types of knowledge. The argu-
ment is based on the observation that the data supporting the instance view were
collected with rather small systems, whereas experiments with larger systems have
provided evidence for the abstraction view. First, I discuss the relation between
system size and the usefulness of I-O-knowledge and suggest an estimate of problem
size that can be used as a criterion to distinguish between small and large systems.
Second, I give an overview of experiments that support either the instance or the
abstraction view. Next, an experiment is reported in which the role of structural
knowledge in the control of a large system was investigated. Finally, I propose the
consideration of a third type of knowledge - strategic knowledge - that can resolve
the seemingly contradictory results of studies in which structural knowledge was
manipulated.

The systems that were used in the studies reported below are modeled by simul-
taneous linear difference equations of the following type:
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One equation is used for each output variable y; x denotes input variables. The first
term describes the effects of the input variables, each effect characterized by a causal
weight aik. The second term describes the effects of the other output variables,
characterized by causal weights bjk. The third term models what could be called
momentum, i.e. the effect of the output variable on itself. The dynamic (i.e. the
property that the output state can change without a change in the input variables)
results from the effects among the output variables, including momentums. Some
systems contain equations with the second term, or the third term, or both of them
missing.

In experiments, the goal for the subjects usually is to reach and maintain target
values in the output variables by entering appropriate values in the input variables.
Performance is measured as the proportion of time steps where the output variables
are on target, or as solution error, which averages the log absolute differences
between actual and target values for all goal variables (Müller, 1993).

All of the systems mentioned in this paper are time discrete and the values of
input and output variables are presented as integers. Hence, the problem spaces of
these systems can be represented as finite directed graphs with all possible output
states (i.e. arrays of values of the output variables) as nodes connected by all
possible input states (i.e. arrays of values of the input variables) as edges. Figure 1
shows a very small fraction of the problem space of a system with three input and
three output variables. As the example of the input array [0, 0, 0] demonstrates, the
application of the same input array to different output states adds to the number of
links. The number of links characterizes the size of the problem space or, in other
words, the size of the system.

The concept of I-O-knowledge is closely related to the problem space, because it
also represents specific values of input and output variables. Ideally, the elements of
I-O-knowledge comprise information about the state of the output variables before
an input, the input itself, and the state of the output variables after the input. Such an
element is the subjective representation of a part of the objective problem space; it
corresponds to two nodes connected by one link. This correspondence makes the
relation between I-O-knowledge and system size obvious. If the I-O-knowledge of a
subject covers a substantial part of the problem space, I-O-knowledge is likely to be
useful for controlling the system. Given the current and the desired state of the
system, an O-I-O-triplet can be used to determine the appropriate input. The proba-
bility that a subject retrieves an appropriate triplet in a given situation depends
highly on the size of the system. I don't want to argue that the size of the problem
space is generally the appropriate complexity measure for these systems, nor that it
is strongly correlated with how difficult it is to control a system. There are a number
of alternative complexity concepts that may be superior for predicting difficulty, for
example Ashby’s (1958) control complexity. However, due to the close corres-
pondence between the problem space and the elements of I-O-knowledge, the size of
the problem space is the appropriate measure for estimating the usefulness of I-O-
knowledge for a specific system.
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Figure 1: Small fraction of the problem space of a system with three input and
three output variables. States of the output variables are represented by oval
nodes. These states can be transformed by input arrays, depicted as arrows

with boxes. All possible input arrays can be applied to each output state (not
all are depicted though). "Triplet 1" refers to the mental representation of a

part of the problem space which forms the basic unit of I-O-knowledge.

To calculate the number of links in a problem space, the number of different
possible output arrays must be multiplied with the number of different possible input
arrays (because each input array can be applied to all possible output states). Put
another way, the system size equals the product of the cardinalities of domain and
range of the entire system3. Since the input variables are independent of each other,
the number of different input arrays equals the product of the numbers of possible
values of each input variable. The number of possible output states may be
constrained by the influences among the output variables, which makes it hard to
calculate it. The fact that the number of output states is hard to determine is not
problematic here for two reasons. First, it is not reasonable to draw a sharp line
between small and large systems because there are virtually no criteria for that.
Second, such a line is not necessary too: The following examples demonstrate that
even with conservative estimates for the number of output states there are huge

                                                                
3 This measure is closely related to the cyclomatic complexity measure for software systems

suggested by McCabe (1976), C = e - n +2*p (e: number of edges of the problem space; n: number of
nodes of the problem space; p: number of connected components, here p=1). Whereas in McCabe's
equation all equivalent input arrays (i.e. arrays that have the same effect on an output state) are counted as
one edge, they are counted individually in the present calculation, because the equivalent operations are
likely to be represented individually in I-O-knowledge - at least initially.

[0, 0, 0]

[0, 400, 0]

[0, 40, 0]

[0, 200, 0]

[200, 0, 0]

[0, 0, 0]

[100, 0, 0]

[…][…]

[190, 0, 0]

[0, 20, 0]

[0, 0, 0] [80, 0, 0]

Triplet 1
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differences between the sizes of systems, which makes it easy to classify them as
rather small or rather large.

One small system that was used in many studies - called the sugar factory
(Broadbent, 1977) - has one input and one output variable with twelve possible
states each. The system size of the sugar factory is thus 12 × 12 = 144. A typical
system of the larger kind has three input variables that can be set to integer values
ranging from –10000 to +10000, resulting in 200003 = 8 × 1012 different input arrays
that can be applied to each of the possible states of the output variables. As
mentioned above, this number is harder to calculate, because the output variables are
not independent of each other. However, it is clear that the size of the problem
spaces of systems like that and systems like the sugar factory differ several orders of
magnitude. The general prediction is that I-O-knowledge is expected to be sufficient
only in the control of small systems. When large systems have to be controlled,
additional structural knowledge is necessary.

When Broadbent and his working group started to investigate the control of
small systems with two or four variables (e.g. the sugar factory), they expected that
verbal instructions about the structure of the system would enhance performance.
What they found was that performance was primarily affected by the amount of
practice and that amount of practice did not affect verbalizable structural knowledge
(Broadbent, 1977; Berry & Broadbent, 1984). In some cases, the instruction to
search for the underlying rule even degraded performance. Only if the rule was very
simple („salient“), this effect disappeared (Berry & Broadbent, 1984, 1988).

Berry and Broadbent have suggested several explanations that account for their
findings. One of them involves the concept of a lookup table that stores correct
actions to be taken in specific situations (Broadbent, FitzGerald, & Broadbent,
1986). Because specific values of input and output variables are represented in a
lookup table, it is a form of I-O-knowledge. This concept was quite successful in
explaining results with small systems. Marescaux, Luc, and Carnas (1989) tested
some predictions of a model by Cleeremans (in Marescaux et al., 1989) that used a
lookup table to control the sugar factory. If the model encountered a situation for
which it had an entry in the table it responded with that input value, otherwise it
selected one of the twelve possible responses by chance. If the response led to the
desired output, it was entered in the table. The predictions of the model were tested
with a „specific-situation task“ where subjects are shown descriptions of situations
which they either have encountered before, or not. Subjects are asked to enter the
level of workforce that would achieve the target level of sugar production. As
predicted by the model, subjects performed better on old situations than on new
ones. For situations in which a subject had selected a correct input value during
learning, one would expect the same response in the specific-situation task. That was
true in 57% of the cases.

Dienes and Fahey (1995) questioned whether an above chance concordance for
old situations was sufficient to support the model. This concordance must be
compared with the one for situations previously given an incorrect response and with
the probabilities to give each response without sensitivity to situations. In two
experiments using the sugar factory and the person interaction task (Berry &
Broadbent, 1988) they calculated those different concordances and baselevel
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probabilities. The concordances for previously correctly answered situations were in
fact higher than those for incorrectly answered situations. Based on Logan’s (1988)
instance theory, Dienes and Fahey developed two models, one prima rily using a
lookup table and one storing instances of different rules. The former model
reproduced the pattern of results more closely than the latter, even though it had
fewer free parameters.

Lebiere, Wallach, and Taatgen (1998) presented an ACT-R model to explain the
same data. That model stores all its experiences with the system as specific
instances, not only the successful ones. The instances can be retrieved depending on
the similarity to the current situation. Whereas in Dienes and Fahey’s model even
the rules that guide the first few inputs were translated into specific instances, those
rules are implemented as procedural knowledge in the ACT-R model. The model
can account for the data as well as Dienes and Fahey’s model, but it works with
fewer assumptions.

Gibson, Fichman, and Plaut (1997) developed a connectionist model that
successfully reproduced their data from an experiment with the sugar factory.
Connectionist models usually process input and output values without drawing
inferences. Thus, the type of knowledge acquired by this model resembles I-O-
knowledge.

All these studies support the view that I-O-knowledge rather than structural
knowledge is used in the control of dynamic systems. But the generalizability of this
statement is attenuated by the fact that all these studies used small systems. The
measure of system size proposed above is 144 for the sugar factory. Another system
that was used in these studies, the city transportation system (Berry & Broadbent,
1988), is not dynamic, as the state of the output variables solely depends on the input
values. Therefore the number of states of the output variables does not contribute to
the size of the problem space. Assuming a plausible range of 1-500 for the two input
variables "parking fee" and "time interval", its size is 2,5 × 105.

In the following studies, the relevance of structural knowledge, defined as
general knowledge about the variables of a system and their causal relations, was
investigated. The systems used in these studies had sizes of at least 1013 (at least
three input variables with a domain of at least 1000 each and a range of at least
10000 output arrays). It is implausible to assume that I-O-knowledge is sufficient to
control systems of that size flexibly, i.e. to reach and maintain arbitrary output
states. Unrealistic amounts of I-O-I-triplets would be required to cover a substantial
part of the problem space. Structural knowledge, on the other hand, is applicable in
every region of the problem space, because causal relations stay the same regardless
of specific values.

In a series of experiments, Funke (1993) used systems with three input and three
output variables and varied characteristics of the system structure, e.g. the number of
different effects of input variables or the amount of momentum (defined as the effect
of an output variable on itself). Basically, the results show that the complexity of the
system has an impact on performance and on structural knowledge. The latter was
assessed by structure graphs subjects had to complete after each round of system
control. In most of the experiments, path analyses revealed significant path
coefficients between knowledge scores and subsequent performance scores. This
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supports the hypothesis that structural knowledge may be a cause of successful
system control, although the hypothesis has not been tested experimentally.

One of the first attempts to manipulate structural knowledge about a larger
system experimentally was undertaken by Putz-Osterloh (1993). She provided one
group of subjects with a graphic of the causal structure of the system LINAS (four
input variables, seven output variables). The control group explored the system
without the graphic. There were no differences in performance in a test phase. But in
a transfer phase, where the structure of the system was changed by skipping one
output-output relation, the experimental group outperformed the control group.
Moreover, the experimental group was better in diagnosing and explaining the
change of the system (which was introduced to the subjects as an error). Putz-
Osterloh categorized the subjects’ strategies into selective and non-selective ones.
Using a selective strategy means that only one or two input variables were used to
control the system. Analyses of the control group data indicated that a selective
strategy was associated with better structural knowledge at the end of the experiment
and with a better diagnosis of the error.

Vollmeyer, Burns, and Holyoak (1996) manipulated knowledge acquisition
through strategy instruction and variation of goal specificity in the system BIOLOGY-
LAB with three input and three output variables. They found that providing subjects
with a specific goal state in the learning phase led them to strive for that goal state
rather than to acquire general knowledge about the system. Even in the condition
where subjects were instructed to use a selective strategy in order to find out the
structure of the system, many subjects preferred to violate the instruction and tried to
reach the goals. In a test phase when all subjects had to attain these goals, the groups
performed equally well. But the groups with strategy instruction and with unspecific
goals were more successful in solving a transfer problem with a different goal state
(all main effects significant, no interaction effect). Vollmeyer et al. interpret their
findings in terms of dual-space theories. Subjects who do not try to reach goals in
the learning phase explore both, the instance space and the hypotheses space,
whereas subjects who try to reach specific goals mainly explore the instance space.
In the terminology used here, the instance space corresponds to I-O-knowledge, and
the hypotheses space to structural knowledge. The results are also viewed as
supporting Sweller’s (1988) claim that problem solving during learning impairs the
acquisition of general knowledge.

A problem with Vollmeyer's experiment is that subjects in the condition
„specific goal & strategy instruction“ were in a conflict. If they tried to reach the
goal state, they needed to vary all three input variables and thus violated the strategy
instruction. Because most of the subjects preferred to ignore the instruction in order
to reach the goals, the specific goal condition was confounded with a strong bias to
use strategies that are unfavorable for the acquisition of structural knowledge.

The most intensive attempts to manipulate structural knowledge were recently
undertaken by Preussler (1998) in two experiments with the LINAS system (four
input variables, seven output variables). In most preceding studies, structural
knowledge yielded its effects only after some practice, e.g. in transfer phases (Putz-
Osterloh, 1993; Vollmeyer et al., 1996). Preussler argues that structural knowledge
can be helpful much earlier, provided it is acquired in a context that is similar to the
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test situation. Both experiments started with one of two conditions of exploration.
Then all subjects had to control the system for six rounds (test phase). Finally, there
was a transfer phase with two rounds of controlling the same system with changed
target values. After the test phase, structural knowledge was assessed with a
judgment task. In that task, subjects are shown pairs of variable names and have to
decide whether there was a causal relation between them.

In all conditions of both experiments, subjects were initially shown the
momentums of the goal variables and had to answer some questions about the
regularities. In Experiment 1, subjects of the experimental group were informed
about the causal relations between input and output variables and used that
knowledge immediately in small control problems. Those problems were small with
regard to the number of variables. One input variable was used to control one output
variable (goal variable). Nevertheless, they were complex with regard to the number
of effects. Besides the effect of the input on the goal variable other influences had to
be considered: influences from other output variables and from the momentum of the
goal variable. Only correct input values were accepted; wrong inputs were rejected
with a simple error message. Thus subjects were forced to figure out the correct
solutions. Control subjects worked on the same problems without any hints (e.g.
they could use more than one input variable, and wrong inputs were accepted). As
expected, the experimental group outperformed the control group not only in the
transfer phase, but also in the test phase. Structural knowledge scores were higher in
the experimental group. The expected correlation between structural knowledge and
performance in the experimental group was found, but only in the transfer phase
(r = -.42, p  < .05, the coefficient is negative, because performance is measured by
solution error).

In Experiment 2, subjects of the experimental group were guided through a
complex procedure of successively being informed about causal relations between
variables, and using that knowledge in several control problems. This time subjects
were given the correct solutions after two faults. The control group tried to reach the
goal values of the later test phase with two restrictions: they could only use one
input variable within each round, and they had to obtain the goal values separately.
The number of trials was equal in both conditions. The pattern of results was similar
to Experiment 1, but the effects were smaller, and significant correlations between
the structural knowledge score and performance score were found in both
conditions. This had been expected, because both exploration phases involved
instructions to use selective strategies.

Preussler concludes that teaching structural knowledge to subjects can improve
performance already in the test phase if this is done in a context that is similar to the
later application of the knowledge. The experiments demonstrate the importance of
structural knowledge in the control of a large system.

To summarize, there is much evidence that general knowledge about the
structure of a rather large system (structural knowledge) can be helpful for
controlling it (Putz-Osterloh, 1993; Funke, 1993; Vollmeyer et al., 1996; Preussler,
1998). The results of the control groups of these experiments indicate that most
uninstructed subjects do not try to acquire and use structural knowledge. I-O-
knowledge, on the other hand, seems to be acquired spontaneously; and it appears to
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be sufficient for the control of rather small systems  (Berry & Broadbent, 1984,
1988; Marescaux et al., 1989; Dienes & Fahey, 1995; Gibson et al., 1997). The
tendency of subjects to adopt instance oriented strategies might explain why the
performance in large systems is generally very low, in particular in control groups
where no specific instructions are given: It is simply unlikely to represent a
significant proportion of the huge problem space as I-O-knowledge.

Experiment

In the present experiment, I wanted to explore more direct ways of teaching
structural knowledge than providing graphics or instructing certain strategies. I also
tried to avoid some confounds that were problematic in the reported studies. First, in
order to circumvent the possible effect that problem solving impairs the acquisition
of general knowledge (Sweller, 1988), structural knowledge was taught with a
minimal amount of problem solving. Second, to avoid the conflict between reaching
goal states and adopting a strategy that is favorable to acquire structural knowledge
(Vollmeyer et al., 1996), a condition was introduced that allowed subjects to do
both.

The experiment aimed at answering the following questions: (1) What effects has
structural knowledge on performance in a test and several transfer phases, when it is
taught in a supervised learning phase without the demand of solving difficult
problems? To serve that purpose, an individualized tutorial about the structure of the
system used in the experiment was developed. (2) Does the provision of specific
goals in the learning phase really impair the acquisition of structural knowledge if
this procedure does not prevent subjects from using appropriate strategies? This
question was addressed by using a training condition where subjects could reach
target values by selecting single input variables – an appropriate strategy for
acquiring structural knowledge. (3) A third question aimed at the replication of an
effect found by Preussler (1997) in an experiment involving the same system as the
present experiment: The display of additional output variables that did not affect the
goal variables enhanced performance compared to a condition showing only the
output variables that were causally connected with the goal variables. The effect was
mediated by the more extensive use of a selective strategy in the group with the
additional variables. So the question is, does the display of redundant output
variables enhance performance?

Method

Materials

LINAS: The system used in this experiment is called LINAS (linear-additive system).
LINAS consists of four input and seven output variables connected by linear
equations between input and output variables as well as between the output
variables. Only three of the output variables are dynamic ones, supplied with a
memory for their previous state. Following are the equations for these three
variables. Output variables are denoted by artificial names, input variables by capital
letters.
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Faifen t = A t-1 – C t-1 + C t-2 + D t-1 + 0.1·Sripon t-1 + Faifen t-1 [2]

Sripon t =  2·A  t-1 + B t-1 + D t-1 – 0.9·Sewenal t-2 + 0.1·Sripon t-1 [3]

Sewenal t = C t-1 + 0.9·Sewenal t-1[4]

The goal for the subjects is to reach specific values in the output variables Sripon
and Faifen at the end of a round. A round consists of six trials where the subjects can
assign values to the input variables.

A formal analysis of the system (Hoffmann, 1996) revealed that any goal state
could be reached within one trial, when using at least three input variables. When
using only one input variable, any state can be reached within three trials.

Linalyse: I developed a computer tutorial, called „Linalyse“, which guides subjects
to analyze direct effects of the input variables of LINAS, and to use that knowledge in
small control problems that involve only one input value and one time-step. Figure 2
shows a screenshot of the program.

In the first part of the tutorial, values have to be assigned to single input
variables, starting with input A. The program asks for the effects on the goal
variables Sripon and Faifen. The subject has to make judgments about the quality of
the relation (positive, negative, or no relation), and about the numerical value of the
causal weight. This procedure is repeated for all input variables.

In the second part, subjects are asked to use one input variable to obtain the value
of 250 in the two goal variables Sripon and Faifen (one after the other). In the case
of an error, the program repeats the relevant section of Part 1. This procedure is
repeated for all possible input-output combinations.

The third part deals with the momentums of the goal variables. For each input
variable, the subject is guided to set an impulse (input=100 in the first time step,
input=0 in the following time steps) and is asked for qualitative judgments of the de-
velopment of the output values.

Finally, all causal weights between the four input and the two goal variables are
requested twice in random order (including the „no-relations“ with a weight of 0). If
at least 75% of the answers are correct, the program is done; otherwise Parts 1 and 2
are repeated. Thus, the training phase is individualized depending on fixed criteria.

Using Sweller's conception, Linalyse should be a condition where resources can
be allocated mainly to the acquisition of general knowledge. Therefore, the demand
for solving problems was minimized in Linalyse. When problems had to be solved at
all, the solution required nothing but the knowledge that was acquired shortly before.
Thus knowledge acquisition and use were arranged so that they were clearly related
to each other. There was no training of integrating several effects.
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Figure 2: Screen of the Linalyse tutorial

Goal-oriented exploration : The contrasting condition was a goal-oriented
exploration of the system (GOE). Subjects were instructed about the variables and
the potential relations between them. Then they should try to reach target values in a
single output variable at the end of a round. Subjects were instructed to use as few
input variables as possible. The goal values were as follows: Sripon = 250 in four
trials (two rounds), Faifen = 250 in four trials (2 rounds), Sripon = 500 in four trials
(1 round), Faifen = 500 in four trials (1 round), Sripon = 500 in six trials (1 round),
Faifen = 500 in six trials (1 round). Subjects had to do a considerable amount of
problem solving. If the cognitive load hypothesis (Sweller, 1988) is valid, the goal-
oriented exploration should result in less structural knowledge, as compared with the
Linalyse group. In contrast to Vollmeyer’s experiment, the problems could be solved
using only one input variable. Thus problem solving did not inevitably preclude the
use of strategies that support the acquisition of structural knowledge. This
arrangement avoids the confound of problem solving and strategy use.

The I-O-knowledge subjects acquire in the GOE should not be applicable in the
later phases, because the goal values in the GOE were quite different to those in the
test and transfer phases. Therefore, a lower level of performance can be expected
compared to the LILY condition. On the other hand, in the GOE condition subjects
have a good chance to become acquainted with the dynamics of the goal variables.

What is the causal factor
between A and Sripon?

Continue

Correct
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Structural Knowledge Questionnaire: At the end of the training phase, all subjects
had to answer 16 questions about the relations between the input variables and the
two goal variables. In each question they had to decide if there was a causal relation
between two variables, and to choose the correct mediating factor among six
presented values. In the Linalyse (LILY) condition, this was a part of the tutorial.
One-Step Problems: After the transfer phase, all participants had to solve four
control problems where they should attain specific values of Sripon and Faifen
within a single time step. To solve these problems, no knowledge about the relations
between output variables is needed, because the effects of the output variables
among each other do not come into play until the second time step. Each problem
was counted as correct only if both values were attained exactly.

Participants

Eighty students (40 female, 40 male) studying different subjects at the University of
Bayreuth participated for payment and were randomly assigned to the conditions.
With that sample size and α = 0.1, the expected medium sized effects could be
detected in an ANOVA with a power of 0.72 (power analysis calculated with G-
Power by Faul & Erdfelder, 1992).

Design and Procedure

Two between-subject factors with two levels were combined, resulting in four
experimental conditions. The first factor referred to the learning phase (Linalyse vs.
goal-oriented exploration), the second to the number of output variables shown on
the screen (three vs. seven). In the condition with three output variables, Sripon,
Faifen, and Sewenal were shown. In the condition with seven output variables, four
additional variables were shown that were redundant in the sense that they had no
effects on the goal variables.

The experiment started with general instructions about the control of complex
systems and a description of the specific system that had to be controlled. Subjects
were randomly assigned to work through either the Linalyse program or the goal-
oriented exploration. The learning phase ended with a structural knowledge
questionnaire. The subsequent test phase consisted of six rounds in which all
subjects were asked to reach a specific goal state at the end of each round (Faifen =
5000, Sripon = 200). After the test phase, subjects could take a little break. A
transfer phase was then provided in which all subjects had two rounds to attain a
new goal state (Faifen = 2000, Sripon = 2000)4. In a second transfer phase, subjects
were asked to solve four one-step problems presented in random order. Finally
participants were debriefed and paid according to time and performance. The entire
session lasted about two hours on average.

                                                                
4 The goal states in the test and transfer phases had to be reached at the end of each round, i.e. in time

step 6. To prevent subjects from leaving the system in the neutral state (all variables equal 0) until time
step 5, a third goal was provided saying that Faifen must grow in every time step.
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Hypotheses

If the cognitive load hypothesis is true, then LILY provides optimal conditions for
acquiring general knowledge. Therefore I expected the LILY groups to have more
structural knowledge at the end of the learning phase. Because structural knowledge
is assumed to be important for the control of a large system like LINAS, the LILY
groups are also expected to be more successful in controlling the system in the test
and transfer phases, especially in the one step problems of the second transfer phase.
These problems are similar to the Linalyse tutorial because of their static character.

The GOE is a challenging control condition for these hypotheses, because the
subjects can - and are encouraged to - use strategies in the GOE that are favorable
for acquiring structural knowledge. Therefore, it might turn out that the amount of
structural knowledge is equal in both conditions. In that case, the GOE groups would
be expected to outperform the LILY groups in the test phase and the first transfer
phase, because in the GOE the system was handled under conditions similar to these
phases. The I-O-knowledge that can be acquired during the GOE is not expected to
be useful for the test and transfer phases, because the goal values of the GOE were
markedly different from those of the later phases. Hence, a different region of the
problem space is explored in the GOE.

According to Preussler (1997), showing more output variables on the screen
enhances performance. The question here was if the effect could be replicated under
somewhat different conditions.

Figure 3: Proportions of correct answers in the structural knowledge
questionnaire (Panel A) and the one-step problems (Panel B). (3 ov: 3 output

variables, 7 ov: 7 output variables)
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Results

Performance of system control was measured by the solution error, which sums the
natural logs of the absolute differences between the goal values and the actual values
at the end of a round. In order to enhance the reliability of the measures, I selected
the best out of two consecutive rounds. This results in three variables for the test
phase (test 1&2, test 3&4, test 5&6), and one for the transfer phase (transfer 1&2).

Structural Knowledge

Panel A of Figure 3 shows the mean proportions of correct answers in the structural
knowledge questionnaire. The effects of the independent variables on the structural
knowledge score were examined by a 2×2 ANOVA. There is a significant main
effect of training condition (F  = 9.98, p < .01), and a significant interaction between
training condition and number of output variables (F = 5.76, p < .05), i.e. only in the
condition with seven output variables, there is a substantial difference between the
structural knowledge scores of the two training groups. As expected, structural
knowledge was higher in the LILY groups.

Performance in the Test Phase

In order to test the effects of the two between-subject factors and learning effects, a
repeated measures mixed ANOVA was calculated. From each of two consecutive
rounds (1 and 2, 3 and 4, 5 and 6), the best result was selected, forming the within-
subjects factor "time" with three levels. The only significant result of the ANOVA is
the main effect of the time factor (F = 3.79, df = 2, p < .05). Over all conditions,
subjects improved their performance. Neither the effect of learning condition (F =
1.77, df = 1, p = .19), nor that of number of output variables (F = 2.13, df = 1, p =
.15) was significant. There was no significant interaction. Thus, the hypothesis about
the positive effect of the Linalyse tutorial on performance in the test phase is not
supported by the data. Also the effect that showing more output variables on the
screen enhances performance (Preussler, 1997) was not replicated. (Actually, the
numerical values of the means in the conditions with three vs. seven output variables
point in the opposite direction than expected). The mean solution errors and standard
deviations from the test and transfer phases are displayed in Table 1.

Table 1: Solution errors for the training conditions Linalyse (LILY) and goal-
oriented exploration (GOE). Low solution errors indicate high performance.

LILY (n = 40) GOE (n = 40)
mean s mean s

Test:
Round 1&2 5.58 2.06 5.08 2.43
Round 3&4 5.50 2.08 4.65 2.50
Round 5&6 4.96 2.39 4.47 2.66
Transfer:
Round 1&2 5.12 2.12 4.47 2.35
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As I stated earlier, subjects under the GOE condition might have taken advantage
of the experience to handle the system under conditions that were similar to those of
the test phase. That experience could have compensated for the better structural
knowledge of the LILY groups. To test this, an analysis of covariance (ANCOVA)
was conducted with the structural knowledge score as a covariate. All other factors
were as in the ANOVA described above. Besides the significant effect of the
covariate (F = 15.4, df = 1, p < .001), the ANCOVA revealed a significant main
effect of learning condition (F = 4.9, df = 1, p < .05). Estimated marginal means
indicate that subjects under the GOE condition performed better than subjects under
the LILY condition, when structural knowledge is controlled. No other effects were
significant. Particularly, the time effect disappeared (F <  .1).

Performance in the Transfer Phase

In the transfer phase, subjects performed at about the level of the last two rounds of
the test phase (test 5&6: 4.72 transfer 1&2: 4.79). There were no significant effects
of the experimental conditions in an ANOVA. Again, if the structural knowledge
score is entered as a covariate, there are significant main effects of the covariate (F =
17.2, df = 1, p < .001) and of learning condition (F = 4.8, df = 1, p < .05), indicating
that the GOE group is better when structural knowledge is controlled.

One-Step Problems

The means of correct solutions in the one-step problems show a similar pattern as
the structural knowledge score (see figure 3, panel B). There is a main effect of
training condition, too (F = 3.65, p < 0.05), but the interaction is not significant (F =
1.75, p < .2). Subjects in the LILY condition were more successful in solving the
one-step problems than subjects in the GOE condition. This - together with the
correlations reported below - is in line with the assumption that the differences in
structural knowledge remained throughout the experiment.

Relationship Between Structural Knowledge and Performance

Correlations were calculated to determine how well the measure of structural
knowledge at the end of the training phase predicted success in the problem-solving
phases. If structural knowledge was applied in system control, then the measure
should correlate inversely with the level of performance (high levels correspond to
low numbers). There were only slight differences between the coefficients in the
several conditions. In the whole sample, the structural knowledge score is correlated
with performance in the test phase (best round), r = -.32, p < .01, with performance
in the transfer phase (best round), r =  -.35, p < .01, and with performance in the
one-step problems, r = .63, p < .01. This means that structural knowledge about
input-output relations did not contribute very much to dynamic problem solving, but
predicts performance in the more static one-step problems quite well.

Rather low, yet significant correlation coefficients give no hints about the kind of
deviation from linearity. To analyze that, I formed dichotomous variables indicating
high vs. low structural knowledge (< vs. ≥ 75% correct answers) and high vs. low
performance (all three goals attained vs. only a subset of goals attained). The
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resulting cross tables can indicate if structural knowledge is rather necessary or
sufficient for successful system control. (Table 2).

Table 2: Number of subjects with low vs. high structural knowledge and low
vs. high performance in the test phase, for the training conditions Linalyse

(LILY) and goal-oriented exploration (GOE)

LILY: GOE:
low perf. high perf. low perf. high perf.

low SK 11 1 11 8
high SK 16 12 11 10

In the LILY condition, almost all subjects who controlled the system successfully
also had high scores in structural knowledge, whereas several subjects with high
structural knowledge performed weakly, though. This pattern can be interpreted that
structural knowledge is necessary, but not sufficient for system control. But that
interpretation seems to be too simple, because in the GOE condition, subjects are
distributed differently. There are eight subjects with low structural knowledge who
perform well. So is structural knowledge not necessary for successful control? This
conclusion is not imperative as LINAS can be controlled with just one or two input
variables. If subjects in the GOE condition have dis covered that property of LINAS
already in the training phase, they might have acquired only that fraction of
structural knowledge that was relevant for their strategy.

In both conditions there are many subjects who clearly recognized the effects of
the input variables, but were not successful in solving the problems. This finding
supports the view that declarative knowledge about causal relations is not sufficient
to control the system successfully.

Strategies

There is another inconspicuous, but more powerful predictor of performance than
structural knowledge: It is the number of input variables used in the first round of
the test phase. All correlations between that number and the solution errors in the
subsequent rounds (2-6) are significant with a median of r = .40, p < .01.

In the GOE condition, the strategy of selecting input variables can be detected
already in the training phase, because subjects were free to use one or more input
variables. It is very interesting that the use of this strategy predicts problem solving
performance throughout the experiment. Table 3 shows the correlation coefficients
between the mean number of input variables used in the GOE, the mean solution
error in the GOE, and measures of subsequent success (the two variables GOE
strategy and GOE performance are also correlated, r = .47, p < .01).

Using few input variables per round is associated with higher structural
knowledge and predicts performance in the test phase. Moreover, the amount of
structural knowledge learned in the GOE is related to successful problem solving in
that phase. This challenges the conclusion of Vollmeyer et al. (1996) that problem
solving during learning impairs the acquisition of general knowledge.
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Table 3: Correlation coefficients between a measure of strategy (n of
variables) and performance in the goal-oriented exploration (solution error),

and measures of structural knowledge and performance in later phases.

structural
knowledge score

solution error
(test)

solution error
(trans)

one step
problem score

n of variables
(GOE)

-.35* -.31* -.25 -.11

solution error
(GOE)

  -.43**    .52**      .54**       .47**

*  p < .05     ** p < .01     n = 40

Once more, the results demonstrate the importance of strategies. In LINAS, a
selective strategy is not only useful for analyzing the relations between variables in
the learning phase. Significant correlations between performance and the number of
input variables used in later rounds indicate that the reduction of complexity by
selecting input variables is a good control strategy too.

Discussion

The comparison between the adaptive tutorial Linalyse and a goal-oriented
exploration phase revealed the expected differences in structural knowledge.
Subjects trained with Linalyse had higher structural knowledge scores at the end of
the training phase. They were also more successful in solving the static one-step
problems at the end of the experiment, which indicates that the differences were
lasting. However, when the task is to control a dynamic system, subjects trained with
Linalyse were not better than subjects trained in the goal-oriented exploration. These
results seem to contradict other studies (Putz-Osterloh, 1993; Vollmeyer et al., 1996;
Preussler, 1998) where manipulations of structural knowledge had effects on per-
formance, at least in transfer phases. The fact that the manipulation of structural
knowledge sometimes yields differences in performance, sometimes not,
demonstrates that the concept of structural knowledge is not powerful enough to
explain the variety of results.

With respect to the question if providing specific goals in the learning phase
impaired learning of general knowledge the data support this assumption in a limited
sense: Subjects in the GOE condition had less verbalizable structural knowledge and
performed worse in the one-step problems. But they were equally successful in
controlling the system towards new goal states, where specific I-O-knowledge from
the exploration phase was not applicable. Hence, subjects in the GOE condition must
have gained some other type of general knowledge that has compensated their lower
structural knowledge. Instead of interpreting the differences in structural knowledge
as an effect of specific goals that impaired learning, they can alternatively be
interpreted as an effect of Linalyse, which selectively enhanced learning of
structural knowledge.
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One question for the experiment was if the detrimental effect of goal specificity
could be avoided if the attempt to reach specific goals did not preclude the use of
appropriate strategies - as it was the case in Vollmeyer et al.‘s (1996) experiment. If
that confound is dissolved, successful problem solving during learning does not only
predict further success, but even the amount of structural knowledge (see correlation
coefficients in Table 3). Thus, Sweller’s (1988) findings that problem solving during
learning impairs the acquisition of general knowledge cannot simply be generalized
to the domain of complex dynamic tasks.

The effect found by Preussler (1997) that presenting additional output variables
enhanced performance could not be replicated. In Preussler’s study, subjects with
more output variables adopted better input strategies. That was not the case in the
present experiment.  Eliciting a selective strategy by information overload seems not
to be a robust effect. But after all it is remarkable that the groups with additional
variables did not perform worse.

Strategic Knowledge

The joint consideration of the studies of Vollmeyer et al. (1996), Preussler (1998),
and the present experiment has shown that structural knowledge alone cannot
account for the results, because in all three studies the manipulation of structural
knowledge was successful but yielded different effects on performance. Although all
manipulations in these experiments targeted at structural knowledge, it is possible
that some of them affected more than the knowledge that is used to answer questions
about causal relations. In fact, most of the findings reported above can alternatively
be explained by a co-development of reportable structural knowledge and another
form of knowledge that may be equally important for system control.

There are many hints that this type of knowledge has to do with strategies: In
some experiments with large systems the effects were mediated by strategies
(Preussler, 1997; Putz-Osterloh, 1993); strategy manipulations resulted in
performance differences (Vollmeyer et al., 1996); strategy measures are correlated
with performance (results of the present experiment). The idea that strategies are
important to explain performance in the control of dynamic systems is not new
(Funke, 1992; Putz-Osterloh, Bott & Houben, 1988). But the notion of strategies is
notoriously ill defined and there are no clear assumptions about how strategic
knowledge might be represented in memory. Often strategies are characterized by a
single idea, as e.g. "vary one thing at a time". A closer look on what such an idea
means in terms of behavior reveals that there is much more to implementing a
strategy than having an idea. In the following, I propose a conception of strategic
knowledge that was inspired by the GOMS methodology by Card, Moran, and
Newell (1983). The usefulness of this conception shall be demonstrated with a
computational model that controls LINAS with varying levels of structural and
strategic knowledge.

The following examples of strategies can be used to find the lowest common
denominator for characterizing a strategy.
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a) Acquire knowledge about the system →  apply the knowledge in order to
attain goal states

b) Vary one input variable → infer effects → set input variable back to zero →
infer more effects

c) Calculate expected value in an output variable →  calculate difference between
expected and desired value → select free input variable → calculate input
value

Although on different levels of abstraction, all examples specify a sequence of steps.
The types of steps range from goals, as in Example a, down to single operators, as in
Example b (third step). Given that the strategies are the result of some underlying
knowledge, this "strategic knowledge" can be defined as knowledge about how to
proceed in order to accomplish a task. Strategic knowledge contains information
about a sequence of steps.

This notion of strategic knowledge closely resembles the method in GOMS
(Card, Moran, and Newell, 1983). In GOMS, methods consist of sequentially
ordered steps that can be operators, goals, or selection rules. Like GOMS methods,
strategic knowledge can be rather concrete, when it consists of operators, or rather
abstract, when it consists of goals and selection rules. According to Card et al.
(1983), I assume a continuum between problem solving strategies and skilled
behavior in the development of strategic knowledge5.

The examples also demonstrate the co-development of strategic knowledge and
the other knowledge types. On the abstract level of Example a, the strategy does not
imply the use of I-O-knowledge or structural knowledge. Example b describes a
strategy to acquire structural knowledge, but it does not preclude incidental learning
of I-O-knowledge. Example c, however, describes a strategy of applying structural
knowledge. This strategy is useless if only I-O-knowledge is available.

How are the three knowledge types related to the distinction between declarative
and procedural knowledge, as it is defined in Anderson's (1983, 1993) ACT
theories? At first glance it might appear that I-O-knowledge and structural
knowledge are declarative and strategic knowledge is procedural. But the
declarative-procedural distinction is defined representationally, whereas the present
knowledge classification is defined in terms of content. A sequence of steps can be
represented either declaratively or procedurally. Since declarative knowledge cannot
act and productions are eventually needed to make a model do something, strategic
knowledge always contains procedural knowledge. But strategic knowledge should
not be identified with procedural knowledge. Also, I-O-knowledge and structural
knowledge might contain procedural elements, particularly when they are highly
practiced. "If the goal is to bring the sugar production to 8000 and the current
production is 6000 then set work force to 7" is an example for I-O-knowledge
represented by a production rule.
                                                                

5 This also implies a continuum between strategies and tactics in a way that strategies are more
abstract methods, whereas tactics are more concrete methods. The shift from problem solving (strategic)
to skilled (tactical) behavior is characterized by the development and consolidation of concrete low-level
methods. Because of the futility of defining a sharp line between abstract and concrete methods, I use the
term "strategic knowledge" for both.
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A computational model

The model that is presented in this section simulates the use of structural knowledge
in the control of the dynamic system LINAS. The model is written in ACT-R 4.0
(Anderson & Lebiere, 1998) and was developed on top of a core model that allows
translating GOMS like task analyses into ACT-R (Schoppek, Boehm-Davis, Diez,
Hansberger & Holt, 2000). A computational model has several advantages over a
pure GOMS analysis: The assumptions of the analysis are tested more strictly
because their effectiveness is proven through direct interaction with the task;
assumptions about the representation of knowledge must be made explicit;
predictions of variations in the assumptions can be made directly through simulation.

In the core model, strategic knowledge is represented as methods, consisting of
steps that are stored in declarative memory. Steps are linked through associations,
i.e. each step acts as a cue for the retrieval of the next step, which is most likely –
but not necessarily - the correct one. Steps can trigger internal or external operations,
selection rules, or initiate subordinate methods. Internal operations and selection
rules are represented as productions in procedural memory. External operations are
delegated to some LISP code that interacts with the task environment. Another
feature of the model is that hierarchical methods are executed without a deep goal
stack. Every time a subgoal is set, the old goal does not remain on a goal stack, but
is stored in declarative memory, where it has to be retrieved after the subordinate
method has been finished. This feature, together with the possibility that wrong next
steps can be retrieved, allows to predict errors similar to those that can be observed
in humans when they execute hierarchical plans (Altmann & Trafton, 1999).

For the model that controls LINAS, additional specific assumptions had to be
made. One of them concerns the representation of structural knowledge. Each causal
relation that is present in the system is represented by a declarative memory element
(a “chunk” in ACT-R terminology) that contains information about the causing
variable, the dependent variable, and the causal factor between the two variables.
The strengths of these chunks in memory - and thus the probabilities of retrieval -
can be varied by making assumptions about their history of use: The more often a
chunk has been used in more recent times, the stronger it is. Also, the strengths of all
chunks are changing according to their use during a simulation run (baselevel
learning). Other assumptions have been made about task specific internal and
external operators; one of the most important being the internal operator “retrieve-
relation” that tries to retrieve a structural knowledge chunk depending on the
variable that is currently in the focus of attention. Many other internal operators that
perform memory operations, like moving retrieved information into working
memory, or storing results in memory, are part of the core model. Finally, the
strategies or methods had to be defined. The present model works with predefined
strategies and does not learn new ones. This is an important restriction of the model
that has to be overcome in future versions.

Figure 4 shows one strategy that was used by the model in the simulations.
Methods are denoted in bold, selection rules in italics. The strategy's main
submethods are m-calculate-all-influences, which calculates the predicted next
state of the system without the new input, and m-calculate-input-value, which
determines an input variable, calculates and enters a value that removes the
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Figure 4: A strategy that can be used to control systems like LINAS. Method
steps are denoted in bold, selection rule steps are denoted in italics. Several

memory operations are subsumed under that label and their number indicated
in parentheses.

m-top-level
create-situation-chunk
get-trial-number
memory-operation
m-control-variables

retrieve-desired-state
desired state found?
yes: m-calculate-input

m-calculate-all-influences
set-sum-0
m-get-influence

memory-operations (3)
retrieve-relation
relation found?
yes: m-calculate-influence

extract-relation
get-value
value=0?
yes: done
no: continue
memory operation
s1*s2

no: done
relation found?
no: done
yes: continue
memory-operation
s1+s2
memory-operation

memory-operations (3)
s1-s2
m-calculate-input-value

memory-operation
m-select-free-input

memory-operations (3)
retrieve-input-relation
input-relation found?
no: repeat
yes: done

extract-input-relation
s1/s2
enter-input-value

no: done
mark-d-state
memory-operation

press-next
memory-operation
last time step?
no: repeat
yes: done
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difference between the predicted next state and the goal state. It is obvious that the
strategy is quite complex. But for optimal performance, even more considerations
would be necessary (the described strategy does not consider possible side effects of
the last input). Although the strategy was developed based on verbal protocols of
expert subjects, it is only one of many possible strategies. Compared to others, it is a
general one that can be used to control any system of the linear-additive type. It does
not rely on I-O-knowledge but on structural knowledge. Although I stated earlier
that I-O-knowledge is much less important in controlling large systems than in
controlling small systems, the exclusion of I-O-knowledge is a simplification.
Vollmeyer et al,'s (1996) results have shown that I-O-knowledge can play a role in
the control of large systems, too (high performance of the "specific goals & no
strategy instruction" group in the test phase with striking drop of performance in the
transfer phase). This should be taken into account in future models.

In a simulation with the model, the effects of different levels of structural and
strategic knowledge were investigated. The simulation was not intended to fit a
specific data set, but to explore if the proposed notion of strategic knowledge
actually produces the effects that were postulated in the previous section. For each
knowledge type there were two levels, “high” and “low”. Structural knowledge was
varied by defining different strengths for the chunks that represent causal relations6.
Strategic knowledge was varied by using strategies of different complexity. In the
“high strategic knowledge” condition, the method shown in Figure 4 was used. In
the “low strategic knowledge” condition, the method m-calculate-all-influences
with all its subordinate methods was replaced by a single operator that estimates the
influences from the state of the system by setting them to 500. This reduces the use
of structural knowledge, but it does not completely eliminate it. Attempts to retrieve
structural knowledge are still present in the method m-select-free-input.

The two factors structural and strategic knowledge were crossed in a simulated
experiment with 82 cases. The means of the predicted solution errors for each
condition are shown in Figure 5. In line with the verbal interpretations, the
simulation predicts that the level of structural knowledge only makes a difference in
performance when strategic knowledge is high. Also, a main effect of strategic
knowledge is predicted. So the simu lation supports the view that strategic
knowledge plays an important role for the explanation of results obtained with
relatively large dynamic systems.

Comparing the means of the solution errors between the experiments and the
simulation reveals a closer fit for the “high structural knowledge & high strategic
knowledge” condition (Preussler, 1998, Exp. 1: 2.99, simulation: 3.63) than for the
“high structural knowledge & low strategic knowledge” (LILY group: 4.96,
simulation: 6.74). One reason for that may be that in experiments there are usually a
few subjects who develop good strategies even under difficult conditions, whereas in
the simulation all cases in the “low strategic knowledge” conditions use the same
poor strategy. But the model generally underestimates performance. This might

                                                                
6 Initial baselevels in the “high” conditions were 1.042 (60 references in 5000 s); in the "low"

conditions they were 0.735 (2 references in 100 s). The retrieval threshold was set to -0.4. See the source
code of the model for further details. It can be obtained at http://hfac.gmu.edu/~wschoppek/linas-
model.html
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result from the model not using I-O-knowledge at all, whereas subjects benefit from
this type of knowledge – under certain conditions.

Figure 5: Results of a simulated experiment with n=82 cases. Structural and
strategic knowledge were varied.
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Analysis of previous experiments

With the concepts of I-O-knowledge, structural knowledge, and strategic knowledge,
the results that were reported above can be interpreted within an integrative
conceptual framework. This shall now be demonstrated with a joint interpretation of
the experiments by Vollmeyer et al. (1996), Preussler (1998), and the one reported
here. For Vollmeyer's experiments, this interpretation resembles the original dual
space interpretation, with the instance space corresponding to I-O-knowledge, and
the rule space corresponding to structural knowledge. In the conditions that
supported the analysis of single causal relations, more structural knowledge was
acquired, which is well transferable to new goal states. (Note that the group without
strategy instruction and with no specific goal also used the strategy to vary one thing
at a time to the amount of 50%). In the conditions with specific goal states the
subjects acquired I-O-knowledge that was applicable in the test phase, because the
goal states were the same. However, the knowledge-space account cannot explain
the improvement of the participants with no specific goal in the transfer phase
(Experiment 2). Structural knowledge in these groups had been stabilized on a high
level already in the exploration phase; and the I-O-knowledge acquired in the test
phase could not be used in the transfer phase (because the changed goal state would

Strategic
Knowledge

Structural Knowledge
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have required I-O-knowledge about a different part of the problem space). The
continued refinement of strategic knowledge can explain this improvement in face of
constant structural knowledge. This interpretation is supported by the huge
performance difference the model predicts in the “high structural knowledge”
condition between low and high levels of strategic knowledge.

Differences in strategic knowledge could also be the reason why the procedure to
teach structural knowledge used by Preussler (1998) resulted in better performance,
whereas the procedure in the present experiment did not. Preussler holds that the
knowledge was learned in a context similar to the application context. In terms of
the proposed knowledge types this means that structural knowledge was learned
together with strategies how to use it. In the practice problems, subjects had to reach
certain values in one output variable exactly. This was only possible if at least two
influences on the output variable were considered: the influences from the output
variable itself, from an input variable, and in some of the problems a third influence
from another output variable. Thus, subjects were forced to develop a sequence of
considering the influences from the current state of the system and calculating an
input value that would compensate for these influences (see Example c above). In
the Linalyse tutorial, however, virtually no strategies were trained. None of the
questions that had to be answered in Linalyse required sequences of more than two
interdependent steps (one retrieval and one calculation). So the subjects in
Preussler’s experimental group are represented by the “high structural knowledge &
high strategic knowledge” condition of the simulation, whereas the subjects of the
LILY group are represented by the “high structural knowledge & low strategic
knowledge” condition. The GOE group of the present experiment is harder to
associate with one of the simulated groups. It might be best characterized by having
intermediate levels of structural and strategic knowledge - a condition that was not
included in the simulation.

These interpretations can be summarized in the following statements: Structural
knowledge alone is not sufficient to control a large system. Structural knowledge
together with proper strategic knowledge is sufficient (probably even necessary) for
the control of large systems. The strategies that are needed for controlling large
systems with structural knowledge need to be developed or refined along with the
acquisition of structural knowledge.

For small systems like the sugar factory, it has been shown with several models
that I-O-knowledge is sufficient to control them (Dienes & Fahey, 1995; Gibson et
al., 1997; Lebiere et al., 1998); strategic knowledge seems to play a minor role:
None of the models contains assumptions about specific strategies. Probably, the
knowledge that is needed to translate I-O-knowledge into actions is part of the
general knowledge of most subjects.

Perspectives

The concept of strategic knowledge cannot only be used to explain existing results,
but also implies new predictions. Although the more sophisticated forms of strategic
knowledge depend on structural knowledge, the former should bridge greater
transfer distances than the latter. Structural knowledge can be transferred to
problems with different goal states within one system. Strategic knowledge can be
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transferred across systems of the same type (e.g. systems modeled by simultaneous
linear equations). Even strategic knowledge that depends on the availability of
structural knowledge can be transferred across systems when the references to
structural knowledge are variable. For example, when a strategy requires considering
all dependences of an output variable it does not matter how many dependences
there are and how the causal weights are.

In future research, questions about the development of strategic knowledge
should be addressed. The effects of strategy instructions found by Vollmeyer et al.
(1996) indicate that strategies can be taught, but the effects are fragile. Guiding
subjects to use a strategy that is not declared as such is not a good means to teach it.
In a recent experiment (Schoppek, in prep.), subjects who were guided to put
impulses into small systems in order to explore their dynamics did not use that
strategy in a transfer phase where they had to explore a larger system. It appears to
be important to establish cues that signal that an acquired strategy can be applied in
a given context (Preussler, 1998). Little is known about the processes by which
subjects develop and refine strategies on their own.

Further research is required to investigate the role of I-O-knowledge in the
control of large systems. For this question, the modeling approach is promising. The
hypothesis that I-O-knowledge is not sufficient to control large systems could best
be challenged by a model that controls a large system with I-O-knowledge only.

I will end this paper with a few considerations concerning possible applications
of this area of research. It has been criticized that the tasks used in the described
experiments are quite different from those of persons who operate real dynamic
systems. In industrial settings, operators have to monitor dynamic processes rather
than controlling them actively. Another difference is that subjects in experiments
start with very little knowledge about the systems they are controlling and do not
handle the systems long enough to gain expertise, whereas operators have to know
much about the processes they are monitoring and usually do their job for a long
time.

However, technology changes rapidly and there are situations in which operators
must learn to handle a new system. For example, when pilots learn to operate the
Flight Management System (FMS) of modern aircraft, they are facing a task
environment that resembles the systems used in the research described above in
many respects. Like these, the FMS is highly dynamic and entails many variables
that affect each other. And the complaints of instructors about pilots applying
procedures with a lack of understanding, which I heard recently, strongly reminded
me of certain strategies observed in our subjects. For the improvement of training
procedures in domains like aviation, it is certainly valuable to know how to
overcome both, the tenacious tendency of people to use I-O-knowledge, and the
inertia of purely declarative structural knowledge.
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