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Abstract 

Traditionally, computer applications to game 
domains have taken a brute-force approach, 
relying on sheer computational power to 
overcome the complexity of the domain.  
Although many of these programs have been 
quite successful, it is interesting to note that 
humans can still perform extremely well against 
them.  Thus we are compelled to ask, if no 
human could match the computational power of 
most of these programs, are there methods for 
learning and performance in game domains that 
more closely reflect human cognition?  In 
response to this question, this paper attempts to 
model how humans learn and play games by 
developing a Backgammon-playing algorithm 
based on cognition.  Analysis of this algorithm 
shows that it is efficient and commensurate with 
human abilities suggesting that it provides a 
cognitively plausible theory of learning in 
Backgammon. 

1.  Introduction 

Since the advent of scientific inquiry into artificial 
intelligence, programming a computer to play board 
games has been one of the most frequent applications of 
AI research.  Board game domains such as Chess, 
Checkers, and Backgammon have been popular since they 
have closed state spaces with well-defined rules.  Yet, 
despite the relative simplicity of these games, they are not 
trivial since exhaustive search of the state space is 
difficult, if not impossible. Thus, artificial intelligence 
research in game domains has primarily concerned itself 
with explaining how a computer can play a game 
equivalently to or better than a human given the 
intractability of an optimal solution. 

1.1  Background   

In an effort to develop computer-based game playing 
opponents, many programs have achieved amazing feats – 

in many cases matching or surpassing the level of play 
demonstrated by a human grandmaster.  Hi-Tech 
(Berliner, 1986) and Deep Blue (Hsu, 1990) have played 
at the master and grandmaster level respectively in the 
game of Chess.  Chinook (Russell & Norvig, 1995) has 
achieved world-champion status in Checkers.  And 
various Backgammon-playing programs have performed 
well at the world-class level, most notably TD-Gammon 
(Tesauro, 1992) which has played on par with the world’s 
highest-ranking players.  

All of these programs provide good theories of learning or 
search in complex game domains but they require massive 
amounts of computation to perform at their respective 
levels of play. For example, Deep Blue can search to a 
depth of 14 levels, examining millions of board states by 
virtue of its parallel custom-designed hardware.  And the 
best version of TD-Gammon requires 1,500,000 training 
games and a three-ply search to achieve its optimal level 
of performance (Sutton & Barto, 1998). Although these 
programs have achieved amazing performance levels, 
Noam Chomsky (1992) has criticized this aspect of game-
playing research as being “about as interesting as the fact 
that a bulldozer can lift more than some weight lifter.” 

1.2  Research Goals 

If humans cannot reasonably approach the search or 
training requirements of these programs1 yet still manage 
to perform comparably, we are compelled to conclude 
that humans must use more efficient methods for learning 
and performance in these domains.  This is not to say that 
current programs do not map onto human approaches to 
game playing but rather that they make demands as a 
whole that are beyond reasonable cognitive limitations. 

Consequently, in modeling human game playing, it is our 
goal to find a game domain in which we can address these 

————— 
1 It should be obvious that it is impossible for any human to 

search a million chessboard states or even a fraction of that in a 
turn lasting only a few minutes.  With respect to training in 
Backgammon, a beginner playing a brisk game every 15 minutes 
for 8 hours a day could only play 1,000 games in a month. 



 

 

cognitive limitations and determine how they influence 
algorithm development.  With this purpose in mind, the 
game domain of Backgammon was chosen for a number 
of reasons:  First, there are many possible moves for each 
turn making the game tree extremely large and 
implausible for exhaustive search.  This is only 
compounded by the fact that the Backgammon domain is 
stochastic, relying on dice rolls to decide the set of 
possible moves.  Thus, Backgammon is a game where 
recognition of board states and their relative utilities is a 
useful approach to move selection making it a good 
candidate for inductive learning methods that have been 
modeled quite extensively in human cognition. 

With the domain defined, we must now ask what 
algorithmic constraints are imposed by cognition.  In 
reference to search, if we accept that the minimum time 
required for deliberate human thought is 100 ms (Newell, 
1990), the maximum number of states that one could 
search in a turn lasting one minute is on the order of a few 
hundred.  And if we accept our overestimate that at most a 
human could play 1,000 games of Backgammon in a 
month, we would expect a human to achieve a reasonable 
performance level within a few months since this training 
is on par with only the most serious players.  Thus, the 
goals of our research are to minimize search to a few 
hundred states on any turn and yet achieve a reasonable 
performance level in only a few thousand games.  

2.  Implementation 

Before we build a Backgammon player it would probably 
help to have a brief overview of the domain.  Then we can 
proceed onto the influence of cognitive models on the 
player design, the representational abstraction used by the 
algorithm, the equations used for generalization and 
learning, and finally the overall architecture. 

2.1  Backgammon Overview 

Since the reader may be a little unclear on the 
terminology and setup of the game of Backgammon, an 

example board is displayed in figure 1.  In this board there 
are 24 labeled points consisting of an initial configuration 
of 15 checkers for each player.  The players must move in 
opposite directions (in this case the black player moving 
by increasing point number and the white player moving 
by decreasing point number).  For each turn, the player 
rolls two dice and is allowed to move a checker the 
distance of each die roll, or in the case that doubles are 
rolled, two checkers the distance of each die roll.  If a 
player exposes one checker alone on a point, it may be 
attacked by an opponent and moved to the bar awaiting 
reentry into the board.  A group of two or more checkers 
of the same color on a point constitutes a block and the 
opponent cannot land on this point.  Thus, building 
adjacent points with two or more checkers can be a good 
strategy, blocking the opponent’s forward progress.  Once 
all of a player's checkers have been moved to any of the 
six points in their respective home board (i.e. the final six 
points in the direction the player is moving), the player 
can begin to bear checkers off of the board based on the 
die rolls.  The first player to successfully bear all checkers 
off of the board wins the game. 

2.2  Player Design 

Since our goal is to model human learning and 
performance, we will use the ACT-R theory of cognition 
(Anderson & Lebiere, 1998) to guide our algorithm 
development.  And thus, in the spirit of TD-Gammon, 
from here out we will refer to our Backgammon-playing 
algorithm as ACT-R-Gammon. 

2.2.1  HINTS FROM HUMAN COGNITION 

ACT-R is an empirically derived cognitive architecture 
intended to model the data from a wide range of cognitive 
science experiments.  Although we will not be building 
our Backgammon player directly in the ACT-R 
architecture for reasons of programming efficiency,  
ACT-R is based on many empirically derived 
assumptions and mechanisms that should be useful in 
modeling our player on human cognition.2 

One of the main tenets of ACT-R is that human cognition 
reflects the probabilistic nature of the environment and 
furthermore that this probabilistic behavior is Bayesian in 
nature.  Consequently, this tenet suggests that we should 
focus on Bayesian inference methods as a means for 
inductive learning from experience. 

Another tenet of ACT-R is that declarative memory 
retrieval is only approximate and places a preference on 
retrieving the item that most closely matches what is 
desired.  This characteristic of cognition is useful for 
instance when trying to match a face with a name; the 
face may change over time but we are still able to make 
the correct association.  This ability to perform 

————— 
2 Since we will only be using a subset of the ACT-R theory 

the complete system is fully contained within this paper.   Figure 1. Backgammon initial board configuration 



 

 

approximate matching in ACT-R is known as partial 
matching. 

One of the more recent research inquiries in ACT-R along 
the theme of partial matching involves the notion of 
generalization.  What happens when we want to 
determine the utility of a certain move in Backgammon 
but do not have any direct experience with that move?  
How do we generalize based on one or more similar 
example moves that do not exactly match?  One logical 
answer to this question involves the concept of blending.  
In this concept, example instances are combined based on 
their relative similarity to the target.  How exactly relative 
similarity is measured is somewhat ambiguous, but in 
ACT-R one could easily use the partial match value to 
determine similarity since this is already an inherent 
feature of the architecture. 

Consequently, it seems the ACT-R theory of cognition 
would suggest that a cognitively plausible model of 
learning in Backgammon should include some form of 
Bayesian inference and a generalization mechanism based 
on partial matching. 

2.2.2  REPRESENTATION AND ABSTRACTION 

Before we define our learning and generalization 
equations, it is important to define a representational 
abstraction that reduces the hypothesis space while 
introducing as little inductive bias as possible.  The fact 
that humans use abstractions in their representation of the 
environment should come as no surprise to a cognitive 
scientist or artificial intelligence researcher but the 
question of how this representation is formed is a little 
more enigmatic. However, automated feature learning is 
an entire field to itself and for the purposes of this 
research we will assume that ACT-R-Gammon has 
formed its representational abstraction prior to learning. 

In defining the representation for Backgammon, it is 
important to include only features that are relevant to the 
game.  For example in blocking an opponent, it is 
important to know how many of the opponent’s checkers 
lie ahead of the block but when attacking an opponent, 
knowing how many checkers lie ahead of the attack is not 
necessarily relevant.  Consequently we have defined three 
important features in the game of Backgammon and for 
each feature a number of relevant subfeatures: 

1) Attack  <Point> 
2) Expose <Point, Opponents Ahead> 
3) Block   <Point, Opponents Ahead, Size of Block> 

The angle-bracketed subfeatures of each feature represent 
relevant elements of that feature.  Thus, an attack feature 
encodes the point of the Backgammon board on which the 
attack occurs.  An expose feature encodes the point that a 
checker is exposed as well as the number of opponents 
lying ahead of the point that could potentially attack the 
exposed checker.  And a block encodes the final point of a 
set of adjacent points with two or more checkers, the 
number of opponents lying ahead of the block, and the 

size of the block in terms of the number of adjacent points 
that the block occupies.  Thus one could imagine the 
following two feature sets resulting from competing 
moves on a given turn:  

Move Option 1: 
1. Block<7,7,1> 
2. Block<12,7,4> 
3. Attack<12>  
4. Attack<14> 
5. Expose<14,5> 

Move Option 2: 
1. Block<7,7,1> 
2. Block<11,7,3> 
3. Attack<12> 
4. Expose<12,6> 
5. Block<13,6,2> 

 

Consequently, ACT-R-Gammon’s Bayesian learning task 
could be to infer the likelihood that each of the features 
resulting from a move would be present in a winning 
game.  Then ACT-R-Gammon could simply combine 
these likelihoods to rate each move and choose the one of 
greatest advantage. 

2.2.3  MATCHING AND GENERALIZATION EQUATIONS 

Given these assumptions, the main inductive component 
of ACT-R-Gammon should learn a set of features and 
their likelihood of occurring given a win or loss.  To do 
this we can endow ACT-R-Gammon with a declarative 
memory of previously experienced features including the 
number of wins and losses in which each feature was 
involved.  Then, if we endow ACT-R-Gammon with a 
method for generalization, we can derive the estimated 
likelihood for any feature and combine these estimates to 
derive the overall likelihood of a feature set resulting 
from a move.   

However, to store every encountered feature would place 
too much of a computational demand on the system and 
likely defeat any psychological plausibility. Thus, we will 
selectively store features only if there are no similar 
features currently in memory.  If we successfully query 
the declarative memory store for a feature within some 
similarity threshold, we will use that feature for the 
likelihood estimate and update it with experience.  If no 
feature is found within the similarity threshold, we will 
store that feature (i.e. chunk the feature) and use that in 
the future.  Thus, the feature space for ACT-R-Gammon 
becomes a fairly uniformly distributed set of instances 
with its boundaries defined by experience. 

Given a feature representation and a method for 
selectively storing features, we now need to define the 
equations for generalization from this feature store.  The 
generalization or partial matching (PM) equation as it is 
known in ACT-R is quite simple and is based on 
empirical research that suggests that humans perform 
matching in much the same way.  Note that the following 
match function is defined in terms of the mismatch 
between features, consequently, as the mismatch between 
two features increases, the partial match penalty will 
likewise increase. 
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A and B in Equation 1 are features (e.g. attack, expose, or 
block) and Ai and Bi are subfeatures of their respective 
features (e.g. point, opponents, size).  The Mismatch 
equation mentioned here is quite simple and varies 
linearly from 0.0 for a perfect match to 1.0 for the 
maximum mismatch between feature slots Ai and Bi.  One 
addition here to the general ACT-R equation is the 
presence of the 1/|A| factor in front of the mismatch 
summation.  This is included to normalize the minimum 
and maximum penalties to values between zero and one 
thus allowing the PMPenalty to be interpreted as a 
percentage mismatch.  This seems to make sense in 
general since we would rate a match between two features 
each having a single similar and single differing 
component as poor, while we would rate a match between 
two features each having 99 similar components and a 
single differing component as much better. 

Thus, given the PMPenalty equation, we can simply set as 
an ACT-R-Gammon parameter a threshold for the 
maximum penalty to allow when considering a match.  
The higher this threshold, the more generalization there is 
and consequently the less specialization. 

If each feature has a likelihood or more generally a local 
evaluation of its utility function U(), we can generalize to 
the utility value of a target feature based on a number of 
similar instances in a variety of ways.  One method which 
is a recent proposal in ACT-R is that of blending 
(Lebiere, 1999), also referred to in machine learning 
terms as the weighted nearest neighbor algorithm 
(Mitchell, 1997).  This equation is shown below: 

 
 

      (Eq. 2) 
 
 
 
Here, A corresponds to the target feature and Bi 
corresponds to a matching feature in the feature space 
(not a slot of feature B as in Equation 1).  wi corresponds 
to (1 - PMPenalty(A,Bi)) making it essentially equivalent 
to the distance in terms of match penalty between the 
target feature A and an arbitrary feature Bi chunked during 
ACT-R-Gammon’s experience.   

Thus Equations 1 and 2 allow ACT-R-Gammon to match 
features from previous experience and generalize to the 
utility of arbitrary features. 

2.2.4  LEARNING EQUATIONS 

Based on the ACT-R assumptions about human cognition, 
it seems logical to use Bayesian odds likelihood estimates 
(i.e. ratio of feature probability given a win to the feature 
probability given a loss) for feature utility.  In this way, 
the odds likelihood of each feature resulting from a move 
can be multiplied under a naïve Bayes assumption to yield 
an overall odds likelihood of the move.  This approach 
has some useful characteristics that have been found to be 

empirically quite useful: If a feature utility is neutral in 
predicting the game outcome (i.e. equal likelihood of 
leading to a win or loss), the utility works out to be 1.0.  
When multiplying all of the features resulting from a 
move to yield the utility of the move, such a neutral 
feature will have no effect on the outcome.  Furthermore, 
if a feature utility is either highly likely to lead to a 
success or failure then its odds are either <<1 or >>1 
resulting in a feature product that is largely skewed by 
this single extreme feature.  This sort of estimate seems to 
be in line with human reasoning since we are likely to 
evaluate a possible move as good or bad if it has one 
outstanding feature that we recognize from previous 
experience. 

Thus, given the need for a Bayesian style of inductive 
inference, all we need to do is derive the feature odds 
likelihood equations.  For any feature f, we can directly 
measure the frequencies F(W & f) and F(L & f), where W 
and L respectively denote win and loss.  We can also 
measure the number of total wins and losses and thus 
determine F(W) and F(L).  Thus, all we need for each 
feature is to determine the odds likelihood of its 
occurrence in a win vs. a loss from the above frequency 
measurements.  The derivation for this is shown below. 

From the basic Bayes rule equation we can easily derive 
Equation 3 which represents the odds of a win vs. a loss 
given that a feature is present: 

     
(Eq. 3) 

  
 
Rewriting Equation 3 and substituting frequency counts 
we get the odds likelihood of a feature: 

  
 (Eq. 4) 

 

This is the individual odds likelihood for a given single 
feature f, but we need the overall odds of a move 
composed of a set of features, F.  Thus, using a naïve 
Bayes assumption, we can derive the following 
calculation for the overall move utility (odds likelihood). 

 
 (Eq. 5) 

 

Consequently, if we update the feature set that ACT-R has 
chunked during its experience with the number of wins 
and losses that each feature accumulates, we can easily 
determine the odds likelihood of a single feature in 
Equation 4.  From this we can derive the overall odds 
likelihood of a move from Equation 5.   

Given the odds likelihood measure of move utility, all that 
ACT-R-Gammon has to do when faced with a move is to 
determine the utility of each feature set resulting from a 
move and select the best one.  Since ACT-R makes the 
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assumption that human cognition is non-deterministic and 
since this is in fact advantageous for promoting 
exploration of the state space, ACT-R-Gammon 
probabilistically selects its moves on each turn according 
to the Boltzmann soft-max rule (using temperature t as a 
noise parameter).  In general, it is a good idea to use 
logarithmic odds since this will prevent gross 
overestimates of feature utility.  However, the soft-max 
rule uses exponential weighting; Thus, the exponential 
and logarithm cancel each other (i.e. elog(Odds()) = Odds()) 
resulting in the following equation that denotes the 
probability that the set of features Fi resulting from a 
move will be selected: 

 
(Eq. 6) 

  
 

2.2.5  FINAL ARCHITECTURE 

Therefore, given the algorithm described and the 
equations derived above, we arrive at the following basic 
decision cycle for the ACT-R player: 
 
For each turn 
{ 

For each move 
{ 
 *Match each feature for the move and get  

 its odds estimate (Using partial match  
 values for weighted nearest neighbor  
 weighting and Equations 1,2,4) 

  *If there is no match for a feature then 
 chunk a new feature with neutral odds 

  *Accumulate product of feature odds (Using  
 Equation 5) to determine move utility 

} 
*Stochastically select best move (Using  
 Equation 6) 

} 
 
When player attacked 
{ 
 *Penalize the expose feature responsible for  
    making a checker vulnerable to attack by 
  incrementing it with a partial loss 
} 
 
At end of game 
{ 
 *Update all features with win or loss based  

 on outcome of game (When updating, update  
 the feature store by the degree to which it 
 partial matched the actual move) 

} 

 

One must note here that learning occurs on two distinct 
levels.  Most obviously, when a game is won or lost, all 
features involved in that game are likewise updated with 
the outcome.  But on a more incremental level, expose 
features are also updated with a partial loss if the checker 
made vulnerable by the expose is attacked.  This may 
seem contrived and intended to artificially force the 
player to avoid exposing its checkers, but it is interesting 

to note that if a certain expose consistently leads to a win 
(e.g. in a bait tactic), the long-term win accumulation will 
overshadow the short-term partial loss accumulation. 

It is also important to point out that this decision cycle is 
within the cognitive constraints outlined earlier.  On any 
turn, the number of possible moves usually ranges from 
20 moves for a typical throw of the dice to a maximum of 
a few hundred moves for a doubles roll.  Thus, since 
ACT-R-Gammon only examines current moves and uses 
no look ahead, it never has to evaluate over a few hundred 
moves in a turn when making its decision – well within 
the first cognitive search constraint outlined earlier.   

Overall, given its basis on a cognitive architecture and its 
operation within cognitive constraints, the ACT-R-
Gammon architecture should approximate the decision 
process which humans use when playing Backgammon.  
It uses an abstraction that makes the search space more 
tractable; it relies on probabilistic estimates reflective of 
human reasoning to select future moves; and it has as its 
sole trainer the results of a game and knowledge of its 
checkers being attacked.  Most of all however, the 
described algorithm does not place much demand on the 
learning system; Overall, a trained system requires fewer 
than 50 chunked features from which to generalize all of 
its feature likelihood estimates. 

3.  Results 

Thus, with the architecture for the system defined, we 
now move onto the training and testing of ACT-R-
Gammon.  A number of variants of ACT-R-Gammon 
were tried, but the previously described algorithm using 
Bayesian odds likelihood feature utility estimates and 
weighted nearest neighbor blending for generalization 
performed best overall.  Training results against Gerald 
Tesauro's single layer neural network opponent pubeval 
are described below. 

3.1  Training Method 

ACT-R-Gammon was trained for 1000 games against the 
pubeval opponent starting with no initial experience.3    
The average winning percentage vs. number of games 
played is displayed in figure 2.  The best training run was 
saved and played for 5,000 games against pubeval with 
learning turned off; the result of this evaluation run along 
with two other machine learning approaches is displayed 
in table 1. 

3.2  Training Results 

We see in figure 2 that the average learning curve for the 
ACT-R player shows quick initial learning after which it 

————— 
3 Since training is stochastic, the training runs described 

below were based on the average of 20 separate training trials 
except where otherwise noted. 
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asymptotes to a fairly stable level.  This result is well 
within our research goal of achieving significant learning 
in the first few thousand games and it is fascinating to see 
just how quickly ACT-R-Gammon actually learns.  In 20 
games it learns to over 50% of its asymptotic level and in 
100 games it is within 15% of its asymptotic level.   

3.3  Asymptotic Performance Comparison 

One obvious question in response to figure 2 is how well 
ACT-R-Gammon is performing in comparison to other 
approaches.  It has achieved quick initial learning, but is 
its performance against pubeval notable? 

In comparison, Galperin and Viola (1998) give the 
asymptotic performance of playing a reinforcement 
learning trained neural net vs. pubeval.  This is a quite 
computationally demanding training method based on the 
TD(λ) algorithm used by TD-Gammon and requires the 
simulation of over 1,000,000 games.  In another approach, 
Pollack, Blair, and Land (1996) provide the asymptotic 
results of their genetic algorithm-trained neural net 
(named HC-Gammon) vs. pubeval.  This method is also 
computationally demanding as well, requiring the 
coevolution of two neural net driven players over 100,000 
games.  Both groups claim their methods have produced 
respectable players and Tesauro is quoted in the latter 
paper as having stated that pubeval is “quite a strong 
machine player”.  A comparison of asymptotic 
performance rates vs. pubeval is shown in table 1. 
 

Table 1. Performance results for three Backgammon players 

Backgammon Player Winning pct. vs. pubeval 

TD-Trained Neural Net 59.25% ± 0.15% 

ACT-R-Gammon 45.23% ± 0.71% 

HC-Gammon 40.00% ± 3.46% 

In light of this information, ACT-R-Gammon’s 
performance seems impressive since it only had 1,000 
training games as opposed to the TD-trained neural 
network with over 1,000,000 training games and HC-
Gammon with 100,000 training games.  Consequently, we 
have achieved our goal of obtaining reasonable 
performance within a few thousand training games thus 
satisfying our second cognitive constraint. 

3.4  Learning Analysis 

Now that we know that ACT-R-Gammon has achieved 
our original goals within the specified cognitive 
constraints, it is interesting to see what it has learned. 

3.4.1  ATTACKING 

Figure 3 shows the learned odds likelihood that an attack 
feature will be present in a winning game. The initial 
striking characteristic of this curve is its non-uniformity, 
but this turns out to likely represent common sense when 
it comes to attacking.  That is, for the lower point 
positions of the attack odds curve, attacking an opponent 
early on in the board can be dangerous since it often 
involves exposing a checker.  Since this can allow the 
opponent to build a blockade while the checker is stuck 
on the bar, it seems that the low odds of an early attack 
are probably related to the overall game state that leads to 
such a feature.  However, after point 6, we see a steady 
rise in the odds of an attack until it peaks at point 13.  
This likely represents the fact that attacks can be carried 
out more cautiously as the position increases since enough 
men should be available at these points to avoid a 
potentially costly expose.  The overall attack odds seem to 
slightly decrease from the middle of the board through the 
player's home board.  This could be the result of one 
additional factor – as the point of attack increases, the 
opponent’s cost of being attacked decreases since fewer 
dice rolls have been invested in getting the opponent to 
that point.   
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3.4.2  EXPOSING 

Before we look at the learned odds for the expose feature, 
it is interesting to look at the experience distribution of 
exposing since this demonstrates a few notable 
characteristics of ACT-R-Gammon’s learning algorithm.  
Figure 4 shows a contour plot of the experience received 
for the expose feature vs. the point that the expose 
occurred on (x-axis) and the number of opponents that lie 
ahead of the expose (y-axis).  It is interesting to note that 
no features were chunked where no experience was 
gained (upper right quadrant of figures 4 & 5).  As it turns 
out, only half of the feature space is ever visited making 
ACT-R-Gammon fairly efficient in its method of feature 
learning.  Since we would expect more exposes to occur 
during the endgame we obviously see this trend in the 
number of experiences of an expose feature toward the 
higher points.  However, this experience distribution 
seems to be only slightly correlated with the average 
learned odds for exposing. Thus, although features with 
higher odds are more likely to be selected, the experience 
distribution does not seem to skew the odds estimates – 
this is a nice result of using Bayesian odds inference. 

In terms of the learned odds value of the expose feature 
shown in figure 5, ACT-R-Gammon never learns that an 
expose is advantageous (i.e. odds > 1), but it does have 
two distinct peaks where an expose seems to be less 
detrimental than in other positions.  The first of these 
positions is early on in the board (i.e. low point position 
with many opponents ahead).  This makes sense in 
retrospect since losing a man early in the board does not 
sacrifice a great amount of work.  However, it does take 
the chance of getting blockaded by the opponent, which 
would explain why the odds are still in favor of losing.  
The other place that the odds seem to be least detrimental 
is around point 13 with 2-4 opponents ahead of the 
exposure.  This may indicate one inadequacy in the 
expose representation in that it takes into account the 

number of opponents ahead of the expose but not their 
distances.  It is likely the case that exposing under these 
conditions is least detrimental since a blockade exists that 
prevents the opponent from attacking these positions.  

3.4.3  BLOCKING 

Since the block feature has three subfeatures (i.e. point, 
opponents ahead, size of block), it makes for a difficult 
feature space to graph.  Consequently, a selected listing of 
learned block features and their odds is shown in Table 2.   
 

Table 2. Block odds learned by ACT-R-Gammon  (1 run) 

Point Opponents Size Odds 

1 10 1 0.17 

4 5 1 0.13 

7 9 1 0.63 

12 0 1 0.63 

12 7 1 1.79 

16 5 2 2.48 

20 3 2 2.54 

21 5 1 6.94 

22 4 3 3.86 

24 1 5 1.22 

24 3 4 3.79 

 
Although one cannot easily get a good idea of the overall 
topology of the feature space from this table, there are a 
few important trends that represent ACT-R-Gammon’s 
strategy.  If one looks at any odds over a threshold of 1.5, 
it is obvious that these usually correspond to large 

Figure 4. Frequency distribution of Expose Feature (5 run avg) Figure 5. Expose odds learned by ACT-R-Gammon (5 run avg) 
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adjacent blocks on the high points.  As discussed earlier, 
this is an excellent strategy since it will generally cause 
ACT-R-Gammon to seek out positions in which it can 
blockade the opponent near the beginning of its board 
thus preventing it from entering into the endgame 
condition. Also generally, the only block features to show 
less than neutral odds are blocks that occur early on in the 
board or with few opponents ahead.  In this case the block 
can either lead to potentially harmful board positions or it 
serves no purpose since the player cannot be attacked. 

4.  Conclusion 

With the results now collected and analyzed, it is 
important to reflect on our work to determine which 
issues to further explore in the future. 

4.1  Achievements 

We have achieved our initial goal of cognitively plausible 
learning.  That is, we have based our learning algorithm 
on the principles of a cognitive architecture used to model 
hundreds of psychological experiments.  And we have 
analyzed the time scale of human cognition to constrain 
the amount of search and training to that which is 
psychologically plausible.  Within these constraints we 
have achieved a reasonable level of performance, 
something we would rationally expect a human to 
accomplish in only a few thousand games.  This shows 
that cognitively principled architectures are not limited to 
modeling psychology experiments – they can adequately 
scale to large problems in the domain of cognition. 

Although the main goal of this project was to achieve a 
Backgammon player that was cognitively plausible, we 
can also reflect on how it can inform more performance-
minded approaches.  Probably the most important element 
of ACT-R-Gammon’s efficiency was its use of feature 
abstractions.  These abstractions greatly simplified the 
task of Bayesian inference and are one reason why it was 
able to beat HC-Gammon’s performance level in 1/100th 
of the training time.  The other reason was that ACT-R-
Gammon could learn within each game from attack 
penalties as well as from each win or loss.  These results 
suggest that feature abstraction and intermediate rewards 
could be integrated into current approaches to help them 
more quickly acquire their asymptotic performance level. 

4.2  Further Exploration 

Consequently, ACT-R-Gammon has demonstrated a lot of 
interesting results but there are many improvements that 
could be made to increase its psychological plausibility 
and performance.  A rule inference system could be added 
to deal with move selection pruning and the nuances that 
the feature generalization does not catch.  The feature 
chunking mechanism could chunk probabilistically to get 
better estimates of odds in heavily explored areas of the 
feature space.  And we have not even attempted to explain 

how the feature representation is formed – this alone 
would be an interesting project. 

But even with the current, in effect simple, ACT-R-
Gammon player we have achieved our main initial goal.  
Using human cognition as our constraint and ACT-R as 
our theory, we have built a psychologically plausible 
Backgammon player that sharply contrasts the traditional 
brute force approach.   
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