Intelligent Gaze-Added Interfaces

Dario D. Salvucci
Cambridge Basic Research
Four Cambridge Center
Cambridge, MA 02142
+1 617 374 9669
dario@chbr.com

ABSTRACT

We discuss a novel type of interface, the intelligent gaze-
added interface, and describe the design and evaluation of a
sample gaze-added operating-system interface. Gaze-added
interfaces, like current gaze-based systems, allow users to
execute commands using their eyes. However, while most
gaze-based systems replace the functionality of other inputs
with that of gaze, gaze-added interfaces simply add gaze
functionality that the user can employ if and when desired.
Intelligent gaze-added interfaces utilize a probabilistic
algorithm and user model to interpret gaze focus and
alleviate typical problems with eye-tracking data. We
extended a standard WIMP operating-system interface into
a new interface, 1GO, that incorporates intelligent gaze-
added input. In a user study, we found that users quickly
adapted to the new interface and utilized gaze effectively
both alone and with other inputs.

Keywords
Gaze-added interfaces, gaze-based interfaces, intelligent
interfaces, eye movements, user models.

INTRODUCTION

In the quest to facilitate human-computer interaction, a
number of researchers have developed gaze-based interfaces
in which a user controls the computer using his/her eye
movements [e.g., 2, 3, 11]. Gaze-based interfaces have
proven especially useful for physically-disabled users, for
whom gaze control is the only, or easiest, available method
of input. Such interfaces cover a wide range of applications,
including typing and word processing [e.g., 2, 5, 10] and
locomotion and control [e.g., 12]. While gaze-based
interfaces have also shown promise for able-bodied users in
specific contexts [e.g., 10, 13], they have yet to make a
significant impact on the design and development of
today’s most common user interfaces.

In this paper, we describe the design and evaluation of a
special type of gaze-based interface that we call the gaze-
added interface. Most existing gaze-based interfaces replace
the functionality of certain input(s), such as the mouse,
with gaze input. In contrast, gaze-added interfaces provide
exactly the same functionality as similar standard (non-
gaze) interfaces but also add the ability to utilize gaze input

John R. Anderson
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213 USA

+1 412 268 2788
jat@cmu.edu

when desired. In doing so, gaze-added interfaces give users
more flexibility in choosing when and how to employ gaze
input. The few existing systems that could be categorized
as gaze-added interfaces [e.g., 13] have manifested the large
potential benefits for these types of interfaces.

All gaze-based interfaces must deal with a significant
problem in both their design and implementation: the
difficulty of interpreting user eye movements. The
interpretation of gaze input requires an assignment of each
gaze to the visual target to which the user is attending
during the gaze. This assignment is often complex for at
least two reasons: inherent noise in the eye-tracking
equipment, and the dissociation between the gaze point and
the user’s visual attention. To alleviate this problem, we
developed an intelligent gaze-added interface that
incorporates a probabilistic model of user behavior. The
model helps to guide the interface to more likely
interpretations of observed gazes, thus creating a
significantly more responsive and user-friendly interface.

To demonstrate the power of intelligent gaze-added
interfaces, we extended a standard WIMP (Window, Icon,
Menu, Pointer) operating-system interface to incorporate
intelligent gaze-added input. The WIMP operating-system
interface was chosen for several reasons. Such interfaces are
extremely common in today’s most popular operating
systems, such as Apple Mac OS and Microsoft Windows.
In addition, these interfaces typically do not require the
accurate pointing that interfaces for other applications, such
as word processing or drawing, normally require; this
feature facilitates the use of gaze input given the noise and
variability in eye-tracking data. Our novel operating-
system interface, IGO (Intelligent Gaze-added Operating
system), thus serves as a realistic but manageable example
of a gaze-added interface that has important implications for
the development of future gaze-based interfaces.

INTERFACE DESIGN AND IMPLEMENTATION

IGO, the intelligent gaze-added operating-system interface,
is modeled primarily on the Mac OS system but has a great
degree of overlap with Windows and related systems. We
now describe IGO in three components: the basic non-gaze
interface, the gaze-added interface, and the intelligent gaze
interpretation as determined by the probabilistic user
model.

Salvucci, D. D., & Anderson, J. R. (2000). Intelligent gaze-added interfaces. To appear in Human Factors in Computing Systems:

CHI 2000 Conference Proceedings. New York: ACM Press.

Flli Edit Sg=rtial

Eargs
fnn
on
gz Fezh

Trash

Figure 1: Sample screen from 1GO. The inverted circle on the hawk icon marks the user’s current gaze point, and the
light (yellow) highlighting around the icon indicates that this icon is the current gaze focus.

The Basic Non-Gaze Interface

In essence, 1GO is extremely similar to common existing
interfaces with respect to the look and feel of the interface.
A sample interface screen is shown in Figure 1. The screen
includes windows, icons for folders (e.g., Birds) and files
(e.g., hawk), and a menu bar at the top of the screen.
Windows include a title bar at the top with a close box in
the upper-left. lcons are color-coded such that folders
appear in red and files in blue. Note that some items (e.g.,
the close boxes) are larger than in typical operating-system
interfaces because current limitations in eye-tracking
equipment preclude closely-spaced items; however, the
design will generalize nicely as eye trackers improve and
allow for more tightly-spaced items.

The basic, non-gaze functionality of 1GO is identical to that
in typical WIMP operating systems. By controlling an on-
screen pointer with a mouse, users can select icons, drag
icons to other parts of the screen, open and close folder
windows, and select various menu options. Opening
folders requires a double-click on a folder icon, and
dragging requires a click-down on the icon to be dragged
and a click-up at the new location of the icon. Menu
selection can be performed in two ways: with a click-down
on the menu name and click-up on the menu item, or with
two separate clicks on the menu name and item (“sticky
menus” in Macintosh terminology). Icons can be renamed
by selecting the icon and typing its new name on the
keyboard.

The interface as currently implemented contains three
menus based on the Mac OS menu set. The File menu
includes three items: Create Folder, which creates an
untitled folder in the current window; Print, which is

currently unused; and Duplicate, which duplicates a
selected icon. The Edit menu includes three items: Cut,
Copy, and Paste. The Special menu contains a single
item, Empty Trash, which clears the contents of the special
Trash folder. These menu items are clearly a subset of
those needed for a full-fledged system but do provide a
diverse set of commands for use in the evaluation stage.

The Gaze-Added Interface

IGO augments the basic interface to allow for gaze input in
a way fully analogous to mouse input. The system
employs an eye tracker (described later) to send gaze
information to the interface. As the user looks around the
screen, the item to which the user is attending is
highlighted with a yellow background; this highlighting is
analogous to the on-screen mouse pointer in that it shows
the current focus of attention for the gaze modality. The
user can then use the Control key to actuate a command for
the highlighted item. This gaze button is completely
analogous to the mouse button and has the exact same
functionality — that is, single clicks for mouse correspond
to single clicks for gaze, double-clicks correspond to
double-clicks, drags to drags, etc.

To better illustrate the gaze-based functionality of 1GO, let
us briefly consider how a user might perform the task of
throwing away a file by dragging it to the Trash folder.
To open the appropriate folder(s), the user first looks at the
folder’s icon (thus highlighting it) and double-clicks the
gaze button to open its window. Then, to drag a file to the
trash, the user looks at the file’s icon, clicks and holds the
gaze button, looks at the trash icon, and release the gaze
button. Finally, the user closes all windows by looking at
their close boxes and clicking the gaze button. Thus, the

task is identical to that with the mouse except that gaze
controls the current focus and the gaze button executes a
command for the current focus.

We implemented 1GO on the Macintosh platform in
Macintosh Common LISP. This system interfaces with an
IScan (Cambridge, MA) eye tracker to capture gaze data.
This eye tracker includes a head-mounted camera and
specialized hardware and produces a sampling rate of 60 Hz
and an accuracy of approximately 1° of visual angle.

Intelligent Gaze Interpretation

IGO requires some way of interpreting user gazes — that is,
mapping gaze points to the items to which the user is
likely attending. Although we could incorporate a naive
algorithm that maps gazes to the nearest items, this
algorithm often fails because of equipment noise and
individual variability [9]. Thus, we employ an intelligent
probabilistic algorithm that determines the best
interpretation based on two criteria: the location of the gaze
point and the current task context. The algorithm is
somewhat similar in essence to algorithms previously
employed in building gaze-based interfaces [10] and in
analyzing gaze data from psychological experiments [9].
This body of research has shown that such probabilistic
algorithms can interpret gaze data as accurately as human
experts in real time [9], thus making them an excellent
choice for IGO.

The interpretation algorithm takes a given gaze location g
and target items i | | and returns the item i that most
likely corresponds to g. More formally, the algorithm finds
the item iyt that maximizes the probability Pr(i|g):

hest = argmax|[Pr(i | g)|

& i iU
i & Pr(g) @

= argmax[Pr(g | i)>Pr(i)]
il

The first step in this process involves calculating the
probabilities Pr(g|i) of producing a gaze at g given the
intention to attend each item i. The gaze location g simply
denotes the estimated point-of-regard coordinates <x,y> as
determined by the eye tracker. Each item i can be described
as a rectangle <cx,cy,sx,sy>, where cxand cydescribe the
coordinates of the center of the rectangle and sx and sy
describe the size of the rectangle as the distance from cx and
cy to the edges of the rectangle. To compute Pr(g|i), we
multiply the probability of each coordinate given a
Gaussian distribution around the item’s rectangle:

Pr(g|i)=G(x,cx,sx) (Y, cy,sy)

Here the function G(x,ms) denotes the probability of
observing the value x in a Gaussian distribution with mean
mand standard deviation s.

The second step in the process involves calculating prior
probabilities Pr(i) of attending each item i. We compute
these probabilities from the current state of the interface by
assigning prior scores to various items and then

normalizing the scores into probabilities. The various

items are assigned scores as follows:

« File menu: 1 if the last action was an open or select,
1/5 otherwise. This models the fact that users tend to
use this menu immediately after opening or selecting
folders or files.

 Edit menu: 1/5. This models the fact that the menu is
unused in the current implementation.

e Special menu: 1 if there are items in the Trash, 1/5
otherwise. This models the fact that users only empty
the trash if items have already been thrown away.

* Window close box: 1/5 if the last action selected an
icon in the window, 1 otherwise. This models the fact
that users typically do not close a window
immediately after selecting something within it.

e Window: 1/25. This models the fact that windows are
very infrequently the focus of attention, with the
exception of dragging an icon into a window.

¢ Other: 1. This models the default case.

Thus, while items have a default prior score of 1, the score
is reduced for items that are unlikely in the current
situation. The prior scores are then normalized to produce
prior probabilities Pr(i). While this preliminary design
estimated these priors informally in pilot studies of the
interface, a more rigorous design could determine better
priors empirically by observing long-term behavior in the
interface.

Given Pr(g|i) and Pr(i), we can determine it — the i that
maximizes Pr(i|g). However, we would like to give the
interface the option of not assigning a gaze to any item if
this probability is too low. For this purpose, we ensure
that the value log Pr(iesg) is above a minimum threshold;
below threshold, the interface considers there to be no
current focus. In pilot testing we found that a threshold of
—20 works well for our implementation.

To illustrate the behavior of the gaze interpretation
algorithm, let us consider the situation where a gaze point
falls near in or around a window close box. Figure 2
shows the assignment of gazes at various points for two
possible cases; filled circles represent gaze points assigned
to the close box, open circles to the icon, and X’s to
nothing. In Figure 2(a), the close box and the icon have
equal prior scores, and thus are given equal weight in the
interpretation algorithm. In this case gaze points are
assigned to the nearest item above threshold, which even
allows points somewhat far from the close box to be
assigned to the close box. In Figure 2(b), the close box
has only 1/5 the prior score of the icon (assuming that the
last action selected an icon in the window). Here gaze
points between the close box and the icon are more likely
assigned to the icon, and gaze points farther from the close
box are no longer assigned to it. Thus, as the prior
probability of the close box decreases, the area in which
gaze points are assigned to it shrinks and other assignments
become more likely.

X X © @ @ X X X X X X X
X © © ®© @ © X X © @ @ X
® 00 & & & X 060 & & &
[) [X @ ® o
[) [O O o O
o o|p o} O o |p o}
OOO!O OOO!O
hawk hawk
@) (b)

Figure 2: Probabilistic assignment for the close box at
various points for (a) the default prior and (b) a smaller
prior. Filled circles represent points assigned to the
close box, open circles to the icon, and X’s to no item.

Discussion

We would like to emphasize three important aspects of
IGO. First, we have not removed any functionality from
the mouse or other inputs; instead, we have simply added
the ability to utilize gaze as a complementary source of
input. In contrast, most existing gaze-based interfaces
replace the functionality of the mouse and/or keyboard with
gaze, typically because the interfaces are intended for
physically-disabled people who have difficulty using, or
cannot use, other forms of input [e.g., 3, 5]. Some existing
systems intended more for able-bodied users add gaze
functionality that is always “on” [e.g., 13]. 1GO allows for
total flexibility in using the gaze functionality as little or as
much as desired.

Another important aspect of the interface involves the use of
a gaze button to invoke commands. All gaze-based
interfaces must deal with the so-called “Midas touch”
problem [6]: users focus on many items, some of which are
intended for commands and some of which are not. Of the
ways of managing this problem (see [6] for a review), the
use of a “dwell threshold” is the most common in current
interfaces [e.g., 2, 11]. However, gaze buttons, in various
forms, are also employed in some interfaces [e.g., 6]. We
chose to use a gaze button for two primary reasons: it
allows gaze functionality fully analogous to the mouse, and
it can be implemented on a keyboard to provide fast and
convenient access.

A third important aspect of the interface is its interpretation
algorithm, which utilizes a probabilistic model of gaze
location and context to assign gazes to a current focus of
attention. The wvast majority of existing gaze-based
interfaces employ a naive method of gaze interpretation,
namely mapping gazes to the nearest targets. A few
systems employ probabilistic models to choose what
commands to present next but not actually to interpret gaze
input [e.g., 2]. Only one system incorporates a
sophisticated model of user behavior, implemented as a
hidden Markov model [10]; however, this system requires a
detailed sequential model and a division of continuous

input into subsequences for analysis. The probabilistic
model presented here represents a balance of the naive and
complex probabilistic algorithms, allowing for fast and
robust interpretation of continuous input while avoiding the
complexities of more fully-specified models.

INTERFACE EVALUATION

Several pilot trials with IGO showed that, with little
practice, users could successfully use the system and
perform the basic functions with the gaze modality easily
and efficiently. To evaluate IGO more quantitatively, we
ran a study with several interface tasks and asked users to
perform the tasks as quickly and accurately as possible.
We had two primary goals in this study. First, we wished
to train users on the gaze and mouse modalities separately
to determine how their performance improves at various
points in the training. Second, we wanted to analyze how
users integrate gaze input with mouse input after a period of
training in each modality. While more rigorous evaluation
would require a long-term study of interface use, our study
sheds light on a number of interesting aspects of the system
that can guide future development of this and similar
systems.

Interface Setup and Tasks

We set up IGO so that users could perform a number of
basic tasks. We first specified the file system as a three-
level hierarchy of folders and files. The following lists each
folder in the system along with its contents; folders are
capitalized, files are in lower-case:

e Zoo: { Birds , Fish }
 Birds: { hawk , dove }
e Fish: { minnow , trout}

Given this file hierarchy, we defined five tasks for users to
perform. The tasks, along with sample instructions as
given to users and the basic actions required in the tasks,
are shown in Table 1. For instance, the Move task
involves dragging a file from one folder to another; this task
comprises five basic actions: two open actions (for the Zoo
and Fish folders), one drag action (from Fish to Birds),
and two close actions. Similarly, the Create task involves
creating and naming a new folder; the Duplicate task,
duplicate a file through the File menu; the Rename task,
selecting and renaming a file; and the Trash task, dragging
a file to the trash and emptying the trash contents through
the Special menu. All tasks involve one or two open
actions, followed by some combination of the drag, select,
type, and menu actions, followed by one or two close
actions.

Method

Subjects

Ten users (three women and seven men) successfully
participated in the experiment. An additional three users
participated but were omitted from data analysis because of
extreme noise in their eye-tracking data. All participants
had at least three years of experience with either the
Mac OS or Windows operating system. None of the
participants had any prior experience with a gaze-based
interface or with eye-tracking equipment.

Table 1: Interface tasks with instructions and actions.

Task Sample Instructions Actions

Move In Zoo/ Fish/, Open, open,
Move trout to Zoo/ Birds/ drag, close,
and close all windows. close

Create In Zoo/ , Open, menu,
Create folder Dogs type, close
and close all windows.

Duplicate In Zoo/ Fish/ , Open, open,
Duplicate trout menu, close,
and close all windows. close

Rename In Zoo/ Birds/ , Open, open,
Rename hawk to owl select, type,
and close all windows. close, close

Trash In Zoo/ Birds/ Open, open,
Trash dove, empty trash, drag, menu,
and close all windows. close, close

Materials

The experiment included two stages: a training stage and a
free stage. The training stage comprised eight blocks of 10
trials each. The blocks alternated between gaze blocks
using gaze input alone and mouse blocks using mouse
input alone; the starting block type was counterbalanced
across users. The free stage comprised two free blocks of
10 trials each where users could employ both inputs freely
as desired. All blocks included two instances of each of the
five tasks in a randomized order.

Procedure

Users were first introduced to the workings of the eye-
tracking equipment and the gaze-based interface. After
being calibrated on the eye tracker, the users completed five
mouse trials followed by five gaze trials with help from the
experimenter to become acquainted to the interface and
experimental tasks. Finally, they completed the 10 blocks
of experimental trials. Comments were gathered from users
after the experiment to note their impressions of the ease of
the system and any specific strategies they may have
utilized.

Each trial comprised two parts: first, the user would read
the on-screen instructions and click the gaze or mouse
button when the instructions were understood; and second,
the user would perform the task and click in a special Done
region in the lower-left of the screen. Although the
instructions remained on the screen in the second part,
users were encouraged to use them as little as possible to
provide a more accurate estimate of performance.

Results

Training Stage Results

The training stage allowed users to improve their skills
with each modality separately. We examine user behavior
in this stage beginning with how accurately users performed
the given tasks. We utilize two criteria for determining

whether a user’s task behavior was correct: whether the
user’s actions include all the necessary actions for the task
(as shown in Table 1), and whether there were two or less
actions in addition to the necessary actions. Figure 3
shows the percentage of tasks classified as correct for the
four blocks in the training stage. (We analyze the free stage
in the next section.) Users consistently make more errors
in the gaze trials than in the mouse trials and the number of
errors remains fairly constant throughout the four blocks. A
repeated-measures ANOVA with within-user factors of
modality and block confirms these observations, showing a
significant effect of modality, F(1,9)=22.07, p<.01, but no
effect of block or their interaction, p>.5.

100 O—--o--~-o---0

= 90 1
2 80 1 = . —
o]
ol
= 50 7
E 40 - —— Gaze
301 --O-- Mouse
g 20 —<o— Free

10

0
Train Train Train Train Free Free
1 2 3 4 1 2
Block

Figure 3: Percent correct across experiment blocks.

User errors with the gaze modality in both the gaze and free
trials could largely be attributed to a specific type of error
that we call a “leave-before-click” error. This error occurred
when the user looked at an item, tried to click the gaze
button, but looked away before the button was actually
pressed. lronically, users were less prone to commit this
error as total novices because they fixated items more
deliberately; however, as their confidence in the interface
grew, they performed actions faster and became more prone
to the error. Further practice helped users to understand the
temporal interaction of gazing and clicking and better cope
with the problem.

Considering only correct trials, Figure 4 shows the average
time needed for subjects to complete a single task in each of
the training blocks. For both modalities, users exhibit a
nice learning curve, with rapid improvement in the first
blocks and more gradual improvement in later blocks.
Although the gaze blocks show consistently longer times
than the mouse blocks, a repeated-measures ANOVA shows
that this difference is not significant, p>.1. The effect of
block is very significant, F(1,9)=22.16, p<.001, confirming
the learning trend. Although we might expect that, given
users’ familiarity with the mouse, the gaze learning curve
would be steeper than the mouse curve, the modality-block
interaction is not significant, p>.2 — in other words, users
improved at approximately the same rate with both
modalities. Thus, much of the learning in the interface
seems to have arisen from familiarity with the screen and

tasks rather than use of the gaze or mouse input, suggesting
that users had little trouble becoming adept with the gaze
modality.

? 10
T 5]
=
g 7] o
W 6
U]
a O
E 47 —B— Gaze
= 3 - -0 -- Mouse
-k 2
a —0— Free
l]
)
0
Train Train Train Train Free Free
1 2 3 4 1 2
Block

Figure 4. Task times across experiment blocks, in
seconds.

Taking this analysis a step further, it is interesting to look
at the performance of individual users in the different
modalities. Figure 5 shows the average task times for each
user and modality in the final two training blocks. Three
users (3, 4, 7) required an additional one or more seconds
with the gaze modality. However, four users (1, 8, 9, 10)
actually exhibited faster times with the gaze modality —
even with little practice in this modality and years of
practice with the mouse modality. Again we have evidence
that users quickly and easily learned to employ the gaze
modality in IGO.

10
- 9 W Gaze
'E 8 O Mouse
2 7
% 61
S
u O
E a4
= 3
% o2
m
= 1
0 - i
1 2 3 4 5 6 7 8 9 10
User

Figure 5: Task times for individual users in the final
two training blocks.

We should note that these results comparing gaze and
mouse performance in IGO do not necessarily reflect the raw
physical performance of the eyes and hands. Rather, the
results reflect a complex interaction between raw
performance and a number of other factors, including the
interface’s ability to interpret focus (e.g., using intelligent
gaze interpretation), the user’s ability to coordinate focus

with the gaze/mouse button, and user’s ability to adapt to
all these factors. In the general discussion, we mention
how we can utilize our understanding of raw physical
performance to improve the system through detailed
cognitive modeling and analysis.

One final important aspect of user’s interaction with IGO
involves the effect of intelligent interpretation: did the
intelligent algorithm have a significant impact on how
gazes were interpreted? To answer this question, we re-ran
user protocols under two other versions of 1GO with
simpler methods of gaze interpretation: basic interpretation,
where gazes directly over a target are assigned to the target
and gazes not over a target are assigned to nothing (i.e., the
same algorithm wused for the mouse); and no-context
interpretation, where the prior scores are eliminated from
the probabilistic intelligent algorithm. We then analyzed
correctness (as defined earlier) of user protocols when
interpreted by these methods wversus the proposed
intelligent method. While 83% of the protocols were
correct with intelligent interpretation, 65% were correct
with no-context interpretation, and only 17% were correct
with basic interpretation. Thus, the intelligent algorithm
greatly assisted in interpreting user gaze and thus facilitated
interaction with the system.

Free Stage Results

The free stage allowed users to employ either modality
whenever and however they wished. Overall, users clearly
liked the gaze modality, employing it in 67% of all task
actions. Figures 2 and 3 include the percent correct and
task times, respectively, for the two free blocks. Users’
task times in the free blocks were slightly faster than the
final two blocks in for mouse and gaze alone. Thus, users
were successfully able to integrate the two modalities in
terms of overall speed. Users’ percent correct in the free
blocks was nearest that in the gaze training blocks. This
result is due in part to users’ extensive use of the gaze
modality. Also, users experienced some difficulty in
dealing with two foci (i.e., gaze and mouse), causing them
to use the wrong button for the intended focus (e.g., using
the mouse button when only gaze focus was over an item).

We can also look at how individual users employed the
two modalities in the free stage. Figure 6 shows each
user’s gaze use defined as the percentage of task actions
using the gaze modality. A number of users (e.g., 1, 6, 10)
employ gaze in a vast majority of actions. Only two users
(5, 7) employ gaze less than half the time, and one of these
users (7) avoids gaze completely. Users thus exhibited a
fair amount of variability in the amount of their gaze use.
However, their gaze use was not completely random: Gaze
use was closely correlated to the difference between task
times for gaze and mouse, R=.70; thus, users who
performed better with gaze relative to mouse in the training
blocks generally preferred gaze in the free blocks. While
some of users’ gaze use could be attributed to
experimenting with the two modalities, it is clear that users
appreciated the gaze modality and made good use of it to
achieve fast performance.

100
90 T
80
70
60
50 1
40 A
30 1
20
10 1

Percent Gaze Use

1 2 3 4 5 6 7 8 9 10
User

Figure 6: Percent gaze use for individual users in the
free stage.

Because the task actions varied in complexity, we can
analyze how this complexity affected gaze use. Figure 7
shows average gaze use for each of the five action types.
The action types are shown left-to-right in terms of
increasing complexity: Select and Close require a single
click, Open requires a double-click, Menu requires a drag or
two clicks, and Move requires a drag. As the figure shows,
users exhibited a clear tendency to favor gaze use for
simpler actions over complex actions. Users employed
gaze approximately 75% of the time for the simplest
actions, Select and Close. They employed gaze
approximately 40% of the time for the most complex
action, Move, and 50-60% of the time for actions in
between, Open and Menu.

70 T
60 T
40
30 1
20
10
0 T T T T

Move

Fercent Gaze Use
al
o

Select Close Open Menu

Action

Figure 7: Percent gaze use for the five action types in
order of decreasing complexity.

User comments after the experiment and our own
qualitative impressions of their behavior manifested a
number of interesting aspects of the system. Several users
reported specific strategies to employ gaze only for simpler
actions and to avoid it for complex actions, particularly
dragging: “the main difficulty [with gaze] is the drag-and-
drop”; “I didn't like dragging things [with gaze]”. Users

often seemed to utilize a strategy in which they used mouse
when the mouse pointer was near the focus of the intended
action and gaze otherwise; one user explicitly noted this
strategy and termed it “selection based on distance”. Users
also tended to use gaze after typing on the keyboard to
avoid long latencies to shift from keyboard to mouse: “it
took a long time to move to the mouse”. In addition, they
often employed gaze until it “failed” them (i.e., they made
an error), then switched to mouse temporarily, then
returned to gaze after a short time. Thus, users derived
several interesting strategies both implicitly and explicitly
to help them cope with the integration of the gaze and
mouse modalities.

GENERAL DISCUSSION

Beyond WIMP Interfaces

The overall success of IGO demonstrates the power of
intelligent gaze-added interfaces for everyday applications,
such as those that utilize WIMP interfaces. However, the
potential for intelligent gaze-added interfaces goes well
beyond WIMP interfaces. Jacob et al. [7] and others have
outlined a variety of “non-WIMP” interfaces that allow for
more flexible interface design and use. These researchers
cite a number of features important to non-WIMP interfaces,
including multimodal interaction, parallel input streams,
and continuous-valued input.

Intelligent gaze-added interfaces offer exciting potential for
future non-WIMP interfaces. As IGO and other systems
[e.g., 13] demonstrate, users can learn to integrate gaze
input with other modalities quickly and naturally. Gaze
input is inherently stream-like, and thus provides a range of
possibilities for uses in parallel with other input/output
streams. In addition, gaze input can be incorporated into a
“non-command” interface that acts on implicit rather than
explicit user commands [6]. However, like speech and
handwriting input, gaze input is not only continuous-
valued but also noisy. This fact often makes it difficult to
infer user intent, emphasizing the need for intelligent
interpretation algorithms such as that in 1GO or similar
algorithms [e.g., 10].

Importance of Intelligent Gaze Interpretation
IGO, like all gaze-based interfaces, is only as user-friendly
as the eye-tracking equipment allows. When we were able
to calibrate users accurately on the eye tracker, they reported
that the gaze modality felt smooth and seamless. However,
when our calibration was somewhat problematic, users
reported some amount of difficulty and frustration with the
system. Other researchers [e.g., 6] have noted similar
experiences with other gaze-based interfaces. In 1GO,
intelligent gaze interpretation clearly helps a great deal in
alleviating these problems with the eye tracker. In the near
future, we hope to conduct a detailed study that
quantitatively measures the effect of intelligent gaze
interpretation on user performance and ease of use.

The problem of interpreting gaze goes beyond the accuracy
of eye tracking, however. Even with perfect eye tracking,
we cannot know exactly what users are attending to based
on the estimated gaze point, since users often view items in
the parafovea and periphery (roughly speaking, farther than

1° of visual angle outside the line of sight). This
dissociation between gaze and attention makes gaze
interpretation significantly more difficult with tighter
spacing between items and faster user input [9, 10]. Thus,
systems must make use of as much predictive information
as possible to maximize the likelihood of correct
interpretations. The interpretation algorithm instantiated in
IGO demonstrates the power of probabilistic algorithms for
building intelligent, accurate, and more user-friendly gaze-
based systems.

Gaze-Based Interfaces and Cognitive Modeling
The design and implementation of gaze-based interfaces
such as IGO incorporates a number of major and minor
design decisions, some of which can be difficult to make.
For instance, for IGO, we considered incorporating a lag in
which gaze focus on an item would last some time after the
gaze has left the item. This change might help to alleviate
the “leave-before-click” problem but also might decrease
the responsiveness of the system as observed by users. The
impact of such design options is often unclear, leaving the
system developer to choose between user studies or ad hoc
implementation decisions.

As an alternative to these choices, we have started
considering how to employ cognitive modeling to improve
current gaze-based interfaces. Cognitive modeling provides
a rigorous way to express user behavior and test design
options without the need for a full-scale user study. CPM-
GOMS [8] is one framework that allows for fast, convenient
modeling of the “critical paths” in an interface. Such a
framework may help to identify and eliminate bottlenecks
in the processes required by gaze-based interfaces based on
knowledge of characteristics of raw eye and hand
performance. ACT-R [1] is another framework that allows
for detailed modeling of behavior at the level of keystrokes
and eye movements. Using ACT-R, system designers can
not only evaluate the times needed for various actions but
also predict user learning trends and performance
improvement with practice. We hope to soon model user
behavior in IGO to attempt to determine how modeling can
inform the design of this and similar interfaces.

ACKNOWLEDGMENTS
This work was done at Carnegie Mellon University and
was supported in part by Office of Naval Research grant
NO00014-95-10223 awarded to John R. Anderson. We
thank Rob Jacob for helpful comments in the early
development of this work.

REFERENCES

1. Anderson, J. R., & Lebiere, C. (1998). The atomic
components of thought. Hillsdale, NJ: Lawrence
Erlbaum Associates.

2. Frey, L.A., White, K.P., & Hutchinson, T.E.
(1990). Eye-gaze word processing. IEEE Transactions
on Systems, Man, and Cybernetics, 20, 944-950.

3. Gips, J. (1998). On building intelligence into
EagleEyes. In V. O. Mittal, H. A. Yanco, J. Aronis, &
R. Simpson (Eds.), Assistive Technology and Artificial
Intelligence (pp. 50-58). Berlin: Springer-Verlag.

4. Goldberg, J. H., & Schryver, J. C. (1995). Eye-gaze
determination of user intent at the computer interface.
In J. M. Findlay, R. Walker, & R. W. Kentridge
(Eds.), Eye Movement Research: Mechanisms,
Processes, and Applications (pp. 491-502). New York:
Elsevier Science Publishing.

5. Hutchinson, T.E., White, K.P., Martin, W.N.,
Reichert, K. C., & Frey, L. A. (1989). Human-
computer interaction using eye-gaze input. IEEE
Transactions on Systems, Man, and Cybernetics, 19,
1527-1534.

6. Jacob, R.J. K. (1995). Eye tracking in advanced
interface design. In W. Barfield & T. A. Furness
(Eds.), Virtual Environments and Advanced Interface
Design (pp. 258-288). New York: Oxford University
Press.

7. Jacob, R.J. K., Deligiannidis, L., & Morrison, S.
(1999). A software model and specification language for
non-WIMP user interfaces. ACM Transactions on
Computer-Human Interaction, 6, 1-46.

8. John, B. E. (1990). Extensions of GOMS analyses to
expert performance requiring perception of dynamic
visual and auditory information. In Proceedings of
CHI 90 (pp. 107-115). New York: ACM Press.

9. Salvucci, D. D. (1999). Mapping eye movements to
cognitive processes. Doctoral Dissertation, Department
of Computer Science, Carnegie Mellon University.

10.Salvucci, D.D. (1999). Inferring intent in eye-
movement interfaces: Tracing user actions with process
models. In Human Factors in Computing Systems:
CHI 99 Conference Proceedings (pp. 254-261). New
York: ACM Press.

11.Stampe, D. M., & Reingold, E. M. (1995). Selection
by looking: A novel computer interface and its
application to psychological research. InJ. M. Findlay,
R. Walker, & R. W. Kentridge (Eds.), Eye Movement
Research: Mechanisms, Processes, and Applications
(pp. 467-478). New York: Elsevier Science Publishing.

12.Yanco, H.A. (1998). Wheelesley: A robotic
wheelchair system: Indoor navigation and user interface.
In V. O. Mittal, H. A. Yanco, J. Aronis, & R.
Simpson (Eds.), Assistive Technology and Artificial
Intelligence (pp. 256-268). Berlin: Springer-Verlag.

13.Zhai, S., Morimoto, C., & lhde, S. (1999). Manual
and gaze input cascaded (MAGIC) pointing. In Human
Factors in Computing Systems: CHI 99 Conference
Proceedings (pp. 246-253). New York: ACM Press.

