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Human Memory: An Adaptive Perspective

John R. Anderson and Robert Milson
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It was argued that the basic principles of operation of human memory can be understood as an
optimization to the information-retrieval task that human memory faces. Basically, memory is using
the statistics derived from past experience to predict what memories are currently relevant. It was
shown that the effects of frequency, recency, and spacing of practice can be predicted from the
statistical properties of information use. The effects of memory prompts, cues, and primes can be
predicted on the assumption that memory is estimating which knowledge will be needed from past
statistics about interitem associations. This analysis was extended to account for fan effects. Memory
strategies were analyzed as external to the process of statistical optimization. Memory strategies are
attempts to manipulate the statistics of information presentation to influence the optimal solution
derived by memory. The classic buffer-rehearsal model for free recall is analyzed as a strategy to
manipulate the statistics of information presentation.

Human memory is typically viewed by lay people as quite a
defective system. For instance, over the years we have partici-
pated in many talks with artificial intelligence researchers about
the prospects of using human models to guide the development
of artificial intelligence programs. Invariably, the remark is
made, *“Well, of course, we would not want our system to have
something so unreliable as human memory.” Actual memory
researchers seldom comment on the adaptiveness of memory
(but see Bjork & Bjork, 1988; Sherry & Schacter, 1987). One
seldom finds arguments for a theory of memory mechanisms
cast in terms of the adaptiveness of these mechanisms. Rather,
the typical argument for a memory mechanism is by reference
to its ability to fit the data at hand. The implied inference is
that the actual combination of mechanisms is pretty arbitrary.
Certainly, this characterization is fairly accurate of our own
writings on memory despite our advocacy of the ACT* theory
(Anderson, 1983) whose initials stand for “Adaptive Control of
Thought”.

In this article, we argue that human memory is adaptively
designed and that we can understand a great deal about memory
phenomena by understanding its adaptiveness. The analysis be-
ing offered here is not meant to supplant existing mechanistic
accounts such as ACT* but to supplement them by showing
that they implement a rational memory design. This article be-
gins with a framing of the information-processing problem that
memory faces. Then we derive the optimal memory behavior,
given this framing. We show that this predicts many of the ma-
jor results in human memory. These results are very general
trends that appear across particular memory paradigms. As a
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final topic, we consider what would be involved in getting this
framework to apply to the classic free-recall paradigm.

Framing of the Information-Retrieval Problem

The framing we offer for human memory comes from a sub-
field of computer science called, curiously, information retrieval
(Salton & McGill, 1983).! The generic information-retrieval
system has a data base of stored items and must respond with a
subset of these, given a query that consists of some keywords.
Perhaps the most frequent use of such systems in academia is
in library searches in which we provide some content words
and the system responds with a list of possible books and their
abstracts. Such systems have to deal with access to very large
data bases in the presence of very limited and uncertain cues.
We think this is essentially the human situation. Such systems,
like the human system, have to deal with balancing two types
of errors that can be made in the face of this uncertainty. As
with human memory, the system may fail to retrieve the desired
item, which clearly is a costly error. However, there is also a cost
associated with retrieving an inappropriate item—that is, the
user’s cost in considering it and rejecting it. Thus, the informa-
tion-retrieval system cannot just deal with the problem of un-
dergeneration by retrieving everything. In the field of informa-
tion retrieval, the problem of generating the desired items is
called recall and the problem of not generating irrelevant items
is called precision.

According to Salton and McGill (1983), a typical informa-
tion-retrieval system consists of four components:

1. There are files that are the items to be retrieved. In human
memory, these units are propositions, productions, images, as-
sociations, schemata, or whatever your favorite flavor of cogni-
tive chunk.

2. These files are indexed by a number of terms. These terms

" 'The symmetric possibility has also been explored—namely,
designing information retrieval systems to correspond to human mem-
ory—se= Jones (1987).
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can be things like the keywords that appear in a book’s abstract.
In the human case, these terms are the items unified in the
chunk. Thus, if we remember a paired associate, the stimulus
and response would be among the terms,

3. There are queries that are presented to the system that
consist of sets of terms. For instance, we might be asked “What
is the response associated with dog in list 27" In this case dog
and /ist 2 would be the terms.

4. There are a set of target structures or files that provide an
answer to the query.

A basic assumption is that there is a cost associated with our
system’s retrieving an irrelevant item and our having to process
it. Let us denote this cost as C. Our analysis will deliberately
avoid inquiring as to the mechanisms of retrieval behind this
cost. We want to see how far we can get just with the assumption
of a retrieval cost. The most obvious form this cost takes in
models of memory is retrieval time, but there may be other di-
mensions to this cost such as metabolic expenditure.

The Optimization Problem

Now we are in the position to define the optimization prob-
lem for human memory. Let G be the gain associated with re-
trieving the target memories. Let p[A] be an estimated proba-
bility that memory structure A is relevant—that is, a target. A
rationally designed information-retrieval system would retrieve
memory structures ordered by their probabilities p[A] and
would stop retrieving when

PIAIG < C. (1

That is, the system should stop retrieving when the probabili-
ties are so low that the expected gain from retrieving the target
is less than the cost of retrieving that item. A basic assumption
is going to be that p[A] is monotonically related to latency and
accuracy of recall, which are the two major dependent measures
used in the literature. It is related to latency because memory
structures are ordered according to p[A), and it is related to
accuracy because of this threshhold on what items will be con-
sidered. To be able to predict speed and accuracy of recall, we
need to inquire as to what factors memory can use to estimate
P[A), and our prediction will be that these factors determine
memory performance.

Before turning to an examination of p[A]—the major focus
of this article—it is worth saying something about C and G and
how they might vary. G should vary with the importance of the
task, implying that people should try longer before quitting in
more important tasks, and recall more. Recall is known to im-
prove gradually as subjects try longer (Buschke, 1974). C should
vary with the time spent inspecting an item before accepting or
rejecting it as relevant to the current task. Varying it should lead
to speed-accuracy trade-off functions in which longer recall
times are associated with more accurate memories.

This discussion of the optimization problem is framed in se-
rial terms—first, the subject considers one target structure, then
another, and so on. However, it should be clear, given our knowl-
edge of the parallel-serial equivalence (Townsend, 1974), that
this is nothing more than an expository convenience. Indeed,
we think of this all as being implemented in the parallel pattern-
matching machinery of ACT* (Anderson, 1983). In ACT*, the

system can assign resources to the structures it is processing
according to their plausibility, and the system can effectively
ignore structures below some threshold of plausibility. Thus,
whether parallel or serial, the critical feature is that knowledge
structures are ordered in terms of plausibility until they become
too implausible to consider. It is not the goal of this article to
inquire in detail as to the mechanisms that achieve this, only to
inquire whether we can predict memory performance, assum-
ing that memories are so ordered.

Estimation of Likelihoods of Memory Structures

We are now one big step from having a theory that specifies
the behavior of memory from purely rational considerations.
That one big step is to specify the p[A] in the preceding discus-
sion. We will refer to p[A] as the need probability, inasmuch as
it is the probability that A is needed.

One solution to the estimation of p[A] that appears in the
computer information-retrieval literature (Bookstein & Swan-
son, 1974, 1975) is to use Bayesian estimation procedures. The
two obvious pieces of information for evaluating whether a
memory structure will be relevant are its past history and the
terms in the query. Thus, each structure A has some history H,
of being relevant in the past. The current context consists of a
set of terms that we will call cues and denote by indices, i. We
will denote the set of cues as Q, for query. In doing Bayesian
estimation, we are trying to calculate the posteriori probabili-
ties, giving us the following equation:

P@1A)

P(A|HA &Q) _ P(A[H,)
P(i|A)°

PA|HA&Q) P(A[H,)

XTI

ieQ

(2

That is, the odds ratio for Item A is the product of the odds
ratio for Item A, given history H, times the product of the ratio
of the conditional probabilities for each cue in the context. This
equation makes certain assumptions about conditional inde-
pendence, namely, that the degree to which A affects the proba-
bility of / in the context does not depend on A’s past history or
the other cues in the context. Formally, the assumption is

P(i|H\ & A & {Q - i}) _ P(i|A)
P(ilHA & A& {Q~i}) P(i|A)’

(3)

This assumption is typically made in the computer informa-
tion-retrieval literature for purposes of tractability.?

The first term in Equation 2, P(A|H,)/P(A |H,), is basically
a prior odds ratio for the item, given its frequency and recency
of occurrence. This is the history factor. The other quantities,
the P(i| A)/P(i| A) are the odds ratios of the conditional proba-
bilities of the cues, given that the structure is relevant versus not
relevant. These ratios can be thought of as associative strengths,
They constitute the context factor. We will discuss each at length
in subsequent sections.

If one is willing to make a somewhat different assumption:

2 Human memory may not be so constrained, and it is interesting to
inquire as to which of our predictions might be upset by nonindepen-
dence.
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P(|H,\ & A& {Q - i}) _ P(ilA)
P(IH,&{Q-i}) ~ PG) '

then we can write an equation that is for some purposes more
useful.

4

P(i|A)

PAlHA& Q) = P(A|H,)+ ] PG) )

i€eQ

Equation 5 gives us a direct formula for the need probability
rather than the odds ratio. Note, P(i| A)/P(i) = P(A | i)/ P(A).

The basic behavioral assumption will be that memory perfor-
mance will be monotonically related to the conditional need
probability, P(A|H, & Q). Later in the article we offer a pro-
posal for how increased need probability maps into higher re-
call probability and faster reaction times.

The History Factor

To address the history factor, P(A |H, ), we need to determine
how the past history of a structure’s usage predicts its current
usage. To determine this in the most valid way, we would have
to follow people about in their daily lives, keeping a complete
record of when they use various facts. Such an objective study
of human information use is close to impossible. What is possi-
ble is to look at records from nonhuman information-retrieval
systems that can be objectively studied. Such studies have been
done, for instance, of borrowing from libraries (Burrell, 1980;
Burrell and Cane, 1982) and of access to computer files (Stritter,
1977). Both systems tend to yield rather similar statistics. If we
believe that the statistics of human memory information re-
trieval mirror the statistics of these nonhuman systems, we are
in a position to make predictions about how the human should
estimate need probabilities given past history.

Should we really believe that information retrieval by hu-
mans has the same form as library borrowings and file accesses?
The fact that two very different systems display the same statis-
tics suggests that there are “universals” of information retrieval
that transcend device (library, file system, or human memory)
and that these systems all obey the same form but differ only in
parameterization. Also, when we look at Burrell’s (1980, 1985)
explanation of library borrowings, it seems plausible that it
would extend to human memory and other information-re-
trieval systems. Finally, the success of the model in accounting
for human memory suggests that it applies.

In this section we develop a mathematical model of informa-
tion use for the human system, assuming it is analogous to these
objectively observable information-retrieval systems. From this
we will derive predictions for human memory by an optimiza-
tion analysis. In case the basic point gets lost in the mathematics
to follow, we want to state it up front: A system that is faced
with the same statistics of information usage as a library or a
file system and that is optimized in the sense already defined
will produce the basic human memory functions.

Burrell (1980, 1985) has developed a mathematical theory
of usage for information-retrieval systems such as libraries (a
similar model appears in Stritter, 1977, for file usage). His the-
ory involves two layers of assumptions. First, Burrell assumed
that the items (books, files, memory structures) in an informa-
tion-retrieval system vary in terms of their desirability. He as-

sumed that they vary as a gamma distribution with parameter
b and index v. Such a distribution produces mean desirability
values of v/b and variances v/b?. Desirabilities can be inter-
preted as mean rates of use (in Burrell’s case, usage is borrow-
ing). Burrell’s second assumption is that uses are described by
a Poisson process. This means that, given an item with desir-
ability A, the time to next use is an exponential process with
mean 1/A.

Anderson (1989) has developed an analysis of human mem-
ory using this model of Burrell’s (1980). Here we want to con-
sider a‘sophistication of this model based on some ideas in Bur-
rell (1985). Burrell noted that there are problems with the ahis-
torical character of the exponential distribution of times until
the next borrowing. The problem he is concerned with in li-
brary systems is that there is an aging phenomenon—books be-
come less used with time. He chose to model the aging process
by assuming that borrowings are a nonhomogeneous Poisson
process whose rate varies as r(f)A, as a function of time. In the
simple homogeneous case, r(z) = 1. In his model for aging, Bur-
rell assumed r(r) = ¢ . In our initial derivations, we derive
some general equations that are independent of the form of r(o).
Then we will develop a specialization to correspond to our as-
sumptions.

Formally (see Berger, 1985, for discussion of conjugate Bayes-
ian families), what the Burrell (1985) model gives us is a prior
distribution for the desirability, A, of an item. We can specify
this as the gamma distribution,

bUAT 1A
=" 6)

What we observe of a particular item is that it was used n
times in the first 7 time units since its creation. What Burrell’s
(1985) model tells us is the probability that we would see such
a history, given a book with desirability ), is described by the
equation for a nonhomogeneous Poisson process:

— AM(1] n
pn, 1]\ = 5—";@]— : ™
where
M) = J: r(s)ds.

What we are interested in is the posteriori distribution of A,
given n and ¢. A Bayesian estimate of A be derived as

x(\|n, £) = mf(?«)p(n. t|\) : o
x(x)p(n, t| x)dx
which has the solution
) BRI L M)
*(A|n 1) = it : -

which is itself a gamma distribution with parameters M)+ b
and v + n. The mean of this distribution is (v + n)/(M(t) + b).
Because this is a rate, it could potentially be greater than 1.
However, if we set our time scale so that we are looking at a
rate for a small enough unit, this quantity effectively becomes a
probability of a use in that interval—that is, a quantity that will
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vary from 0 to 1. For instance, if we measured time in seconds,
this would give us probability of use in a second. Because there
is a decay process, we can take our estimate of P(A|H,) to be
this quantity times r(¢) for decay. Thus,

v+n

M@ +b

In the case where r(f) = 1 (i.e., no aging or loss of desirability),
this becomes

P(A[H,) =

(). (10)

v+n

P(A|H,) = et

(1)

Burrell (1980) tended to get best fits for library borrowing by
estimating b to be about 1 year and v to be about one. This
yields the average borrowing rate for a book of about once per
year. The low value of v implies that most books have very low
borrowing rates and a few have high rates. In the applications in
this chapter, we have set v = 2 to give a somewhat more normal
distribution of desirabilities for human memory. (Unlike Bur-
rell, we do not have the same data base to directly estimate v.)
The b parameter defines the time scale. We have set it arbitrarily
at 100 and have tried to scale the results of experiments to fit
the time scale of the model. It remains a future goal to try to
get a systematic estimation of b and v for the human case. Many
of the analyses are sensitive only to the general function and not
to the exact values of b and v.

P(A|H,) is not the same thing as need probability because it
is only conditioned on the history and not on the context factor.
Equation 2 is needed to integrate the two. Nonetheless, in many
situations the context is the same for a set of items, and only
their experimental history varies. For such situations it is rea-
sonable to treat P(A|H,) as the need probability because it is
directly related to the actual need probability. We do this in
discussing recency, frequency, and spacing effects.

Frequency and Recency

There are further developments that will complicate Equa-
tion 10, but it is of interest to inquire how its current simple
form relates to the basic variables of presentation frequency
and recency. Consider the retention function in which we wait
t seconds after an item is studied and first test it. In this case,
n = 0 and Equation 10 takes the form vr(2)/(M(¢) + b). Thus,
depending on the form of r(f), the function in Equation 10
could give a very good mimicry of human retention functions,
which are typically characterized as rapidly negatively acceler-
ated. We will specify r(¢) after considering the spacing effect.

The function in Equation 10 can also be analyzed to predict
the relation between frequency of exposure and memory per-
formance. In this case, n is our independent variable. Let us
assume that 7 is constant—that is, we are manipulating number
of exposures in a fixed interval. The form of Equation 10isI +
sn, where s = r(f)/(M(f) + b) and I = v=s. Such a linear growth
model is the strengthening model in ACT*, which has been
shown to yield a good approximation to human learning data.?
Again we will develop a more precise mapping in subsequent
sections.

Spacing Effects

According to Burrell’s (1985) model, it does not matter what
the spacing is of these n presentations. All that matters in Bur-
rell’s model is the total number of uses (n) and the total elapsed
time (£).* This is a consequence of the fact that the rate of a
Poisson process depends only on the time (according to the
function r(#)) and not on the history of past events. The question
arises as to whether Burrell’s model correctly describes the like-
lihood function. Is it the case that in information-retrieval sys-
tems there is no massing of need? Burrell’s model implies that
the probability of next presentation should depend only on the
elapsed time since the item was introduced and not on the time
since the past presentation of the item. In fact, Burrell’s model
is not descriptively accurate here, as one might expect. For in-
stance, in Carnegie Mellon University’s library system, there
are definite clusterings of borrowings, and one can reject the
hypothesis that the n borrowings of a book in a fixed time inter-
val are independent samples from a monotonically decreasing
probability density. There are lots of reasons for such massings,
such as a book being relevant to a course taught only one semes-
ter. Stritter (1977) noted such deviations from independence of
accesses, but chose to ignore them in developing his model of
file system access. It is fairly intuitive that the same is true of
human memory, although it is hard to objectively verify what
the human likelihood function is.

If some use is massed and some is not, then the intervals be-
tween successive uses should predict the probability of the item
being needed now. Thus, compare one item that has been used
fairly uniformly n times over the year and another item whose
n uses all occurred in a 3-month period, 6 months ago. Clearly,
the first is more likely to be needed now. Thus, we would predict
better memory for spaced items, as long as we are not compar-
ing with a massing of study that has just occurred.

The Augmented Burrell Model

The question arises as to what kind of formal model might
underlie the observed behavior of libraries and file systems.
Burrell’s (1985) model provides us with two assumptions that
he was able to justify in the library domain: (a) There is a distri-
bution of desirability of items in which the desirability of an
item controls the rate at which it is accessed, and (b) there is an
aging process for items and their effective rate of use decays with
time.

To deal with spacing, we need to complicate this model in two
ways, both of which seem plausible. (c) There is also variation in
the rate of decay across items. For simplicity, we will assume
that the decay rates are exponentially distributed. This means
that the probability of a decay rate, d, is ae™*“. In a library sys-
tem this gives us the distinction between classics and flashes-in-
the-pan. (d) Items in the set undergo random revivals of interest

3 Here and elsewhere we will be making the assumption that every
time an item is presented for study, we incur another need for the mem-
ory trace of the item.

* Burrell (personal communication) indicated that he is aware of dis-
crepencies from this assumption, such as those we have described. How-
ever, these were not important to his applications.
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in which they return to their original level of desirability. The
probability of a revival at time ¢ is an exponential process with
probability e, In a library system this gives us the effect of
current events (e.g., a course) suddenly making a book relevant
again. It is these revivals that will give us the massing that we
observe in library systems and file systems.

If Assumptions ¢ and d do describe features of the environ-
ment, then the system will have to adapt to them, just as the
features in the original Burrell (1980) model. We derived pre-
dictions from our augmented Burrell model by estimating
mean need probabilities by Bayesian means, assuming that the
environment is as described in Assumptions a to d. In deriving
predictions from the augmented Burrell model, the following
settings were used for the environmental parameters: v = 2,
b = 100, which establishes our time scale, « = 2.5, and 8 = 0.04.
The last two are arbitrary and can be questioned. They are set
so that the mean rate of decay (1/«) is 10 times the revival rate.

The augmented model poses serious complications. Because
of the revival process, we no longer have independence of rate
from past history. Thus, it is necessary to estimate need proba-
bilities by Monte Carlo means. It takes on the order of 100,000
runs to get stable estimates for 100 time units, given the afore-
mentioned parameters. Each run involves (a) choosing a ran-
dom revival pattern and decay rate and (b) calculating the ex-
pected need probability under that revival pattern and decay
rate. The more time units, the more runs to get stable estimates
and the longer each run takes. The actual algorithm that per-
forms these calculations is described in the Appendix.

Figure 1 examines the relationship between delay and the
need probability—that is, the retention function.* We have
plotted on a log-log scale the relationship between need proba-
bility and . We are assuming that the item was introduced ¢
time units ago and has not been used in the intervening interval.
The reader can confirm the linear relationship that exists, im-
plying that retention is a power function of delay. Such power
functions are typically found in the experimental literature.
One might have thought the rate of decay would be a more rapid
exponential to reflect the aging process. However, the revival
process slows down this decay process. In the long term, the
retention function is more dominated by the fact that the Bayes-
ian estimation becomes more and more biased to low desirabili-
ties if the item has not been used. If we think of Equation 10 as
providing the retention function, this amounts to saying that
r() reaches a nonzero asymptote because of the revival process,
but M(#) continues to grow and dominates the retention func-
tion in the long run.

When it comes to looking at practice effects, one is forced to
try to deal with conflicting variables—the number of exposures
to the item, the spacing of exposures, the total interval, and the
time from last exposure to test. One cannot hold all of these
variables constant and have only the number of exposures vary.
Typically, time from last exposure is held constant because of
the large retention effects. One either holds spacing constant
and lets total time vary or holds total time constant and lets
spacing vary. Thus, we have graphed both functions in Figures
2 and 3. In Figure 2, an exposure was given every 10 time units,
and the test was 10 time units after the last exposure. Thus, total
time is 10n, where n is the number of exposures. In Figure 3,
the total exposure was held constant at 100 and the last study
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Figure 1. Relationship between need probability and delay
since an item has been studied.

was at 80; the remaining studies were placed from 0 to 80 at
intervals of 80/(n — 1), where n was the number of exposures.
(In this case, the minimum number of trials is 2—one at Time
0, one at 80, and then the test at 100.) The functions are plotted
on a log-log plot, and again they are linear, implying that need
is a power function of use. Such power functions are typically
found (Newell & Rosenbloom, 1981). The linear functions in
Figures 2 and 3 have slopes close to 1, which is what we would
have predicted from Equation 10. Thus, the complications we
introduced after deriving Equation 10 have not changed its ba-
sic prediction about the practice function.

One might wonder about the match of our theoretical func-
tions for need probability to empirical power functions for
speed and accuracy. There has to be some transformation from
need probability to these dependent variables. When we exam-
ine plausible transformations in later sections, we will see that
they basically raise need probabilities to some power (typically,
less than 1), Such transformations would preserve the power
relationship between the measure and the independent vari-
ables of delay and practice.

Until recently, there was only Crossman’s (1959) theory that
predicted power-law learning. He attributed power-law learning
to subjects adjusting their sampling among problem-solving
methods. More recently there has been a flurry of theories that
are able to predict power-law learning. Newell and Rosenbloom
(1981), expanding on ideas in Lewis (1978), attributed power-
law learning to chunking macrooperators in exponentially com-
plex problem spaces. MacKay (1982) attributed it to a strength-
ening process. Anderson (1982) derived it from the power-law

% Note that in this section we are assuming that the contextual factor
is constant and are just looking at the history factor.
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form of strength decay. Shrager, Hogg, and Huberman (1988)
produced power-law learning by a procedure that learns new
operators and optimizes the decision procedure. Logan (1988)
attributed it to a race among retrieval of previous experiences.
The rational analysis given here does not necessarily contradict
any of these models. They could be interpreted as simply pro-
posing a mechanism to achieve the rational analysis. The wide
variety of mechanisms proposed should convince us that there
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Figure 3. Relationship between practice and need probability. (In Fig-

ure 3, time since initial study and time since last study are held con-
stant.)
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Figure 4. (a) Glenberg's (1976) data and (b) our estimates of need proba-
bility. (Glenberg studied the effect of spacing between two studies [the
abscissa] as a function of the spacing from second study to test [the
different curves).)

is not a unique mechanism to get power-law learning. There is
one critical feature that these models lack, however. They focus
only on the effect of practice and do not take into account its
relationship with spacing and forgetting effects (Anderson does
not integrate in spacing). A theory that fails to deal with such
fundamental variables of practice cannot really claim to ex-
plain practice effects. Indeed, if one tried to integrate directly
into these models facts such as the power-law decay with delay
or the nearly total ineffectiveness of highly massed training, the
models might fail to predict power-law learning.

We now turn to whether our model can predict the spacing
effect. This is where Burrell’s (1985) model breaks down as be-
ing descriptively accurate of information usage. Although us-
ages are not independent, it remains a question of whether our
formulation of the process will match the human spacing func-
tions. Some of the richest data on human spacing functions
come from Glenberg (1976), who looked at the interaction be-
tween the spacing effect and the retention function. That is, he
orthogonally manipulated the delay between the two studies
and the delay between the second study and test. Figure 4a plots
his data, and Figure 4b plots estimated need probability. The




HUMAN MEMORY

709

Table 1 :
Mean Percentage of Recall and Need Probabilities (in Parentheses) for Bahrick
Session
Intercession
interval (in days) 2 3 “ 3 6 7
Tested after three training sessions
0 1 89 33
(.0201) (.0298) (.0057)
1 60 87 64
(.0144) (.0192) (.0087)
30 21 51 n
(.0032) (.0069) (.0108)
Tested after six training sessions
0 82 92 96 96 98 68
(.0201) (.0298) (.0394) (.0488) (.0576) (.0075)
1 53 86 94 96 98 86
(.0144) (.0192) (.0256) (.0329) (.0424) (.0214)
30 21 51 72 79 82 95
(.0032) (.0069) (.0108) (.0144) (.0167) (.0183)

Note. The final test was always after 30 days.

unit of time in Glenberg’s study was a 3-s presentation of an
item. The unit of time on our simulation was 0.33 time units.
Thus, one of our time units equals nine of Glenberg’s seconds.

Glenberg’s (1976) basic result is that at short testing lags, re-
call decreases with spacing between studies, whereas at long lags
it increases. The one exception is that at very short lags (0 and
1 item), there is universally poor performance. This poor per-
formance is typically (e.g., Crowder, 1976) attributed to inat-
tention—something not modeled in the current approach.
However, except for this, we do a remarkably good job of repro-
ducing the data of Glenberg. The correlation between his recall
probabilities and our need probabilities is .86, which is good
considering the peculiarities at 0 and 1 lags and the fact that the
two measures are only monotonically related and not linearly
related (the rank-order correlation without the 0 and 1 points
is .99).

Bahrick (1979) did an interesting experiment in which he
studied the interaction between spacing and repetition. He pre-
sented subjects with a number of memory trials for 50 English-
Spanish vocabulary pairs. The first trial was a study, and the
remainder were tests followed by study. There was either 0 delay,
a 1-day delay, or a 30-day delay between trials. This was followed
by a final test after a 30-day interval. For the subjects who had
been studying with 30-day intersession intervals, this was like
another test. Bahrick ran two groups of subjects—one that had
an initial study session, two test-study sessions, and a final test
session, and another that had a study session, five intermediate
test-study sessions, and a final test. The results are shown in
Table 1 both for performance on the test-study trials after the
first and performance on the final test. Bahrick’s basic point is
that there is an advantage if the retraining interval matches the
retention interval.

Bahrick’s (1979) experiment was simulated with our system,
using 0.01 time-unit intervals to simulate Bahrick’s massed
condition, 1 time-unit interval to simulate his 1-day delay con-

dition, and 30 time-unit intervals to simulate his 30-day condi-
tions. The results are also shown in Table 1. Certain of Bah-
rick’s six-session data points are replications of the three-ses-
sion data points. Altogether there are 20 distinct conditions in
Table 1. There is a rank-order correlation of .95 between our
need probabilities and his percentage recall (averages of two
percentages in the case of replicates).

In short, our rational analysis of the historical factor does a
remarkably good job of accounting for the effects of frequency
and recency of presentation.

The Contextual Factor

The preceding analysis has been concerned with analyzing
the history factor, which was the first term in Equation 2. Now
we turn to calculating the remaining quantities, P(i| A)/P(i| A),
which are the cue strengths. It is almost certainly the case that
P(i)and P(i| A) are going to be nearly identical, because condi-
tionalization on the nonrelevance of one memory structure out
of millions cannot much change the probability of any cue.
Thus, our discussion of cue strength focuses on the simpler
form of P(i| A)/P(i). As noted earlier, P(i|A)/P(i) = P(A|i)/
P(A). The cue strength thus reflects either the degree to which
the context element is more or less probable when a trace is
needed, or equivalently, the degree to which it is more or less
probable that a trace is needed when a context element is pres-
ent. Intuitively, these cue strengths reflect the degree of associa-
tion between the terms / and the memory structure A. However,
we have not been satisfied with any formal analysis that we have
been able to develop of this intuition. One idea is incorporated
in the Search of Associative Memory model (SAM; Gillund &
Shiffrin, 1984). This is to make these cue strengths reflect the
frequency with which i and A have cooccurred in the past. This
is a sensible proposal, but it does have two related difficulties:
(a) When a memory structure is just created, there is a poor data



_——

710 JOHN R. ANDERSON AND ROBERT MILSON

base for estimating such strengths, and estimates will fluctuate
wildly. (b) This scheme loses information by looking only at
direct cooccurrences. If school has occurred in the context
when other memories about teacher are needed, then there is
reason to expect that it will occur in the context when a new
memory about teacher is needed—even if we have not yet expe-
rienced that particular cooccurrence.

In Anderson (1989), we proposed a scheme for estimating
these conditional ratios based on work from information re-
trieval (Salton & McGill, 1983). This work avoids the objec-
tions listed earlier, although we have to confess that we have
never read a deep explanation of why this approach works in
information retrieval.

Given that this analysis has been developed elsewhere and
that its motivation is weak, we do not repeat it here. Rather, we
present a similar analysis, but one that we believe is conceptu-
ally clearer: A memory structure A consists of a set of terms a,
b, ..., n. The assumption is that P(i| A), the probability of cue
igivmthatAisatarsel,canbetboughtofastheprobability
that i is present, given that a structure with a, b, - - - and n is
needed. Thus, we may rewrite our cue strength expression

P(i|A) _P(ilab,....n)
P(i) P(i) :

The key idea is that the relationship between A and i can be
decomposed into a set of relationships between the elements of
A and i. Let n(x) denote the probability that a trace with ele-
ment x is needed to distinguish it from c(x), which is the proba-
bility that the context contains element x. Similarly, n(x|y) is
theprobabilitythatatrace“iﬂlxisneeded,giventhatyisin
the context, whereas ¢(y|x) is the probability that y is in the
context, given that a trace with x is needed. Then, under fairly
strong independence assumptions, we may write

PlA) _ l'l clilx) _ ry mxli)
. =W W

(12)

(13)

One requisite independence assumption is that
P(A) =[] n(x), (14)

XEA
or that the probability structure A is needed is the product of
the probabilities that structures involving the individual com-
ponents are needed. The other requisite independence assump-
tion is
P(x|i & {A — x}) = n(x|i), (15)

or that the probability that x is needed depends only on i and
not on the other elements that are needed. These are strong as-
sumptions, but they are required to make the standard move in
the information-retrieval literature of decomposing the connec-
tion between a trace (or file) and a cue (or query element) to the
connections between the components of the trace (or file) and
the cue (or query element).

It is worthwhile to take an overview of what has happened in
developing Equation 13. We started out interested in how the
set of elements in the context predicted a particular memory
trace. The system has little or no experience with this exact
pairing and so has no direct basis for making this estimation.

Thus, earlier, we decomposed (Equation 2) the set of contextual
elements into individual elements, and in Equation 13 we de-
composed the trace into its elements. We are now looking at
the degree to which a specific element in the context predictsa
specific element in the trace. The advantage we get out of these
moves is that we have much more experience with the pairings
of the individual elements than we have with whole contexts
and whole traces.

This still leaves open the issue of how to estimate the n(x|i)/
n(x). A simple idea is to base it on frequency in experience.
That is, define n(x|) to be the proportion of times that a trace
with x is needed when i is present in the context, and n(x) to
be the unconditional proportion of times that a trace with x is
needed. This is a reasonable solution in cases of large samples.
If x is an established concept, experience would give a good ba-
sis for estimating n(x). If, in addition, i is a frequently occurring
contextual element, one can accurately estimate n(x|i). How-
ever, such estimates would still fluctuate radically in a case of
infrequent elements.

Consider the predicament of moving to a new psychology de-
partment and meeting Professor a and Professor b. How does
one set n(a| b)/n(a), where n(a| b) is the probability that a mem-
ory about a will be needed if b is mentioned and n(a) is the base
probability that a memory about a will be needed. One should
set these probabilities at some default value and adjust with ex-
perience. The initial default value should be influenced by one’s
knowledge. Thus, if @ and b are both professors of social psy-
chology, n(a| b) should be set higher than if one is a professor of
social psychology and one is a professor of cognitive psychology.
Eventually, with enough experience, one would adjust from
these initial estimates to estimates that reflect proportions in
experience. We are not in possession of a precise model of how
to set initial values based on knowledge and how to adjust with
experience, so we have to leave our analysis at the informal
level. g

Frequency Effects

The probabilities p(x) and n(x) would be related to frequency
norms, although there is no reason to believe that the relation-
ship will be perfect. Similarly, n(x|i) should be related to free
association norms, but again there is no reason to believe that
the relationship will be perfect. We can therefore inquire as to
whether empirical results involving such norms can be pre-
dicted within this framework. Consider word-frequency effects
in recognition memory. In this case, the cue is the word and the
target is a trace involving the same word. Our ratio becomes®

n(word | word in context)
n(word)

The numerator is to be read as the probability that a memory
trace involving the word is needed, given that the word is pres-
ent. Presumably, this conditional probability is relatively high,
although not 1. It is probably fairly constant for all words. In

6 In this and subsequent analyses we are focusing on the effect of one
element in the context, assuming the effects of the other elements do
not vary.
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contrast, the denominator will vary with the frequency of the
word. Thus, we predict that low-frequency words will be better
recognized, a well-documented result (e.g., Kintsch, 1970). The
basic point is that low-frequency words are statistically better
predictors of traces involving them than are high-frequency
words.

Second, consider the case of paired associates in which we
present a pair, word 1-word2, for study, and test with word1 for
the recall of word2. Our ratio in this case is

n(wordl |word1 in context)
n(word1)

If we assume that words are of equal frequency, the relevant
variable becomes n(word2 |word1 in context), which will vary
with the associative strength of the words. This predicts the re-
sult (Eich, 1982) that it is easier to learn experimental associa-
tions between words with strong prior associations. It is worth
noting the rational basis for this effect. It is based on the as-
sumption that new knowledge involving highly interassociated
terms is, in fact, more likely to be needed. Thus, for instance, if
we are told that Ronald Reagan believes that Howard Baker is
dishonest, the prediction is that this is more likely to be a fact
thatv.ewillwanttore-uscwhcnwhearRonaldReaganthan
if we are told that Ronald Reagan believes that Wayne Gretzky
is dishonest—because of the greater interassociation between
Reagan and Baker.

An interesting feature of this analysis is that it does not pre-
dict any clear effect of response frequency on paired-associate
learning—a result that is approximately correct. In a typical
experiment looking for word-frequency effects, nouns of
different frequency are basically paired randomly. This means
that as we increase the frequency of a word, and so n(word2),
its prior probability of association, n(word2 |word! in context),
will, on average, grow proportionately. Thus, the numerators
and denominators in these ratios should tend to cancel them-
selves out. Because of n(word1) in the denominator, the analysis
does predict a negative effect of stimulus frequency, a result that
is supported in Paivio (1971). Gillund and Shiffrin (1984) failed
to find any significant effects in recall, but they did find consid-
erable advantage for low-frequency words in paired-associate
recognition.

Finally, we consider a free-recall situation in which the sub-
ject is given no cues except the random elements in the environ-
ment, which we denote as context. Then, the probability of re-
call is governed by

n(word2 |word1 in context)
n(word2) &

n(word | context)
n(word)

In this case, we might assume the frequency of the word,
given that the context matches its base frequency, and so we
have a ratio of 1 for all words independent of their frequency.
However, it is known that high-frequency words are better re-
called in free-recall tests (Kintsch, 1970).

One possible explanation of this discrepancy is to relate it to
an organizational strategy by which a subject tries to interrelate
items in the list. High-frequency words, having more traces in-
volving them, will be more easy to interrelate. In fact, there is
considerable evidence that the frequency effect is due to organi-

D" w, CHASE =
o DOG"é-‘ CAT A"
IG L 'T‘

Figure 5. Interassociations relevant to recognizing the spelling of a word
like cat in the presence of a word like dog.

zational strategy. First, if one designs high-frequency lists with-
out strong interitem associations, the word-frequency effect dis-
appears (Deese, 1960). Second, recall of high-frequency lists
shows more subjective organization (Postman, 1970). Third,
and most critically, when subjects are given distractor activity
during study to prevent them from engaging in an organiza-
tional strategy, the word-frequency effect disappears (Gregg,
Montgomery, & Caslano, 1980). Thus, it seems that the word-
frequency effect for free recall is a strategy effect. In contrast,
the word-frequency effect for recognition seems more robust
across such manipulations.

This explanation of the word-frequency effect in free-recall
places it outside of our rational model, which by itself clearly
fails to predict the phenomena, The fact that it does so clearly
should help allay doubts that rational models do not have clear
predictions. However, there have to be such things as memory
strategies that will effect the behavior of a subject over and above
the basic tendencies of human memory. At the end of this arti-
cle, we discuss how this rational analysis is to be related to the
phenomena of memory strategies in free recall.

As a final comment, note that our predictions for word-fre-
quency effects are quite similar to those developed by Gillund
and Shiffrin (1984). Indeed, one might look to their model as a
reasonable proposal for how such word-frequency effects might
be implemented.

Priming Effects

We can relate this analysis fairly directly to the priming litera-
ture. Consider a typical experiment in which the subject is
asked to judge whether a string of letters like car is a word. This
Jjudgment can be more rapidly made when that word is preceded
by an associated word like dog. This situation is illustrated in
Figure 5. Dog and cat are interassociated through their appear-
ance in common memory structures. To access the word cat we
have to access information about its spelling. A priming experi-
ment looks at this access as a function of context. In this exam-
ple the relevant context is the cue term dog. The ratio that we
are looking at is P(cat’s spelling is needed |dog in context)/
P(cat’s spelling is needed). The assumption is that this ratio is
greater than 1 in this case because of the interitem association
between dog and car. Said in other words, our Bayesian estima-
tion procedure increases the probability that the spelling of car
will be relevant in the presence of the word dog.

In explaining such priming effects, the Bayesian analysis, as
currently developed, offers no more predictive power than any
of the many competing analyses. However, it adds some explan-
atory power. It embodies the claim that we can recognize the
spelling of cat faster in the presence of dog because, in actual
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fact, there is a higher than average probability that we will have
to recognize the spelling of car when dog is present.

An interesting feature of this Bayesian analysis is that it pre-
dicts the inhibitory priming effects that occur. That is, recogni-
tion is worse in the presence of an unrelated stimulus (like /ip)
than it is in the presence of a neutral cue (like XXX). These
_ conditional likelihood ratios have to average out to 1 (in a prob-
ability definition of average). Thus, because related terms have
greater-than-1 ratios, unrelated terms will have less-than-1 ra-
tios. Moreover, it again makes sense. In fact, the odds are lower
than chance that we will have to recognize the word dog in the
presence of an unrelated word like /ip.

It has been argued that the mechanisms underlying the inhi-
bition effect are different than the mechanisms underlying the
facilitation effect (Lorch, Balota, & Stamm, 1986; Neely, 1977).
It is argued that early on there is only an automatic facilitation,
which gives way to a strategic process that can produce both
inhibition and facilitation. The principle evidence for this is the
observation that inhibitory effects appear later than do facilita-
tory effects. This rational analysis does not really take a position
on mechanisms and certainly does not deny the possibility that
different mechanisms may implement different aspects of ra-
tional prescriptions. There is neural evidence that inhibitory
processes are slower because their paths involve more synapses
(Shepherd, 1979). This may be a case in which the constraints
of the brain impact on rational derivations. The differences are
not huge—facilitatory effects make themselves known in 100
ms, whereas inhibitory effects take 500 ms. The ideal would be
instantaneous priming effects, which is clearly not possible in
any physical system.

Finally, this analysis can predict a result that ACT* fails to
handle. This is the observation that one cannot seem to get sec-
ond-order priming. De Groot (1983; see also Balota & Lorch,
1986; Ratcliff & McKoon, 1988) used triplets of words like
bull-cow-milk, where there is a strong association between the
first and second and between the second and third, but not be-
tween the first and third. The first did not prime the third in
contrast to what would be predicted by a spreading-activation
model in which activation would spread from the first to the
second and, hence, to the third. However, on the aforemen-
tioned analysis, the first and third terms would have low related-
ness. This is, in fact, the rational thing to do: If milk is never
processed in the presence of bull, one should not prime struc-
tures involving milk when bull appears.

The exact status of this result is somewhat in debate. Balota
and Lorch (1986) did find second-order priming in a word-
naming task but not in a lexical-decision task. Even more re-
cently, McNamara and Altarriba (1988) found evidence for
weak, second-order priming more generally. One could argue
that, for low-frequency words, second-order priming might re-
flect a rational estimation procedure. That is, if one has seldom
seen A, B, or C, but has seen A and B together and B and C
together, it might be reasonable to guess that A and C will occur
together. However, the words in these experiments were not low
frequency. The relative frequency in experience of B, given A,
should have been an adequate basis for estimating the condi-
tional need probability.

If there are second-order priming effects, we think that these
effects reflect more the definition of second-order associates.

Just because subjects do not give milk to bull does not mean
that bull and milk are never encountered together. Indeed, Ba-
lota and Lorch (1986) reported that subjects rate these as more
ciates of Balota and Lorch and of McNamara and Altarriba
(1988) it seems to us that the probability of the second-order
associate is raised by the stimulus—that is, #(milk|bull) >
n(milk). The basic problem is that free-association norms are
only imperfect predictors of the underlying probabilities.

Fan Effects

This analysis also relates fairly directly to fan effects (Ander-
son, 1983). The fan effect involves manipulating the number
of facts in which a particular concept appeared (the fan of the
concept). The basic fan result is that a particular fact is more
slowly retrieved when the concepts that compose it occur in
more other facts. The result can be seen as directly arising from
the conditional probability ratio P(A |i)/P(A). The denomina-
tor, the probability of the trace, will be constant for the traces
in a particular experiment, whereas the numerator should de-
crease with the fan of i. As the fan of i increases, it is associated
with more traces, and so the probability of any particular trace
goes down. This analysis predicts that it is probability of the
association and not fan that is the critical variable. It is just
that as we increase fan, we decrease probability on the average.
Anderson (1976) reported an experiment in which fan was de-
correlated from probability by studying different facts about a
concept with different frequencies. The clear outcome of that
research was that it was probability and not fan that was the
controlling variable.

It should also be clear in this analysis why there are fan effects
for foils—that is, it takes longer to reject a foil the more sen-
tences were studied about the concepts in the foil. The more
facts there are about a concept, the more things will have to be
considered before rejecting a fact that involves this concept.

Anderson, 1983, has done a number of fan experiments look-
ing at the effect of the number of cues or terms in the sentence
to be recognized. It turns out that it is easy to confound number
of cues with the complexity of the memory task. However, when
this is avoided, recall increases with number of cues. Each rele-
vant term should increase the odds ratio for the target trace in
Equation 2. The current analysis would also predict that re-
trieval time would be a function of the product of the fans of
the individual cues, a prediction that is also generally confirmed
(Anderson, 1976). A final prediction is that the fan of existing
cues will be attenuated if an additional relevant cue is added.
This prediction also has been confirmed (Anderson, 1983).

Relationship of Need Probability to Probability and
Latency of Recall

The analysis to date has really been concerned with need
probability. That is, we have been developing a theory of how
the probability that an item will be needed varies as a function
of its history and the cues presented. We have only assumed that
it will be related monotonically to the two principal behavioral
measures of memory, namely probability of recall and latency
in recall. The basic assumption was that a subject would con-
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sider items in memory in the order of their need probability
until that fell below some threshold. This produces a monotonic
relationship between need probability and recall latency. It
would seem to define probability of recall as a step function of
need probability. Indeed, as much of the research on all-or-none
recall has demonstrated, there is a step-functionlike quality to
probabﬂityofrecal]sothatifanitemeanbermlledononc
occasion, there is a high probability (often near 1) of its being
recalled on later occasions, whereas if an item cannot be re-
called on one occasion there is low probability (often near 0)
lhatitwillnotbcrecalledonlateroceasions(forreviemsec
Battig, 1968; Restle & Greeno, 1970). Latency has been shown
(Anderson, 1981) to be much more sensitive to presentation
variables.

This does not imply, however, that all items with the same
experimental history will be recalled or that all will not. There
matlcasttworeasmswhymcanno!predictaparticular
item’s recall from its history. The first is that we do not know

-its pre-experimental history. The second is that Wwe are not sure -

of its experimental history. The subject may not have attended
to it during some presentations, and the subject may have re-
hearsed it covertly during other time periods. There is evidence
that we can improve our ability to predict subject’s recall if we
try to track attention (Loftus, 1972) or if we try to monitor re-
hearsals (Rundus, 1971).

Analysis of Latency of Recall

We need some theory to relate the probability that an item is
needed (which is the quantity that we have analyzed to this
point) to the time it will take to retrieve it. In the current analy-
sis, need probability determines the order in which knowledge
is examined. Given a particular item with need probability p,
we do not necessarily know its exact ordinal position. This will
depend on how many higher probability items there are in the
situation. However, as an approximation we can assume proba-
bilities are distributed according to Zipf’s law. This law has
been found to describe such things as distributions of words in
prose samples by their frequency of occurrance, distribution of
scientists by numbers of articles published, distributions of cit-
ies by population, distribution of names by size, and distribu-
tion of biological genes by number of species (ljiri & Simon,
1977). Given such a range of application, it seems only a mild
generalization to propose that it describes distribution of mem-
ories by their need probability.

A close approximate form for Zipf’s law is f(i) = ri ~4 where
i is the ordinal position of the item, Jis the measure (count,
income, need probability, etc.), d is a constant (often estimated
to be 2), and r is a scale factor (ljiri & Simon, 1977). In the
case of need probabilities of memories, we can use the following
form

p=n, (16)
where p is the need probability and ¢ the time it will be retrieved.
Inverting this, we get the relationship between time and need
probability,

t=[r/p]",
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Figure 6. Transformations of Figures 1 and 2 to introduce
the dependent measure of response latency.

M n

and adding an intercept gives us a formula for time,
T =1+ [r/p]"e. (17)

Figures 1 and 2 earlier related need probability to frequency
and recency of presentation. Figure 6 shows these functions
transformed to give times setting/ = .3, r =02, and d = 2. As
can be observed, we get typical practice effects and retention
effects when measured by latency. Note that the relationship
between the slopes of the functions in Figures 1 and 2 and the
slopes of the functions in Figure 6 is basically 1/d.

Analysis of Probability of Recall

In the current theory, memory fails to recall an experience
because the need probability for that memory is below the
threshold that the system is willing to consider. As we men-
tioned earlier, one might expect a perfect step function from
probability of 0 to 1 as the threshold is crossed. However, it
is quite possible that the threshold will vary depending on the
situation. It is also possible that the actual evidence will vary
from our estimate, depending on past history, lapses of atten-
tion, hidden rehearsals, and so forth, that we cannot observe. It
is also possible, all consideration of rationality aside, that there
is some noise in the system. We can summarize all of this by
saying that there is some variance in our estimate of the distance
between the evidence and the threshold and the actual distance.
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Figure 7. Transformation of Figures | and 2 to introduce
the dependent measure of probability of recall.

The natural distribution for this variance would be a normal
distribution, but for purposes of analytic tractability we will re-
place it by the similar logistic distribution. Formally, our as-
sumption will be that the distance between the log odds esti-
mated, v, and the threshold 6, is distributed as a logistic function
with parameter s. (The parameter s is related to the variance—
variance = x”5%/3.) Then, the probability that a memory with
log need, v, will be recalled is

1
T+ e -

P=

This implies that the relationship between the odds of recall-
ing an item and the need odds, O = ¢°, is

i A
oy A", (19)
where 4 = ¢™~,

Figure 7 shows transformations of the retention and practice
functions (Figures 1 & 2) setting # = —5 and s = .5. This plots
probability of recall, delay, and practice untransformed. How-
ever, if we were to take log transforms and plot odds recall rather
than probability of recall, we would get linear function with
slopes 1/s of what they are in Figures 1 and 2.

Effects of Subject Strategy

So far we have ignored any systematic analysis of possible
effects of subject strategy on memory performance. However, it
is well documented that subjects engage in numerous strategies
for processing to-be-learned material, and these strategies can
substantially affect their memory performance. Moreover, the
evidence is that such strategies are acquired, and younger chil-
dren may reflect different memory performance simply as a
function of their different memory strategies (Flavell, 1977).

The question naturally arises as to how one is to conceive of

_ memory strategy in a rational analysis. One attitude would be

toignore its role and assume that memory strategy is just part of
the black box that is being optimized for memory performance.
However, the radically different behavior that can occur as a
consequence of strategy choice causes fundamental problems
for this approach. For instance, in the same experiment, one
subject will choose to repeat the items over and over again in a
rote fashion, whereas another subject will engage in an elabora-
tion strategy and enjoy a much better memory performance as
a consequence. How can one argue that both subjects are engag-
ing optimal behavior with respect to optimizing their memory
performance to the same environment?

We think a better way to conceive of this is that subjects are
manipulating the information that is presented to human mem-
ory by their choice of strategy. Given different strategy-deter-
mined experiences, memory is behaving optimally in response
to those experiences. Thus, for instance, given multiple redun-
dant traces created by an elaboration strategy, memory has
more traces to call upon and more interassociated traces. Thus,
the advantage of elaborations is to be understood in terms of
the same redundancy analysis that has been given for the ACT*
theory (Anderson, 1983).

Our view is that subjects can essentially manipulate the input
to their memories and that human memory, blind to the inten-
tions of the subject and to the fact of a deliberate manipulation,
behaves as rationally as it can, given the statistics of the input
it receives. This leaves open the question of the rationality of
subjects’ strategy choice—that is, whether their manipulations
are optimal by some criteria. We do not address this question
here

The consequence of this approach is (a) that understanding
the details of human memory performance in many circum-
stances will require that we specify subjects’ memory strategies
and (b) that we cannot simply derive their behavior from an
analysis of the information the experimenter is presenting to
them. This is because these strategies are intervening between
the experimenter and their memories and transforming the in-
formation presentation. Indeed, in some situations, the sub-
jects’ memory performance will be more a function of strategy
choice than of any direct properties of the experimental manip-
ulation. In the next section, we give one token of this in simulat-
ing the traditional free-recall experiment.

Simulation of Free Recall

A basic observation about subjects in a free-recall experiment
is that they often covertly rehearse items in addition to the item
currently being presented. Modeling this particular phenomena
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has been part of a good many models of memory, including the
original Atkinson and Shiffrin (1968) model, and was incorpo-
rated into the Free Recall in an Associative Net model (FRAN;
Anderson, 1972). It has also found its way into the more recent
SAM (Gillund & Shiffrin, 1984; Raaijmakers & Shiffrin, 1981)
model of free recall. We decided to incorporate a simple version
of this rehearsal process, not unlike the SAM model. We as-
sumed that subjects could maintain a buffer of four items for
rehearsal. Each time an item was presented, it entered the buffer
and, if the buffer was full, an existing item from the buffer was
thrown out. The choice of which item to throw out was made
randomly, with each item equally likely. When an item was first
presented to the subject, it was encoded by memory. Every sec-
ond it was in the buffer it had a .2 chance of being encoded anew.
The benefit of residing in the buffer was these opportunities for
further encodings.

We assumed that the memory system responded to each en-
coding of the item as a new use, whether that encoding came
from experimenter presentation or buffer residence. Upon
completion of the study, we assumed that the subject would re-
call items with need probabilities above a certain threshold.
This is an obvious simplification in that subjects adopt various
strategies for organizing their recall as well as their study.

To map need probability onto probability of recall requires
a description of the role that noise plays in converting from esti-
mated need probabilities to probabilities of recall. A preceding
section, Analysis of Probability of Recall, provides the theoreti-
cal discussion of a noise factor, and the actual transformation
from need probabilities to probabilities of recall is given by
Equation 18. A fuller description of the free-recall model is
given in the Appendix.

This model undoubtedly underestimates the complexity of
the memory strategies that are actually occurring in a free-re-
call experiment. The reader is invited to read the Appendix to
Anderson (1972) to see how rich free-recall strategies can really

be. However, this gives us a first-order approximation from
which we can try to predict some of the basic statistics of recall.

Serial-Position Effects

A classic datum from free recall concerns the serial-position
function—how probability of recall varies as a function of serial
position in the study list. Murdock’s (1962) data is shown in
Figure 8a, and our simulation of it is shown in Figure 8b. The
correspondence is quite good. The basic features of these data
are the strong recency effect in which the recall drops off from
the end, and the lesser primacy effect in which recall drops off
from the beginning and from the flat region between. The re-
cency effect is produced by the decay in need probability, and
the primacy effect is produced because the first items in the
buffer have an advantage. It is not obvious that we would get the
right orders of magnitude among these three regions of the seri-
al-position curve.

The primacy effect deserves a little comment. It is produced
directly by the assumption of a buffer model and by the fact that
it takes a few items for the buffer to fill up, and so the first items
are not pushed out right away. Thus, in contrast to the recency
effect, which is a result of the rational model, the primacy effect
is a consequence of strategy choice. One might wonder whether
this attribution of the primacy effect is correct. Perhaps the first
things in a new context tend to repeat more often or are more
important (i.e., perhaps there is a rational explanation of the
primacy effect). Certainly, prose (especially newspaper stories)
tends to be structured with the important things first, but one
can view this as writing adapting to the primacy effect rather
than as the cause of the primacy effect. Outside of human com-
munication, it is unclear whether there is any validity to the idea
that first things are more important. The analogy in the library
system would be something like the first borrowings of the day
identifying the more often borrowed books. In a file system it
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Figure 9. Mean number of words recalled as a function of total presentation time (abscissa) and presentation
time (PT) per item. (Part a is Roberts’s 1972 data, and Part b is our simulation.)

would be the first files accessed in the day being more impor-
tant. It is unknown whether these effects exist in such systems,
and even if they do they might exist for reasons that do not seem
to apply for the human system. For instance, borrowers might
be lining up outside the door of the library to get the book that
that night’s newscast made critical.

On the other hand, recent evidence (Baddeley, 1986; Glen-
berg et al., 1980) has suggested that the primacy effect in free
recall may largely be due to the strategy of rehearsal. Manipula-
tions that discourage rehearsal largely eliminate the primacy
effect, whereas they leave the recency effect unaffected. Thus,
the current analysis may be correct in its attribution of the re-
cency effect to rational factors and the primacy effect to re-
hearsal strategy factors.

Inspection of the simulation in Figure 8b reveals that the
curves do not really flatten in contrast to the empirical curves
in Figure 8a. This is because there is a retention effect through-
out the serial positions, and earlier positions suffer because of
their greater lag from test. We suspect that we could make these
curves indistinguishable from the data by suitably playing with
the parameters. Nonetheless, we think that Figure 8b is more
informative because it reveals the prediction of a continually
decaying serial-position curve until the primacy portion. We
would predict that if the empirical serial-position curve were
long enough (i.e., stretched out over enough time), the decay
would be apparent also.

Effects of Presentation Time and List Length

Roberts (1972) reported an experiment that systematically
manipulated list length and study time per item. Figure 9a re-
ports Roberts’s data for list lengths of 10, 20, 30, and 40 items
and for presentation rates of 1, 2, 4, or 8 s per item. Figure 9b
reports the predictions derived from our theory. Both figures
plot recall as a function of total study time, and the simulation

can be observed to do a good job. An interesting fact to note is
that both Roberts’s data and simulation data confirm the phe-
nomenon that for the same total presentation time, recall in-
creases as list length becomes larger (and presentation time de-
creases). This is not at all an obvious prediction of our theory.
On the one hand, the longer the list of presented items, the more
things there will be to choose from, but on the other hand, the
lower will be their mean need probability (presentation time
decreases for each item). Apparently, the former factor over-
whelms the latter.

Conclusions

This article began with a effort to derive some of the most
robust results in human memory from a rational analysis.
Many of the results dropped out of an analysis that assumed
that subjects were responding to the objective statistics of infor-
mation presentation. However, our analysis of free recall
showed potential effects of subject strategy. This means that any
particular memory phenomenon is going to be a joint function
of two factors—general properties of memory, which we have
argued are rationally determined, and specific strategies
adopted by the subject to process the information in that situa-
tion. In general, the effect of one memory strategy versus an-
other is to shift the relative need probabilities for different mem-
ories, making some more available at the expense of others. A
strategy can make experimental traces more available than ex-
tra-experimental traces, it can make elaborative traces more
available at the expense of verbatim traces, it can make items
in the beginning of the serial position more available at the ex-
pense of later items, and so forth. From this point of view, there
is no better strategy in general but just a better strategy for cer-
tain purposes. This is a perspective like the concept of transfer-
appropriate processing (Bransford, Franks, Morris, & Stein,
1979). As we said earlier, this leaves open the possibility that
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there may be some framework in which the strategy choices
might be rationally determined. However, a precise formulation
of that framework eludes us.
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Appendix

In this Appendix we will specify the algorithm used to estimate the
historical component of the need probability, P(A |H, ), and the algo-
rithm used to calculate our free-recall predictions.

Estimating P(A |H,)

Let T denote the time elapsed since an item’s original occurrence—
that is, the amount of time the item has been under observation. Let
R*= (R, R;, ..., R,) be the retrieval history of the item, where R, is
the time between the item’s original occurrence and the ith retrieval of
that item. We will have occasion to refer to the original occurrence of
the item as a retrieval. We will denote this by Ry, and it is always equal
to 0. By convention, R, < R;,, for all i.

Let P(R*, T) be the probability that a retrieval history R* will occur
between time 0 and T This is infinitesimal for all R*, except for the
null retrieval history when R* = ( ). Let RT™* denote the same retrieval
history as R*, except there is an additional retrieval at T. To calculate
P(A|H,), we need to calculate P(RT®, T)/P(R*, T). Essentially, this
ratio represents the conditional probability that a retrieval will occur at
time T; given that retrievals have already occurred attimesR,,R,,...,
R,. The ratio actually gives us a retrieval rate, but as was discussed in
the main part of the article, this is equivalent to a probability if we are
defining the rate with respect to a small-enough time unit.

We will describe an algorithm that will compute quantities like P(R*,
T)and P(RT*, T). One can think of this algorithm as separately apply-
ing to calculate P(R*, T) and P(RT™®, T in the ratio P(R*, T)/P(RT*,
T). However, our program calculates them simultaneously as a compu-
tational efficiency. This program takes a set of retrieval times that de-
fines an R* and a recall time T It calculates an estimate of this ratio
that is an estimate of P(A | H,) at time T. This program is implemented
in Cand can be obtained by writing to the authors.

Computation of P(R*,T)

Before describing the algorithm, we need to derive a critical equation
that the algorithm uses. This equation is going to give us P(R*, T) condi-
tionalonasetofparamcters.andthmourulgorithmisgoingtoint&
grate this over the possible values of the parameters.

Our augmented Burrell model stipulates that retrieval for a specific
item is a nonhomogeneous Poisson process with parameters radr,n,
- «+» Im, Where X is the initial desirability of the item, d is the item’s
deeuymte,andumer;aretimwhenthcitemhasundugonercvivals.
Because items get introduced at full desirability, we can for convenience
assume a revival at time 0 and define r, = 0. By convention, r, < r,,, for
alli.

The intensity of the retrieval process is a function:

Kt|\d,n,n,...,00) = e "), (A1)

where r' = max{r;:r; < t}—that is, ' is the most recent revival before r.
The expected number of uses before time 7; given the desirability, decay,
and revivals is
r
A!(Tlh,d.n.rz,....r.,)="; I(xlh,d,r.,r;,...,r,,)dx, (Az)
which has the solution:

Adem
yrm) =5 T (1 = e V), (A3)
Jj=0

MT|\d ...

wherero=0,and rpp,, = T,
Given Equations A2 and A3, it is possible to calculate the probability
of a retrieval history R* occurring between time 0 and T°

M, TRl 6.5

- [l-.[ I(Rlllﬁd‘ Fy,ra,...
=]
where R* = (R,, R, ..., R,). Each term in the product reflects the
probability that a retrieval will occur at time R,. P(R*, T) is calculated
by integrating the preceding expression over the distributions of the re-
trieval intensity parameters \, d, r,, 73, .. ., I,,. We can integrate over A
using Equation 6, which gives the distribution of \:

P(R",Tld,r.,rg,...,r,..)

» Tm)]eMTIAL, Trv-Ya) ()

= [ PR TN G s dan, 49)
which has the solution:

A .
PR, Td, 11y, 1) = SO k), (a)
. i=1

where R; = max (r;| r; < R,), and where

D=b+23 1~ e,
J=0
Our expression P(R*, T'|d, r;, ra, ... ., r,,) is still dependent on the
decay rate and revival history. What we would like to do is to integrate
over decay rate and revival history, but such an explicit integration is
impossible given the complexity of the formula. Furthermore, standard
numeric integration techniques fail to apply. So we use Monte Carlo
integration. This involves randomly choosing d, r,, P2, .., Imfrom the
appropriate distributions, computing P(R*, T|r,, 1, ..., r), SUM-

ming the result into a counter S, and repeating the procedure. At the
end of N iterations, the value of the integral is approximated by S/N.
The steps that occur in each iteration follow:

1. Randomly generate d. This is done by selecting a random variable
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X from a uniform distribution between 0 and 1. Because decays are
expor.entially distributed, we can transform X into a random variable
d distributed exponentially by the formula d = —in(X)/a.

2. Randomly generate a set of revivals r* = (r,, ry, . . ., 7,,). We can
use the fact that interrevival times are exponentially distributed. The
revival set is generated by the following algorithm:

Tot«0

R*<()

L1: Generate X as a uniform random varible between 0 and 1
Tot<Tot — In(X)/B

if (Tot > T) stop

R*«R* U(Tot)

gotoL1.

3. Calculate P(R*, T'|d, r,, r;, « « + 4 I'm) according to Equation A6.

Free-Recall Algorithm
The free-recall algorithm works with the following parameters:

a, B, b, v—necessary for need probability computation
N—number of items being presented
t—the interpresentation time
t'—the rehearsal opportunity time step
p,—the probability of rehearsal when in buffer
z—Dbuffer size
6—the recall threshhold
s—the variance of the recall noise function

We run a number of simulated free-recall subjects and then average
the results. Each run of a simulated subject involves (a) generating a
rehearsal pattern, (b) calculating a need probability for each item, and
(c) calculating a probability of recall for each item. We describe these
three steps in order.

Generation of Rehearsal Pattern

Attime 1 X k (k= 0to N— 1), item k + | is introduced into the buffer.
lfthebuﬂ'ahasanemptyslot,theitemisphcedlhﬂ'e.mhawise.a
dotispiclmdnndmniymdthencwitemisplawdﬂne,bumpingthc
item that was in that slot previously. Hence, the contents of the buffer
change every ¢ time units. Every ¢’ time units, the contents of the buffer
are checked and every item in it has a probability p, of being rehearsed.
This generates a set R* of rehearsal times.

Calculation of Need Probabilities

The sets R* of rehearsal times generated in the previous step can be
treated as sets of retrieval times measured from the time of initial pre-
sentation of the item. The other quantity required to calculate need
probability is the time of recall, which is also measured from the initial
presentation of the item. So, given an item presented at Time 18, re-
hearsed at Times 20 and 24, and tested at Time 60, we would calculate
P(RT*, T)/P(R*, T), where R* = (2, 6), RT® = (2, 6, 42), and T = 42.
Wealculawdthisratiobymeprogmmdwcribedinthemvimsw-
tion of the Appendix.

Calculation of Recall Probability

Given a need probability p, define the need odds O = p/(1 — p) and
log need odds v = /n(0). According to the noisy threshhold model dis-
cussed in the Analysis of Probability of Recall section, an item with
need odds v has the following probability of recall:

Po(recall) = T+ e "

(A7)

These probabilities of recall are averaged over iterations of the algo-
rithm to give serial-position curves as in Figure 8.
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