
Argus Prime: Modeling Emergent Microstrategies in a
Complex, Simulated Task Environment

Michael J. Schoelles & Wayne D. Gray
Human Factors & Applied Cognition

George Mason University
Fairfax, VA 22030 USA

+1 703 993 2104
mschoell@gmu.edu

ABSTRACT

Cognition, perception, and motor actions weave a tangled
web. At times, the three may proceed independently of
each other. At other times, they may have complex,
sequential dependencies such as, for example, when the
decision to click on a button waits for perception to return
to cognition the information that the cursor and button
objects are co-located. Indeed, much of what is commonly
called cognitive workload may have less to do with
cognition and more to do with an interface-induced tangle
of cognition with perception with motor actions. In this
paper, we describe a simulated task environment (Gray, in
preparation), Argus Prime, and an approach to modeling
the tangled web of interactions induced by its interface.

Keywords

ACT-R/PM, microstrategies, simulated task environment,
attention, motor movement, computational cognitive
models, interactive behavior

INTRODUCTION

Dynamic decision making tasks often require periods of
intense cognitive, perceptual, and motor activities. These
activities can be combined in a finite number of ways to
accomplish a variety of subtasks. We refer to these
combinations as microstrategies (Gray & Boehm-Davis,
1999; Gray, Schoelles, & Fu, 1999). Different
microstrategies may require different amounts of effort to
execute. Likewise, the effort involved in any given
microstrategy may be unequally partitioned among that
microstrategy’s cognitive, perceptual, and motor
components.

With all else equal, the microstrategy that entails the
least-effort should be deployed. We assume that the least-
effect judgements of microstrategies are not made in
isolation, but in the context of the constraints and
opportunities provided by cognition, the task, and the
artifact used to perform the task (Gray, in press; Gray &
Altmann, in press). Hence, in computer-based simulated
task environments (Gray, in preparation), the least-effort
microstrategy will vary as a function of task and interface.
In the work we describe below, the task is fixed and we
pursue the general question of how characteristics of the
interface can induce selection of those microstrategies
that lead to the best performance.

Modeling that combines cognitive, perceptual, and motor
actions has been called embodied cognition (Kieras &
Meyer, 1997). In real-world tasks the three types of
actions can proceed in parallel but with a complex web of
sequential interdependencies. Models of embodied
cognition can quantitatively measure the effort required
by each interactive component to determine the optimal
division of labor. Often, albeit not always, such embodied
models directly perceive and manipulate the interface that
is used by human users. This feature cleanly separates the
model from the interface (Ritter, Baxter, & Jones, 2000)
and can provide an effective means for interface designers
to evaluate new designs or design changes.

This paper reports on the use of ACT-R/PM (Byrne,
1998) to study embodied cognition. Our goal is to
understand how subtle aspects of an interface may lead to
large increases in cognitive workload. Our models are
situated in the Argus Prime simulated task environment.
Argus Prime presents subjects with a task reminiscent of
that performed by radar operators. The general task is to
classify targets on a 7-point threat scale.

The task involves four subtasks. For target selection, the
user attends to icons on the screen (perception), decides to
process an icon (cognition), and selects it (motor). In
information retrieval the user reads the raw data values
for this object (perception). Score calculation entails
mapping raw data to target score (cognition), mapping
score to threat value (cognition), selecting a threat value
(perception and motor), and entering the decision (motor).
Finally, feedback processing consists of perceiving
feedback (perception) and processing the feedback
(cognition). As this brief task analysis illustrates, each
subtask combines cognitive, perceptual, and motor
operators. Less apparent from this overview is the
complex web into which the three types of actions for
each subtask are woven.

The ACT-R/PM architecture combines ACT-R’s theory
of cognition (Anderson & Lebiére, 1998) with modal
theories of visual attention (Anderson, Matessa, &
Lebiére, 1997) and motor movement (Kieras & Meyer,
1997). ACT-R/PM explicitly specifies timing information
for all three processes as well as parallelism between
them. The software architecture facilitates extensions

Unknown
Schoelles, M. J., & Gray, W. D. (2000). Argus Prime: Modeling emergent microstrategies in a complex simulated task environment. In N. Taatgen & J. Aasman (Eds.), Proceedings of the Third International Conference on Cognitive Modeling (pp. 260-270). Veenendal, NL: Universal Press.

beyond the modal theory of visual attention and motor
movements.

Figure 1: The left-half of the Argus Prime display.
This half shows the radar screen and status bar
(top). Ownship is indicated by the small “+” at
the bottom.

To describe our modeling work it is first necessary to
discuss the tasks that can be performed with Argus Prime
and to show the interface with which the model and
human subjects interact. We then briefly describe several
empirical studies. With this background in place the
model and its interactions with the system are presented,
along with the predictions from the model for the current
study. We conclude with a discussion of possible
extensions to ACT-R/PM.

ARGUS PRIME: TASK AND SIMULATED TASK
ENVIRONMENT

In Argus Prime the user’s goal is to correctly assess the
threat value of each target in each sector of a radar screen.
As shown in Figure 1, the screen represents a portion of
an airborne radar console with ownship at the bottom. The
arcs divide the screen into four sectors, each sector is fifty
miles wide. The task is dynamic since the targets have a
velocity and course. A session is scenario driven; that is,

the initial time of appearance, range, bearing, course,
speed, and altitude of each target are read from an
experimenter-generated file. The scenario can contain
events that change a target’s speed, course, or altitude.
New targets can appear at any time during the scenario.

Figure 2: Argus Prime information window for Target
9. The figure shows the target’s current speed in
mph, range in miles, absolute bearing in degrees,
altitude in feet, course in degrees, and the current
estimate of closest approach distance in miles.
Below the attribute information are radio buttons
used for entering the estimated threat value of the
target on a 1-7 scale. Subjects are taught an
algorithm that combines the raw information to yield
a target score between 0-13. The target score is
then mapped onto the 7-point threat scale. The
black dot in radio button #6 indicates the threat
value assigned this target by the subject.

The user selects a target by moving the cursor to its icon
and clicking. When a target has been selected, the
information window (shown in Figure 2) appears in the
right half of the screen (to the right of the radar shown in
Figure 1). This window contains the track number of the
target selected and the current state of the target. Target
state is represented by the attributes displayed in the
upper part of the window. The bearing is the orientation
of the target from ownship in degrees (0 -360). Range is
the distance in miles (0 - 200) from ownship. Speed is the
speed of the target in miles per hour (0 - 5000). Altitude is
the altitude of the target in feet (0 - 75000). Course is the
heading of the target in degrees (0 - 360). Approach
distance is an estimate of how close in miles (0 - 300) the
target will come to ownship. The user must convert the
attribute values to cue values that collapse the attribute
values to a single number (0 - 3 with 0 being the least
threatening). For example, if the range of a target from
ownship is 165 miles, its cue value for range is 0 - low
threat. If the range from ownship is 37 miles, its cue value
for range is 3 - high threat.

The score for a target is a weighted combination of cue
values of a subset of the attributes. In the experiments we
have conducted the relevant attributes are range, altitude,
and approach distance with weights 2, 1, and 2
respectively. (Hence, a cue value of 3 for range would be
multiplied by 2 to yield a weighted value of 6.) Help for

Unknown
Schoelles, M. J., & Gray, W. D. (2000). Argus Prime: Modeling emergent microstrategies in a complex simulated task environment. In N. Taatgen & J. Aasman (Eds.), Proceedings of the Third International Conference on Cognitive Modeling (pp. 260-270). Veenendal, NL: Universal Press.

each attribute is available by clicking on the attribute
labels shown in gray in Figure 2

Figure 2 shows that the target score is mapped to a 7-
point threat value by the user selecting the radio button
that corresponds to the threat value. This threat value is
inputted to the computer by clicking on enter button
(bottom right of Figure 2). If the user correctly classifies
the target, full credit is given. If the user incorrectly
classifies the target zero points are given. Targets must be
classified once for each sector that they enter. If a target
leaves a sector before the user can classify it, it is
considered incorrectly classified and a score of zero is
assigned.

Feedback to the user takes two forms both of which
appear on the left hand side of the status bar shown at the
top of Figure 1. Summative feedback is given by a
percentage. This percentage is updated each time a target
crosses a sector boundary. It represents cumulative
performance over all targets. Immediate feedback is given
for each classification decision made by the user. The
colored box in the status bar indicates a correct decision
(black) or an incorrect decision (orange). Colored
feedback (gray) is also given if the user attempts to enter
the same score for the same target twice in one sector.

A log file is created for each scenario completed by a
user. The file contains each user action, the information
necessary to reconstruct what was on the display at the
time of each interaction, eye tracking data at 60 samples
per second, and mouse position data for each eye track
sample.

EMPIRICAL STUDIES AND MICROSTRATEGIES

At the current writing, Argus Prime has been used in two
completed empirical studies and a pilot study has been
conducted as preparation for a third study. The studies
vary from three to five hours in length. The first hour is
devoted to training and the last hour to collecting
individual difference data on working memory capacity.
The remaining hour(s) is devoted to four or more 12-15
min Argus Prime scenarios.

The details of the three studies and their data analyses
comprise a rich and interesting story, but one that will not
be told here. Instead, our goal is to motivate our modeling
work by focusing on a few important interface variations
and providing qualitative descriptions of several
microstrategies that our subjects used. Our plan is not to
enumerate the empirical findings, but to provide enough
details so that the modeling challenge will be appreciated.

An analysis of the first study revealed that some subjects
used a memory-less microstrategy (Ballard, Hayhoe, &
Pelz, 1995) during the transition from the target selection
to the information retrieval subtasks. Specifically, the link
between a target icon and the information window is the
target number. This number is displayed above the target
and in the lower left corner of the information window
Figure 2). For the Look-After microstrategy, the subject

encodes the target number, clicks on the target’s icon,
looks at the information window, and verifies that the
current information represents the intended target by
matching the encoded number with the number displayed
in the information window. The alternative microstrategy,
Look-Before, is simply to place the cursor over the
intended target, look at the information window, then
click on the icon and notice that all of the information in
the window changes at the same instant. Analysis of the
eye data has shown that subjects follow both these
strategies.

For the first two studies, there was nothing on the radar
screen to indicate whether a target had been classified;
that is, when a classification was made, its on-screen icon
did not change. However, in both studies, if an already
classified target was reselected, that fact was indicated by
the threat value radio button in the information window.
For example, if earlier in the same sector, the subject had
assigned the target a threat value of 6, that radio button
would still be highlighted (see Figure 2) when the target
was reselected. We call this combination of no change to
the target’s on-screen icon and persistence of the
classification in the information window the noChange-
dotOn interface.

The third study, currently in the pilot phase, manipulates
the ease of retrieving history information (“have I
classified this target already”) from the display. In
addition to noChange-dotOn, two new interfaces will be
used. The noChange-dotOff interface is similar to the
noChange-dotOn in that the target’s on-screen icon does
not change when a classification is made. It differs from
noChange-dotOn in that the information window contains
no record (i.e., the dot is off) as to whether a target has
already been classified. In contrast, for the Change-dotOff
interface the on-screen icon for targets that have been
classified changes color. When a target is no longer
classified (i.e., when it crosses a sector boundary),. the
icon reverts to the unclassified color.

In the first two studies, subjects frequently reselected
already classified targets. For example, in the course of
one 15-min scenario, one notable subject reselected 225
already classified targets; however, none of these were
reclassified (i.e., the subject selected the target by clicking
on its icon, but after looking at the information window
and seeing that one of the seven threat value radio buttons
was “on,” he found and clicked on another target icon).
Although this subject reselected twice as many targets as
the average subject, his behavior was representative.
There was no indication that subjects reselected targets
with the goal of reclassifying them; rather their pattern of
behavior suggests that for the noChange-dotOn interface
subjects do not remember whether a target has been
classified. The time spent checking already classified
targets results in less time spent on unclassified ones.

It is unclear in these studies whether this memory-less
strategy is adopted by choice or whether, under the

Unknown
Schoelles, M. J., & Gray, W. D. (2000). Argus Prime: Modeling emergent microstrategies in a complex simulated task environment. In N. Taatgen & J. Aasman (Eds.), Proceedings of the Third International Conference on Cognitive Modeling (pp. 260-270). Veenendal, NL: Universal Press.

conditions of the study, human cognition is incapable of
retrieving target status information. This issue will be
tested empirically and analytically by the data and models
built for the third study.

Performance on the noChange-dotOn interface will be
used as a baseline with which to compare the other
conditions. We expect the noChange-dotOff interface to
force the memory versus microstrategies issue. If subjects
have no memory for having classified a target, they will
be required to waste time recomputing the algorithm to
reclassify already classified targets. In contrast, the
Change-dotOff condition provides a memory-less way to
avoid classified targets and to focus on unclassified ones.
Hence, subtle changes in the interface will enable
different sets of microstrategies between the three
conditions. These different microstrategies are expected
to be differentially successful and to result in large
differences in performance.

THE MODEL

Interface to task

The ACT-R/PM code executing the model runs as a
separate process from Argus Prime. This process starts
when the scenario starts. All communication between the
model and Argus Prime is through the motor and vision
module commands of ACT-R/PM. Functionally, the
interface of the model to Argus Prime is the same as the
human to computer interface.

Strategy Implementation

For each subtask, the microstrategies that we have
identified have been built into the model. At present the
model neither acquires nor adapts microstrategies by
itself. Rather, we are using ACT-R/PM in model tracing
mode (see, for example, Anderson, Boyle, Corbett, &
Lewis, 1990; Gray, in press) to explore the performance
implications of various combinations of microstrategies.
For example, if we believe we have identified the
microstrategies that subject AP1234 regularly uses for
target selection, information retrieval, score calculation,
and feedback processing, we can select these
microstrategies from the model configuration dialog box
(see Figure 3). The model will perform the scenario using
the candidate combination of microstrategies. After
performance, we can compare the model’s log file with
the subject’s log file to determine patterns of similarity
and differences.

Each microstrategy of a subtask contains matching goal
chunks so that all the microstrategies for the same subtask
are in the conflict set. ACT-R calculates expected gain
dynamically and, when alternative productions exist, it
chooses the production with the highest expected gain
(see Anderson and Lebiere, 1999). However, to match
strategy to subject, we use the probability of success
parameter, r, to set the expected gain for each production
at the beginning of the scenario. For example, if for the
target hooking subtask a subject used the Look-After

microstrategy, its r-value would be set to 1.0 and the r-
value for Look-Before to 0.01.

Figure 3: Model configuration dialog box.

Model Components

The structure of the model parallels the four subtasks:
target selection, information retrieval, classification, and
feedback processing.

Target Selection

There are two stages to target selection, the initial stage in
which no targets have been classified and the maintenance
phase in which targets are reclassified after they cross into
a new sector or a new target appears. Thus, cognition is
faced with two problems: keeping tracking of what has
been classified and directing perception to notice new
targets or targets crossing boundaries.

Ten productions implement the target selection task.
Microstrategies have been identified for the search phase
and for the transition from target icon to target
information.

 The model uses two features of ACT-R/PM to select
targets. In the initial and maintenance phase a systematic
search is carried out by a scan production. This
production uses ACT-R/PM’s Find Location command to
create a visual location with top-down and bottom-up
constraints. Top-down constraints determine the area in
which to search. The bottom-up constraint is that the
location must contain the feature target-feature.
Cognition can direct the search for target-features in a
systematic fashion by changing the search area. If a
target-feature is found then an episodic, declarative
memory element (or chunk) of the visual location is
created. At this point, perception has delivered to

Unknown
Schoelles, M. J., & Gray, W. D. (2000). Argus Prime: Modeling emergent microstrategies in a complex simulated task environment. In N. Taatgen & J. Aasman (Eds.), Proceedings of the Third International Conference on Cognitive Modeling (pp. 260-270). Veenendal, NL: Universal Press.

cognition something that cognition can retrieve and
process further. For the next step cognition sends the
Move Attention command to the vision module with the
visual location created by Find Location as an argument.
After attention is moved, the vision module creates an
episodic trace of the visual object it finds at that location.

The systematic direction of search in Argus Prime is
based on our preliminary analysis that many subjects
move within sectors from right to left and between sectors
from closest to ownship to farther away. The model
achieves this behavior by moving the scan area. When
and how to interrupt this systematic search to process a
new target or one that is about to cross a border is an open
question. A mechanism is required to determine when the
target icon and black arc are close to intersecting. Issues
that must be resolved include whether two feature
searches are required for each target (one for the target
and one for a black arc) and whether two Move Attentions
are required or if a single Move Attention command
should return both objects?

Since the empirical studies suggest that users have no
memory for prior classifications, the model does not try to
retrieve a previous visual object (i.e., episodic trace). This
implies that the model does not have to rehearse any
traces. Thus, this scanning strategy has a low cognitive
but a high perceptual cost.

For the Change-dotOff condition the interface provides a
memory of target classification by changing color when
classified and returning to its original color when it needs
to be classified again. In this case, the model executes a
production that adds a color constraint to the Find
Location command. This Popout microstrategy searches
fewer locations than the scan strategy with the result that
fewer location and object episodic traces are created.

After the Move Attention command creates an episodic
trace of the target, the model sends a command to the
motor module to move the cursor to the target. ACT-
R/PM uses Fitts Law to calculate the time for cursor
movements. While the cursor is moving, the target could
move off the screen. The model verifies that the cursor
and button are collocated through a fail production that
has a low utility. The fail production fires only in the case
that the cursor movement has completed and there is no
target at the cursor’s current location.

If the cursor and target are collocated, one of two
microstrategies may be implemented. As discussed above,
in the Look-Before microstrategy the eyes are moved to
the information window before the target icon is clicked.
In the Look-After microstrategy the icon is clicked, its
target identification number is noted, and then the eyes
are moved.

Information Retrieval

Twenty-two productions retrieve the target attribute data
or use help, if necessary, to retrieve cue value information
from the display instead of from memory.

The model interacts with the information window to
process the target attribute data. For the range attribute
two possibilities exist. The range can be determined
spatially by encoding the radar screen sector in which the
icon appears, or it can be read textually from the
information window.

To process the attribute data contained by the information
window the model sets a goal with slots for each of the
relevant attributes. Find Location commands are executed
for each attribute. When the location trace indicates that
text for the attribute exists at this location and has not
been attended, attention is moved to the location to create
a text visual object. The model then creates a semantic
trace of the real number from the text visual object. To
map the semantic representation to a cue value the model
retrieves, using partial matching, memory elements whose
slots are attribute name, cue value, and the midpoint of
the range of values for this cue value. For example, if the
actual range is 127 miles, partial matching will retrieve
125 miles, the midpoint for range cue value 2.

We do not think that this solution is satisfactory as it
relies on partial matching which requires that similarities
are set between the raw value and the midpoint. Although
it seems reasonable that such similarities should be
learned, ACT-R/PM does not have a learning mechanism
for doing so.

At present the model sets the similarity between the
mapping chunk and the number chunk when it is created
from the text. This solution assumes that the user fills in
the midpoint slot when he or she learns the mappings
during training. An approach that is being explored is to
replace the midpoint slot with the low and high values of
the mapping. If a mapping chunk based on the raw value
cannot be retrieved, the model would use a compute
strategy by searching through the mapping chunks using
less than and greater than operators to determine if the
raw value fit into the specified range. An episodic chunk
would be created containing the raw value, the cue value,
and attribute name. This chunk would be rehearsed, so
that future retrieval would be successful.

If the mapping chunks are below activation, the model
uses help. A Find Location is done to locate the label on
the information window of the attribute being processed.
Attention and the cursor are moved to that location and
the label is clicked. When the interface displays the help
screen, the set of productions to process the help screen is
executed to calculate the cue value.

Each cue value is weighted. The model initially contains
memory element chunks with two slots, name and weight,
for each attribute. If one of these chunks is below
threshold, the help sequence will be invoked. The model
uses multiplication facts to multiply the weight times the
cue value.

Unknown
Schoelles, M. J., & Gray, W. D. (2000). Argus Prime: Modeling emergent microstrategies in a complex simulated task environment. In N. Taatgen & J. Aasman (Eds.), Proceedings of the Third International Conference on Cognitive Modeling (pp. 260-270). Veenendal, NL: Universal Press.

Classification

After the weighted values are calculated, they must be
summed, and the total score mapped to the 7-point threat
value scale. The mathematics and mapping required for
classification are implemented by fourteen productions.

The model adds the cue values together in two steps using
addition facts. First, the range and altitude values are
added. Second, this sum is added to the approach distance
value. This total represents the target score. As seen in
Figure 2, the information window contains seven radio
buttons one of which must be selected to register the
classification. Below each button is text containing the
low and high target score. The model looks in this area of
the screen to encode the location of the text that includes
the target score number. The model uses this location to
encode the location of the corresponding push button.
Now a sequence of productions is executed that encodes
the push button visual object, moves the cursor to it, and
clicks on it. Finally, to complete the classification task the
model locates, attends to, moves to, and clicks on the
enter button.

Feedback

The model processes the feedback given by the system by
executing a find location constrained by the coordinates
of feedback area of the display and color. Three
productions compete for execution, one for each possible
color.

0

1000

2000

3000

4000

5000

6000

7000

A
ll

C
hu

nk
s

Change-dotOff

noChange-dotOff

noChange-dotOn

0

500

1000

1500

2000

V
is

ua
l L

oc
at

io
n

C
hu

nk
s

0

50

100

150

200

C
la

ss
if

ic
at

io
ns

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560

Number of Model Cycles

A

B

C

Figure 4: A-C. Model results over a run of 1600
cycles as a function of three alternative interface
designs for displaying (or not displaying) the
classification status of a target (see text for
discussion). (A) shows the total number of all chunks
(declarative memory elements) created. (B)

indicates the total number of visual location chunks
created. (C) shows the number of target
classifications that were calculated and entered.

Data Collection

In addition to the log file that is created for a human
subject, a second log is created for the model that contains
information about the contents of declarative memory
such as the total number of chunks, number of visual
locations, number of visual objects, etc.

Initial Results

As a prediction for experiment 3, the model was run
holding all microstrategies and productions constant
except those for the three proposed interface conditions --
noChange-dotOn, noChange-dotOff, and Change-dotOff.
Figure 4 shows the difference between strategies for the
number of all chunk types created (Figure 4-A), the visual
location chunks created (Figure 4-B), and the targets
classified (Figure 4-C) for each of the three interface
conditions.

Figure 4-A shows that through cycle 240, all conditions
creates an equal number of chunks of all kinds. When a
scenario begins, the subject is confronted with 18
unclassified targets. The interface-specific microstrategies
do not differ in the way in which they handle this period.
After all initial targets are classified, the Change-noDot
interface results in fewer chunks created as only targets
that are not classified are attended to. In contrast, the
noChange-dotOff condition creates fewer total chunks
than the noChange-dotOn condition. This difference
reflects the fact that noChange-dotOff spends more time
than noChange-dotOn recalculating the classification
algorithm for already classified targets. Consequently,
noChange-dotOn scans more visual locations and checks
on more information windows than the other conditions.

Figure 4-B shows the number of visual location chunks
created. As for the total number of chunks, the noChange-
dotOn condition creates the largest number of chunks that
encode a visual location. Interestingly enough, the graph
shows little difference between the noChange-dotOff and
the Change-dotOff condition. In the former case, so much
time is being spent calculating algorithms that few targets
can be attended. In the latter case, the model simply does
nothing unless the feature detection process returns an
unclassified target (as indicated by its color).

Figure 4-C completes the picture. Because it classifies
every target which it attends, the noChange-dotOff
condition makes the most classifications. Unfortunately,
most of these are wasted effort as the targets have already
been classified (our current model assumes no memory
for classifications). The contrast between Change-dotOff
and noChange-dotOn is interesting. The former classifies
more targets than the latter as it wastes no time inspecting
a target unless its feature detection process has indicated
that it is unclassified. The latter looks at many more
targets (see Figure 4-B) but most of these are already

Unknown
Schoelles, M. J., & Gray, W. D. (2000). Argus Prime: Modeling emergent microstrategies in a complex simulated task environment. In N. Taatgen & J. Aasman (Eds.), Proceedings of the Third International Conference on Cognitive Modeling (pp. 260-270). Veenendal, NL: Universal Press.

classified. Hence, there are a certain number of
unclassified targets that it misses as it is distracted by
having to move to, click on, and double check (but not
reclassify) targets that are already classified.

These results are intriguing and suggestive; however, it is
important to remember their limitations. For the three
interface conditions all microstrategies were the same
except for those directly relevant to the differences in the
interface. Hence, the variations between-subjects has not
been captured. For each interface, we have only
implemented one microstrategy. For example, the only
microstrategy for noChange-dotOff is the memory-less
one.

At present the data from experiments 1 and 2 are being
analyzed to discover other microstrategies and,
specifically, to look for individual differences in the
combinations of microstrategies used. The results of this
effort are feeding directly into our on-going efforts to
model more microstrategies. By the time the data for
experiment 3 are collected, we hope to have families of
microstrategies that span the gamut of those used by our
subjects.

ACT-R/PM Extensions

While ACT-R/PM provides a good foundation for
modeling microstrategies, the initial Argus experiments
have raised a set of detailed research questions that
sugggest expansion of ACT-R/PM’s modal model of
visual attention. In this paper, we provide a simple list
with a short discussion of these issues; however, each
issue is the subject of analytic and empirical research in
the Argus effort.

• The long-standing debate in the visual attention
community between object-based and location-based
visual attention is relevant to the Argus task (for
example, see Cave & Bichot, 1999; Logan, 1996).

• Is target selection is totally feature based or totally
indexed? Can ACT-R/PM be extended to include
visual indexing mechanisms and the capability for
move attention to take an index as an argument
(Pylyshyn, 1998).

• At present, ACT-R/PM has a theory of visual
attention but not of eye movements. The analysis of
the initial eye tracking data shows many more eye
movements than shifts of attention. To investigate the
timing constraints that arise from these actions, an
eye movement command is required in ACT-R/PM
(Lee & D., 1999 also argued for inclusion of saccades
and fixations).

• In Argus Prime, target search is conducted by
sweeping right-to-left within a sector, beginning with
the bottom sector (closest to ownship) and iterating
after sweeping the top sector. Since detection of
target objects close to sector lines is critical, the issue
of divided attention is brought into play. Currently

the ACT-R/PM attention mechanism will only focus
attention on a single object.

• The target selection processing described above
raises two questions. First, how large an area can be
searched in one Find Location command. Second,
how close does the actual object need to be to the
location specified as the argument to the Move
Attention command. This question directly relates to
the size of the spotlight in spotlight models of visual
attention (Wolfe, 1994). The modal theory
underspecifies this issue leaving it as a free parameter
for the modeler. Aspects of the modal theory that
need to be specified include the size and control of
the current focus of attention, time staged creation of
features for visual objects, and feature degradation
depending on distance from fovea.

Our plans for Argus Prime include incorporating into the
target selection task a theory of multiple object tracking.
Sears and Pylyshyn (in press) have applied the FINST
model (Pylyshyn, 1989) to multiple object tracking. This
theory hypothesizes a stimulus driven mechanism that
individuates objects in the environment by pointing to
them; that is, assigning an index. The indexing precedes
object identification and the index remains bound to the
object even if characteristics of the object change. In
particular, if the location of the object changes
continuously then the index can still be used to point to
the object. Attention can be directed to the object with the
index as its argument. The dynamic environment of Argus
Prime seems well suited to modeling this theory as a
possible mechanism used by subjects in the target
selection phase.

CONCLUSIONS

Computational models of embodied cognition are a step
towards realizing Newell’s challenge to model the
complete task (Newell, 1973). The approach took here has
several parts. First, a simulated task environment, Argus
Prime, was built of a dynamic, real-time task in which a
complex web of cognitive, perceptual, and motor actions
were required for task performance. Second, data were
collected of subjects using the simulated task environment
over an extended period. Third, the data were analyzed to
identify the microstrategies used by subjects for each
subtask. Finally, production models were built that
implement some of the microstrategies used by our
subjects.

The work reported here is part of Project Argus. The
challenge of Project Argus is to determine how interface
features interact with the task and cognition to affect
cognitive workload. As our models demonstrate,
interactive behavior in complex tasks is constrained not
only by cognition but by perception and motor processes
as well. Although these constraints are at the millisecond
level, the milliseconds added to an interaction matter
when the task requires thousands of interactions over an
extended period of time.

Unknown
Schoelles, M. J., & Gray, W. D. (2000). Argus Prime: Modeling emergent microstrategies in a complex simulated task environment. In N. Taatgen & J. Aasman (Eds.), Proceedings of the Third International Conference on Cognitive Modeling (pp. 260-270). Veenendal, NL: Universal Press.

Further work in Project Argus includes expanding the
modal models of visual attention and motor movement as
well as working to incorporate a modal model of eye
movements. Such expansions are necessary to built
models that respond adaptively to subtle differences in
interface design. The long-term goal of this effort is to
create a model that responds adaptively to any change in
the Argus Prime simulated task environment. We hope
that the lessons learned from this effort can be exported to
other task environments (simulated or real) to provide
designers with timely feedback on their designs.

ACKNOWLEDGEMENTS

This work was supported by Air Force Office of
Scientific Research Grant # F49620-97-1-0353. We thank
the many members of the Argus Group who have
contributed to the Argus Prime studies: Erik Altmann,
Deborah Boehm-Davis, Susan Schnipke, Ryan Snead, and
Marc Todd.

REFERENCES

Anderson, J. R., Boyle, C. F., Corbett, A. T., & Lewis, M.
W. (1990). Cognitive modeling and intelligent
tutoring. Artificial Intelligence, 42, 7-49.

Anderson, J. R., & Lebiére, C. (Eds.). (1998). Atomic
components of thought. Hillsdale, NJ: Erlbaum.

Anderson, J. R., Matessa, M., & Lebiére, C. (1997). ACT-
R: A theory of higher-level cognition and its relation
to visual attention. Human-Computer Interaction,
12(4), 439-462.

Ballard, D. H., Hayhoe, M. M., & Pelz, J. B. (1995).
Memory representations in natural tasks. Journal of
Cognitive Neuroscience, 7(1), 66-80.

Byrne, M. D. (1998). Perception and action. In J. R.
Anderson & C. Lebiére (Eds.), Atomic components of
thought (pp. 167-200). Hillsdale, NJ: Erlbaum.

Cave, K. R., & Bichot, N. P. (1999). Visuospatial
attention: Beyond a spotlight model. Psychonomic
Bulletin & Review, 6(2), 204-223.

Gray, W. D. (in preparation). Simulated task
environments: The role of high-fidelity simulations,
scaled worlds, synthetic environments, and
microworlds in basic and applied cognitive research.
In R. Mahan, D. Serfaty, S. Kirschenbaum, M.
McNeese, & L. Elliott (Eds.), Scaled Worlds
(working title) . Hillsdale, NJ: Erlbaum.

Gray, W. D. (in press). The nature and processing of
errors in interactive behavior. Cognitive Science.

Gray, W. D., & Altmann, E. M. (in press). Cognitive
modeling and human-computer interaction. In W.
Karwowski (Ed.), International encyclopedia of
ergonomics and human factors . New York: Taylor &
Francis, Ltd.

Gray, W. D., & Boehm-Davis, D. A. (1999). Milliseconds
Matter: An introduction to microstrategies and to
their use in describing and predicting interactive
behavior. Manuscript submitted for publication.

Gray, W. D., Schoelles, M. J., & Fu, W.-t. (1999).
Modeling microstrategies in a continuous dynamic
task. Manuscript submitted for publication.

Kieras, D. E., & Meyer, D. E. (1997). An overview of the
EPIC architecture for cognition and performance
with application to human-computer interaction.
Human-Computer Interaction, 12(4), 391-438.

Lee, F. J., & D., B. M. (1999). Modeling Dynamic tasks:
Implications for ACT-R/PM. Paper presented at the
6th Annual ACT-R Workshop, George Mason
University.

Logan, G. D. (1996). The CODE theory of visual
attention: an integration of space-based and object-
based attention. Psychological Review, 103(4), 603-
649.

Newell, A. (1973). You can't play 20 questions with
nature and win: Projective comments on the papers of
this symposium. In W. G. Chase (Ed.), Visual
information processing (pp. 283-308). New York:
Academic Press.

Pylyshyn, Z. (1998). Visual indexes in spatial vision and
imagery. In R. D. Wright (Ed.), Visual attention (pp.
215-231). New York: Oxford University Press.

Pylyshyn, Z. W. (1989). The role of location indexes in
spatial perception: A sketch of the FINST spatial
indexing model. Cognition, 32, 65-67.

Ritter, F. E., Baxter, G. D., & Jones, G. (2000). Cognitive
models as users. ACM Transactions on Computer-
Human Interaction, in press.

Sears, C. R., & Pylyshyn, Z. W. (in press). Multiple
object tracking and attentional processing. Canadian
Journal of Experimental Psychology.

Wolfe, J. M. (1994). Guided search 2.0: A revised model
of visual search. Psychonomic Bulletin & Review, 1,
202-238.

Unknown
Schoelles, M. J., & Gray, W. D. (2000). Argus Prime: Modeling emergent microstrategies in a complex simulated task environment. In N. Taatgen & J. Aasman (Eds.), Proceedings of the Third International Conference on Cognitive Modeling (pp. 260-270). Veenendal, NL: Universal Press.

