
In Proceedings of the Seventeenth International Conference on Machine Learning (ICML-2000), pages 823-830,
Stanford, California, July 2000

Achieving Efficient and Cognitively Plausible Learning in Backgammon

Scott Sanner SANNER@ANDREW.CMU.EDU
John R. Anderson JA0S@ANDREW.CMU.EDU
Christian Lebiere CL@ANDREW.CMU.EDU
Marsha Lovett LOVETT@ANDREW.CMU.EDU
Psychology Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 USA

Abstract

Traditionally, computer applications to game
domains have taken a brute-force approach,
relying on sheer computational power to
overcome the complexity of the domain.
Although many of these programs have been
quite successful, it is interesting to note that
humans can still perform extremely well against
them. Thus we are compelled to ask, if no
human could match the computational power of
most of these programs, are there methods for
learning and performance in game domains that
more closely reflect human cognition? In
response to this question, this paper attempts to
model how humans learn and play games by
developing a Backgammon-playing algorithm
based on cognition. Analysis of this algorithm
shows that it is efficient and commensurate with
human abilities suggesting that it provides a
cognitively plausible theory of learning in
Backgammon.

1. Introduction

Since the advent of scientific inquiry into artificial
intelligence, programming a computer to play board
games has been one of the most frequent applications of
AI research. Board game domains such as Chess,
Checkers, and Backgammon have been popular since they
have closed state spaces with well-defined rules. Yet,
despite the relative simplicity of these games, they are not
trivial since exhaustive search of the state space is
difficult, if not impossible. Thus, artificial intelligence
research in game domains has primarily concerned itself
with explaining how a computer can play a game
equivalently to or better than a human given the
intractability of an optimal solution.

1.1 Background

In an effort to develop computer-based game playing
opponents, many programs have achieved amazing feats –

in many cases matching or surpassing the level of play
demonstrated by a human grandmaster. Hi-Tech
(Berliner, 1986) and Deep Blue (Hsu, 1990) have played
at the master and grandmaster level respectively in the
game of Chess. Chinook (Russell & Norvig, 1995) has
achieved world-champion status in Checkers. And
various Backgammon-playing programs have performed
well at the world-class level, most notably TD-Gammon
(Tesauro, 1992) which has played on par with the world’s
highest-ranking players.

All of these programs provide good theories of learning or
search in complex game domains but they require massive
amounts of computation to perform at their respective
levels of play. For example, Deep Blue can search to a
depth of 14 levels, examining millions of board states by
virtue of its parallel custom-designed hardware. And the
best version of TD-Gammon requires 1,500,000 training
games and a three-ply search to achieve its optimal level
of performance (Sutton & Barto, 1998). Although these
programs have achieved amazing performance levels,
Noam Chomsky (1992) has criticized this aspect of game-
playing research as being “about as interesting as the fact
that a bulldozer can lift more than some weight lifter.”

1.2 Research Goals

If humans cannot reasonably approach the search or
training requirements of these programs1 yet still manage
to perform comparably, we are compelled to conclude
that humans must use more efficient methods for learning
and performance in these domains. This is not to say that
current programs do not map onto human approaches to
game playing but rather that they make demands as a
whole that are beyond reasonable cognitive limitations.

Consequently, in modeling human game playing, it is our
goal to find a game domain in which we can address these

—————
1 It should be obvious that it is impossible for any human to

search a million chessboard states or even a fraction of that in a
turn lasting only a few minutes. With respect to training in
Backgammon, a beginner playing a brisk game every 15 minutes
for 8 hours a day could only play 1,000 games in a month.

cognitive limitations and determine how they influence
algorithm development. With this purpose in mind, the
game domain of Backgammon was chosen for a number
of reasons: First, there are many possible moves for each
turn making the game tree extremely large and
implausible for exhaustive search. This is only
compounded by the fact that the Backgammon domain is
stochastic, relying on dice rolls to decide the set of
possible moves. Thus, Backgammon is a game where
recognition of board states and their relative utilities is a
useful approach to move selection making it a good
candidate for inductive learning methods that have been
modeled quite extensively in human cognition.

With the domain defined, we must now ask what
algorithmic constraints are imposed by cognition. In
reference to search, if we accept that the minimum time
required for deliberate human thought is 100 ms (Newell,
1990), the maximum number of states that one could
search in a turn lasting one minute is on the order of a few
hundred. And if we accept our overestimate that at most a
human could play 1,000 games of Backgammon in a
month, we would expect a human to achieve a reasonable
performance level within a few months since this training
is on par with only the most serious players. Thus, the
goals of our research are to minimize search to a few
hundred states on any turn and yet achieve a reasonable
performance level in only a few thousand games.

2. Implementation

Before we build a Backgammon player it would probably
help to have a brief overview of the domain. Then we can
proceed onto the influence of cognitive models on the
player design, the representational abstraction used by the
algorithm, the equations used for generalization and
learning, and finally the overall architecture.

2.1 Backgammon Overview

Since the reader may be a little unclear on the
terminology and setup of the game of Backgammon, an

example board is displayed in figure 1. In this board there
are 24 labeled points consisting of an initial configuration
of 15 checkers for each player. The players must move in
opposite directions (in this case the black player moving
by increasing point number and the white player moving
by decreasing point number). For each turn, the player
rolls two dice and is allowed to move a checker the
distance of each die roll, or in the case that doubles are
rolled, two checkers the distance of each die roll. If a
player exposes one checker alone on a point, it may be
attacked by an opponent and moved to the bar awaiting
reentry into the board. A group of two or more checkers
of the same color on a point constitutes a block and the
opponent cannot land on this point. Thus, building
adjacent points with two or more checkers can be a good
strategy, blocking the opponent’s forward progress. Once
all of a player's checkers have been moved to any of the
six points in their respective home board (i.e. the final six
points in the direction the player is moving), the player
can begin to bear checkers off of the board based on the
die rolls. The first player to successfully bear all checkers
off of the board wins the game.

2.2 Player Design

Since our goal is to model human learning and
performance, we will use the ACT-R theory of cognition
(Anderson & Lebiere, 1998) to guide our algorithm
development. And thus, in the spirit of TD-Gammon,
from here out we will refer to our Backgammon-playing
algorithm as ACT-R-Gammon.

2.2.1 HINTS FROM HUMAN COGNITION

ACT-R is an empirically derived cognitive architecture
intended to model the data from a wide range of cognitive
science experiments. Although we will not be building
our Backgammon player directly in the ACT-R
architecture for reasons of programming efficiency,
ACT-R is based on many empirically derived
assumptions and mechanisms that should be useful in
modeling our player on human cognition.2

One of the main tenets of ACT-R is that human cognition
reflects the probabilistic nature of the environment and
furthermore that this probabilistic behavior is Bayesian in
nature. Consequently, this tenet suggests that we should
focus on Bayesian inference methods as a means for
inductive learning from experience.

Another tenet of ACT-R is that declarative memory
retrieval is only approximate and places a preference on
retrieving the item that most closely matches what is
desired. This characteristic of cognition is useful for
instance when trying to match a face with a name; the
face may change over time but we are still able to make
the correct association. This ability to perform

—————
2 Since we will only be using a subset of the ACT-R theory

the complete system is fully contained within this paper. Figure 1. Backgammon initial board configuration

approximate matching in ACT-R is known as partial
matching.

One of the more recent research inquiries in ACT-R along
the theme of partial matching involves the notion of
generalization. What happens when we want to
determine the utility of a certain move in Backgammon
but do not have any direct experience with that move?
How do we generalize based on one or more similar
example moves that do not exactly match? One logical
answer to this question involves the concept of blending.
In this concept, example instances are combined based on
their relative similarity to the target. How exactly relative
similarity is measured is somewhat ambiguous, but in
ACT-R one could easily use the partial match value to
determine similarity since this is already an inherent
feature of the architecture.

Consequently, it seems the ACT-R theory of cognition
would suggest that a cognitively plausible model of
learning in Backgammon should include some form of
Bayesian inference and a generalization mechanism based
on partial matching.

2.2.2 REPRESENTATION AND ABSTRACTION

Before we define our learning and generalization
equations, it is important to define a representational
abstraction that reduces the hypothesis space while
introducing as little inductive bias as possible. The fact
that humans use abstractions in their representation of the
environment should come as no surprise to a cognitive
scientist or artificial intelligence researcher but the
question of how this representation is formed is a little
more enigmatic. However, automated feature learning is
an entire field to itself and for the purposes of this
research we will assume that ACT-R-Gammon has
formed its representational abstraction prior to learning.

In defining the representation for Backgammon, it is
important to include only features that are relevant to the
game. For example in blocking an opponent, it is
important to know how many of the opponent’s checkers
lie ahead of the block but when attacking an opponent,
knowing how many checkers lie ahead of the attack is not
necessarily relevant. Consequently we have defined three
important features in the game of Backgammon and for
each feature a number of relevant subfeatures:

1) Attack <Point>
2) Expose <Point, Opponents Ahead>
3) Block <Point, Opponents Ahead, Size of Block>

The angle-bracketed subfeatures of each feature represent
relevant elements of that feature. Thus, an attack feature
encodes the point of the Backgammon board on which the
attack occurs. An expose feature encodes the point that a
checker is exposed as well as the number of opponents
lying ahead of the point that could potentially attack the
exposed checker. And a block encodes the final point of a
set of adjacent points with two or more checkers, the
number of opponents lying ahead of the block, and the

size of the block in terms of the number of adjacent points
that the block occupies. Thus one could imagine the
following two feature sets resulting from competing
moves on a given turn:

Move Option 1:
1. Block<7,7,1>
2. Block<12,7,4>
3. Attack<12>
4. Attack<14>
5. Expose<14,5>

Move Option 2:
1. Block<7,7,1>
2. Block<11,7,3>
3. Attack<12>
4. Expose<12,6>
5. Block<13,6,2>

Consequently, ACT-R-Gammon’s Bayesian learning task
could be to infer the likelihood that each of the features
resulting from a move would be present in a winning
game. Then ACT-R-Gammon could simply combine
these likelihoods to rate each move and choose the one of
greatest advantage.

2.2.3 MATCHING AND GENERALIZATION EQUATIONS

Given these assumptions, the main inductive component
of ACT-R-Gammon should learn a set of features and
their likelihood of occurring given a win or loss. To do
this we can endow ACT-R-Gammon with a declarative
memory of previously experienced features including the
number of wins and losses in which each feature was
involved. Then, if we endow ACT-R-Gammon with a
method for generalization, we can derive the estimated
likelihood for any feature and combine these estimates to
derive the overall likelihood of a feature set resulting
from a move.

However, to store every encountered feature would place
too much of a computational demand on the system and
likely defeat any psychological plausibility. Thus, we will
selectively store features only if there are no similar
features currently in memory. If we successfully query
the declarative memory store for a feature within some
similarity threshold, we will use that feature for the
likelihood estimate and update it with experience. If no
feature is found within the similarity threshold, we will
store that feature (i.e. chunk the feature) and use that in
the future. Thus, the feature space for ACT-R-Gammon
becomes a fairly uniformly distributed set of instances
with its boundaries defined by experience.

Given a feature representation and a method for
selectively storing features, we now need to define the
equations for generalization from this feature store. The
generalization or partial matching (PM) equation as it is
known in ACT-R is quite simple and is based on
empirical research that suggests that humans perform
matching in much the same way. Note that the following
match function is defined in terms of the mismatch
between features, consequently, as the mismatch between
two features increases, the partial match penalty will
likewise increase.

 (Eq. 1) ∑
≤≤

=
Ai

ii BAMismatch
A

BAPMPenalty
1

),(
1

),(

∑

∑

=

==
k

i
i

k

i
ii

w

BUw
AU

1

1

)(
)(

A and B in Equation 1 are features (e.g. attack, expose, or
block) and Ai and Bi are subfeatures of their respective
features (e.g. point, opponents, size). The Mismatch
equation mentioned here is quite simple and varies
linearly from 0.0 for a perfect match to 1.0 for the
maximum mismatch between feature slots Ai and Bi. One
addition here to the general ACT-R equation is the
presence of the 1/|A| factor in front of the mismatch
summation. This is included to normalize the minimum
and maximum penalties to values between zero and one
thus allowing the PMPenalty to be interpreted as a
percentage mismatch. This seems to make sense in
general since we would rate a match between two features
each having a single similar and single differing
component as poor, while we would rate a match between
two features each having 99 similar components and a
single differing component as much better.

Thus, given the PMPenalty equation, we can simply set as
an ACT-R-Gammon parameter a threshold for the
maximum penalty to allow when considering a match.
The higher this threshold, the more generalization there is
and consequently the less specialization.

If each feature has a likelihood or more generally a local
evaluation of its utility function U(), we can generalize to
the utility value of a target feature based on a number of
similar instances in a variety of ways. One method which
is a recent proposal in ACT-R is that of blending
(Lebiere, 1999), also referred to in machine learning
terms as the weighted nearest neighbor algorithm
(Mitchell, 1997). This equation is shown below:

 (Eq. 2)

Here, A corresponds to the target feature and Bi
corresponds to a matching feature in the feature space
(not a slot of feature B as in Equation 1). wi corresponds
to (1 - PMPenalty(A,Bi)) making it essentially equivalent
to the distance in terms of match penalty between the
target feature A and an arbitrary feature Bi chunked during
ACT-R-Gammon’s experience.

Thus Equations 1 and 2 allow ACT-R-Gammon to match
features from previous experience and generalize to the
utility of arbitrary features.

2.2.4 LEARNING EQUATIONS

Based on the ACT-R assumptions about human cognition,
it seems logical to use Bayesian odds likelihood estimates
(i.e. ratio of feature probability given a win to the feature
probability given a loss) for feature utility. In this way,
the odds likelihood of each feature resulting from a move
can be multiplied under a naïve Bayes assumption to yield
an overall odds likelihood of the move. This approach
has some useful characteristics that have been found to be

empirically quite useful: If a feature utility is neutral in
predicting the game outcome (i.e. equal likelihood of
leading to a win or loss), the utility works out to be 1.0.
When multiplying all of the features resulting from a
move to yield the utility of the move, such a neutral
feature will have no effect on the outcome. Furthermore,
if a feature utility is either highly likely to lead to a
success or failure then its odds are either <<1 or >>1
resulting in a feature product that is largely skewed by
this single extreme feature. This sort of estimate seems to
be in line with human reasoning since we are likely to
evaluate a possible move as good or bad if it has one
outstanding feature that we recognize from previous
experience.

Thus, given the need for a Bayesian style of inductive
inference, all we need to do is derive the feature odds
likelihood equations. For any feature f, we can directly
measure the frequencies F(W & f) and F(L & f), where W
and L respectively denote win and loss. We can also
measure the number of total wins and losses and thus
determine F(W) and F(L). Thus, all we need for each
feature is to determine the odds likelihood of its
occurrence in a win vs. a loss from the above frequency
measurements. The derivation for this is shown below.

From the basic Bayes rule equation we can easily derive
Equation 3 which represents the odds of a win vs. a loss
given that a feature is present:

(Eq. 3)

Rewriting Equation 3 and substituting frequency counts
we get the odds likelihood of a feature:

 (Eq. 4)

This is the individual odds likelihood for a given single
feature f, but we need the overall odds of a move
composed of a set of features, F. Thus, using a naïve
Bayes assumption, we can derive the following
calculation for the overall move utility (odds likelihood).

 (Eq. 5)

Consequently, if we update the feature set that ACT-R has
chunked during its experience with the number of wins
and losses that each feature accumulates, we can easily
determine the odds likelihood of a single feature in
Equation 4. From this we can derive the overall odds
likelihood of a move from Equation 5.

Given the odds likelihood measure of move utility, all that
ACT-R-Gammon has to do when faced with a move is to
determine the utility of each feature set resulting from a
move and select the best one. Since ACT-R makes the

)|(

)|(

)(

)(

)|(

)|(

LfP

WfP

LP

WP

fLP

fWP •=

)(

)(

)&(

)&(

)|(

)|(

WF

LF

LfF

WfF

WfP

WfP •=

∏
∈

==
Ff LfP

WfP

WLP

WFP
FOdds

)|(

)|(

)|(

)|(
)(

assumption that human cognition is non-deterministic and
since this is in fact advantageous for promoting
exploration of the state space, ACT-R-Gammon
probabilistically selects its moves on each turn according
to the Boltzmann soft-max rule (using temperature t as a
noise parameter). In general, it is a good idea to use
logarithmic odds since this will prevent gross
overestimates of feature utility. However, the soft-max
rule uses exponential weighting; Thus, the exponential
and logarithm cancel each other (i.e. elog(Odds()) = Odds())
resulting in the following equation that denotes the
probability that the set of features Fi resulting from a
move will be selected:

(Eq. 6)

2.2.5 FINAL ARCHITECTURE

Therefore, given the algorithm described and the
equations derived above, we arrive at the following basic
decision cycle for the ACT-R player:

For each turn
{

For each move
{
 *Match each feature for the move and get

 its odds estimate (Using partial match
 values for weighted nearest neighbor
 weighting and Equations 1,2,4)

 *If there is no match for a feature then
 chunk a new feature with neutral odds

 *Accumulate product of feature odds (Using
 Equation 5) to determine move utility

}
*Stochastically select best move (Using
 Equation 6)

}

When player attacked
{
 *Penalize the expose feature responsible for
 making a checker vulnerable to attack by
 incrementing it with a partial loss
}

At end of game
{
 *Update all features with win or loss based

 on outcome of game (When updating, update
 the feature store by the degree to which it
 partial matched the actual move)

}

One must note here that learning occurs on two distinct
levels. Most obviously, when a game is won or lost, all
features involved in that game are likewise updated with
the outcome. But on a more incremental level, expose
features are also updated with a partial loss if the checker
made vulnerable by the expose is attacked. This may
seem contrived and intended to artificially force the
player to avoid exposing its checkers, but it is interesting

to note that if a certain expose consistently leads to a win
(e.g. in a bait tactic), the long-term win accumulation will
overshadow the short-term partial loss accumulation.

It is also important to point out that this decision cycle is
within the cognitive constraints outlined earlier. On any
turn, the number of possible moves usually ranges from
20 moves for a typical throw of the dice to a maximum of
a few hundred moves for a doubles roll. Thus, since
ACT-R-Gammon only examines current moves and uses
no look ahead, it never has to evaluate over a few hundred
moves in a turn when making its decision – well within
the first cognitive search constraint outlined earlier.

Overall, given its basis on a cognitive architecture and its
operation within cognitive constraints, the ACT-R-
Gammon architecture should approximate the decision
process which humans use when playing Backgammon.
It uses an abstraction that makes the search space more
tractable; it relies on probabilistic estimates reflective of
human reasoning to select future moves; and it has as its
sole trainer the results of a game and knowledge of its
checkers being attacked. Most of all however, the
described algorithm does not place much demand on the
learning system; Overall, a trained system requires fewer
than 50 chunked features from which to generalize all of
its feature likelihood estimates.

3. Results

Thus, with the architecture for the system defined, we
now move onto the training and testing of ACT-R-
Gammon. A number of variants of ACT-R-Gammon
were tried, but the previously described algorithm using
Bayesian odds likelihood feature utility estimates and
weighted nearest neighbor blending for generalization
performed best overall. Training results against Gerald
Tesauro's single layer neural network opponent pubeval
are described below.

3.1 Training Method

ACT-R-Gammon was trained for 1000 games against the
pubeval opponent starting with no initial experience.3
The average winning percentage vs. number of games
played is displayed in figure 2. The best training run was
saved and played for 5,000 games against pubeval with
learning turned off; the result of this evaluation run along
with two other machine learning approaches is displayed
in table 1.

3.2 Training Results

We see in figure 2 that the average learning curve for the
ACT-R player shows quick initial learning after which it

—————
3 Since training is stochastic, the training runs described

below were based on the average of 20 separate training trials
except where otherwise noted.

∑
=

i

t
i

t
i

i
FOdds

FOdds
FP

/1

/1

)(

)(
)(

asymptotes to a fairly stable level. This result is well
within our research goal of achieving significant learning
in the first few thousand games and it is fascinating to see
just how quickly ACT-R-Gammon actually learns. In 20
games it learns to over 50% of its asymptotic level and in
100 games it is within 15% of its asymptotic level.

3.3 Asymptotic Performance Comparison

One obvious question in response to figure 2 is how well
ACT-R-Gammon is performing in comparison to other
approaches. It has achieved quick initial learning, but is
its performance against pubeval notable?

In comparison, Galperin and Viola (1998) give the
asymptotic performance of playing a reinforcement
learning trained neural net vs. pubeval. This is a quite
computationally demanding training method based on the
TD(λ) algorithm used by TD-Gammon and requires the
simulation of over 1,000,000 games. In another approach,
Pollack, Blair, and Land (1996) provide the asymptotic
results of their genetic algorithm-trained neural net
(named HC-Gammon) vs. pubeval. This method is also
computationally demanding as well, requiring the
coevolution of two neural net driven players over 100,000
games. Both groups claim their methods have produced
respectable players and Tesauro is quoted in the latter
paper as having stated that pubeval is “quite a strong
machine player”. A comparison of asymptotic
performance rates vs. pubeval is shown in table 1.

Table 1. Performance results for three Backgammon players

Backgammon Player Winning pct. vs. pubeval

TD-Trained Neural Net 59.25% ± 0.15%

ACT-R-Gammon 45.23% ± 0.71%

HC-Gammon 40.00% ± 3.46%

In light of this information, ACT-R-Gammon’s
performance seems impressive since it only had 1,000
training games as opposed to the TD-trained neural
network with over 1,000,000 training games and HC-
Gammon with 100,000 training games. Consequently, we
have achieved our goal of obtaining reasonable
performance within a few thousand training games thus
satisfying our second cognitive constraint.

3.4 Learning Analysis

Now that we know that ACT-R-Gammon has achieved
our original goals within the specified cognitive
constraints, it is interesting to see what it has learned.

3.4.1 ATTACKING

Figure 3 shows the learned odds likelihood that an attack
feature will be present in a winning game. The initial
striking characteristic of this curve is its non-uniformity,
but this turns out to likely represent common sense when
it comes to attacking. That is, for the lower point
positions of the attack odds curve, attacking an opponent
early on in the board can be dangerous since it often
involves exposing a checker. Since this can allow the
opponent to build a blockade while the checker is stuck
on the bar, it seems that the low odds of an early attack
are probably related to the overall game state that leads to
such a feature. However, after point 6, we see a steady
rise in the odds of an attack until it peaks at point 13.
This likely represents the fact that attacks can be carried
out more cautiously as the position increases since enough
men should be available at these points to avoid a
potentially costly expose. The overall attack odds seem to
slightly decrease from the middle of the board through the
player's home board. This could be the result of one
additional factor – as the point of attack increases, the
opponent’s cost of being attacked decreases since fewer
dice rolls have been invested in getting the opponent to
that point.

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of games

P
e

rc
e

n
ta

g
e

 o
f

g
a

m
e

s
 w

o
n

Figure 2. Training run of ACT-R-Gammon(o) vs. pubeval(x)

0 5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Point Attacked

A
tta

ck
 O

dd
s

P
(f

|W
)/

P
(f

|L
)

Figure 3. Attack odds learned by ACT-R-Gammon (10 run avg)

3.4.2 EXPOSING

Before we look at the learned odds for the expose feature,
it is interesting to look at the experience distribution of
exposing since this demonstrates a few notable
characteristics of ACT-R-Gammon’s learning algorithm.
Figure 4 shows a contour plot of the experience received
for the expose feature vs. the point that the expose
occurred on (x-axis) and the number of opponents that lie
ahead of the expose (y-axis). It is interesting to note that
no features were chunked where no experience was
gained (upper right quadrant of figures 4 & 5). As it turns
out, only half of the feature space is ever visited making
ACT-R-Gammon fairly efficient in its method of feature
learning. Since we would expect more exposes to occur
during the endgame we obviously see this trend in the
number of experiences of an expose feature toward the
higher points. However, this experience distribution
seems to be only slightly correlated with the average
learned odds for exposing. Thus, although features with
higher odds are more likely to be selected, the experience
distribution does not seem to skew the odds estimates –
this is a nice result of using Bayesian odds inference.

In terms of the learned odds value of the expose feature
shown in figure 5, ACT-R-Gammon never learns that an
expose is advantageous (i.e. odds > 1), but it does have
two distinct peaks where an expose seems to be less
detrimental than in other positions. The first of these
positions is early on in the board (i.e. low point position
with many opponents ahead). This makes sense in
retrospect since losing a man early in the board does not
sacrifice a great amount of work. However, it does take
the chance of getting blockaded by the opponent, which
would explain why the odds are still in favor of losing.
The other place that the odds seem to be least detrimental
is around point 13 with 2-4 opponents ahead of the
exposure. This may indicate one inadequacy in the
expose representation in that it takes into account the

number of opponents ahead of the expose but not their
distances. It is likely the case that exposing under these
conditions is least detrimental since a blockade exists that
prevents the opponent from attacking these positions.

3.4.3 BLOCKING

Since the block feature has three subfeatures (i.e. point,
opponents ahead, size of block), it makes for a difficult
feature space to graph. Consequently, a selected listing of
learned block features and their odds is shown in Table 2.

Table 2. Block odds learned by ACT-R-Gammon (1 run)

Point Opponents Size Odds

1 10 1 0.17

4 5 1 0.13

7 9 1 0.63

12 0 1 0.63

12 7 1 1.79

16 5 2 2.48

20 3 2 2.54

21 5 1 6.94

22 4 3 3.86

24 1 5 1.22

24 3 4 3.79

Although one cannot easily get a good idea of the overall
topology of the feature space from this table, there are a
few important trends that represent ACT-R-Gammon’s
strategy. If one looks at any odds over a threshold of 1.5,
it is obvious that these usually correspond to large

Figure 4. Frequency distribution of Expose Feature (5 run avg) Figure 5. Expose odds learned by ACT-R-Gammon (5 run avg)

5 10 15 20

2

4

6

8

10

12

14

Point of Expose

O
p

p
o

n
e

n
ts

 A
h

e
a

d
 o

f
E

x
p

o
s

e

1000

2000

3000

4000

5000

6000

7000

8000

9000

5 10 15 20

2

4

6

8

10

12

14

Point of Expose

O
p

p
o

n
e

n
ts

 A
h

e
a

d
 o

f
E

x
p

o
s

e

0.25

0.3

0.35

0.4

0.45

0.5

0.55

adjacent blocks on the high points. As discussed earlier,
this is an excellent strategy since it will generally cause
ACT-R-Gammon to seek out positions in which it can
blockade the opponent near the beginning of its board
thus preventing it from entering into the endgame
condition. Also generally, the only block features to show
less than neutral odds are blocks that occur early on in the
board or with few opponents ahead. In this case the block
can either lead to potentially harmful board positions or it
serves no purpose since the player cannot be attacked.

4. Conclusion

With the results now collected and analyzed, it is
important to reflect on our work to determine which
issues to further explore in the future.

4.1 Achievements

We have achieved our initial goal of cognitively plausible
learning. That is, we have based our learning algorithm
on the principles of a cognitive architecture used to model
hundreds of psychological experiments. And we have
analyzed the time scale of human cognition to constrain
the amount of search and training to that which is
psychologically plausible. Within these constraints we
have achieved a reasonable level of performance,
something we would rationally expect a human to
accomplish in only a few thousand games. This shows
that cognitively principled architectures are not limited to
modeling psychology experiments – they can adequately
scale to large problems in the domain of cognition.

Although the main goal of this project was to achieve a
Backgammon player that was cognitively plausible, we
can also reflect on how it can inform more performance-
minded approaches. Probably the most important element
of ACT-R-Gammon’s efficiency was its use of feature
abstractions. These abstractions greatly simplified the
task of Bayesian inference and are one reason why it was
able to beat HC-Gammon’s performance level in 1/100th
of the training time. The other reason was that ACT-R-
Gammon could learn within each game from attack
penalties as well as from each win or loss. These results
suggest that feature abstraction and intermediate rewards
could be integrated into current approaches to help them
more quickly acquire their asymptotic performance level.

4.2 Further Exploration

Consequently, ACT-R-Gammon has demonstrated a lot of
interesting results but there are many improvements that
could be made to increase its psychological plausibility
and performance. A rule inference system could be added
to deal with move selection pruning and the nuances that
the feature generalization does not catch. The feature
chunking mechanism could chunk probabilistically to get
better estimates of odds in heavily explored areas of the
feature space. And we have not even attempted to explain

how the feature representation is formed – this alone
would be an interesting project.

But even with the current, in effect simple, ACT-R-
Gammon player we have achieved our main initial goal.
Using human cognition as our constraint and ACT-R as
our theory, we have built a psychologically plausible
Backgammon player that sharply contrasts the traditional
brute force approach.

Acknowledgements

We would like to thank Richard Stern for his comments
and suggestions during the completion of this research.

References

Anderson, J. R., & Lebiere, C. (1998). The atomic
components of thought. Mahwah, NJ: Lawrence
Erlbaum Associates.

Berliner, H. (1986). Hitech wins north american computer
chess championship. AI Magazine, Winter, 30.

Chomsky, N. (1992). Language and thought. Wakefield,
RI: Moyer Bell.

Galperin, G., & Viola, P. (1998). Rollout-based policy
retraining. Artificial Intelligence Laboratory, MIT,
http://www.ai.mit.edu/lab/abstracts/1999/ps/z-grg2.ps,
(pp. 1-2).

Hsu, F., Anantharaman, T., Campbell, M., & Newatzyk,
A. (1990). A grandmaster chess machine. Scientific
American, 263:4, 44-50.

Lebiere, C. (1999). Blending: An ACT-R mechanism for
aggregate retrievals. Presented at the Sixth Annual ACT-
R Workshop at George Mason University. Fairfax, VA.
http://hfac.gmu.edu/actr99.

Mitchell, T. M. (1997). Machine learning. Boston:
McGraw-Hill.

Newell, A. (1990). Unified theories of cognition.
Cambridge, MA: Harvard University Press.

Pollack, J. B., Blair, A.D., & Land, M. (1996).
Coevolution of a backgammon player. Proceedings of
the Fifth Artificial Life Conference. Nara, Japan.
http://www.demo.cs.brandeis.edu/papers/long.html.

Russell, S., & Norvig, P. (1995). Artificial intelligence: A
modern approach. Upper Saddle River, NJ: Prentice
Hall.

Sutton, R., & Barto, A. (1998). Reinforcement learning:
An introduction. Cambridge, MA: MIT Press.

Tesauro, G. (1992). Temporal difference learning of
backgammon strategy. In Sleeman, D., & Edwards, P.
(Eds.), Machine Learning, (pp. 451-57). San Mateo,
CA: Morgan Kaufmann.

