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Abstract
Serial attention is the process of focussing mentally on
one item at a time. This process has two phases:
attention switching and attention maintenance.
Attention switching involves rapidly building up the
activation of a new item to dominate old items.
Attention maintenance involves letting the current item
decay while in use to prevent it from intruding on the
next item later on. SASM, a model based on this
analysis, suggests that this balance of high initial
activation followed by gradual decay reflects a strategic
adaptation to task demands on one hand and principles
of memory on the other. The model makes novel and
accurate predictions about response times and error
rates, integrates past use and current context as memory
activation sources, and integrates attention switching
and attention maintenance into one unified account.

Introduction
To think about mental attention, we can adopt a metaphor
from visual attention (e.g., Posner, 1980) and imagine a
spotlight directed internally at memory and focussed on the
current thought. A sequence of thoughts, or serial attention,
would then involve moving the spotlight around —
maintaining it at one position for a time, then switching it
to the next, and so forth. Serial attention is basic to many
cognitive activities, from searching a memory set for a
probe, to achieving one goal and switching to another during
problem solving.

Understanding the costs of paying attention and where
they occur is crucial to understanding serial attention as a
whole. For example, the cost of switching attention has
often been interpreted as the time needed to pull a mental
lever that switches attention from one task to another (e.g.,
Garavan, 1998; Gopher, Greenshpan, & Armony, 1996;
Rogers & Monsell, 1995). Under additive-factors logic, this
switch cost would be reflected in the first measurement taken
after the lever is pulled. By extension, this switching action,
once complete, should have no effect on the train of
thought, which simply continues down the new track. Thus
the mental-lever view suggests that attention switching is an
active process but attention maintenance is essentially a
passive system state and should produce stable performance.

Unfortunately for the mental-lever view, attention
maintenance has its own cost, measured as a gradual increase
in response time between attention switches (Altmann &
Gray, 1999). Our initial explanation for this maintenance
cost was in terms of interference in memory (Altmann &
Gray, 1998). In brief, our proposal was that interference
among trials made attention maintenance more difficult over
time, and that this interference was “released” by the act of
switching attention. However, the functional role of this
interference was not clear. Did it satisfy some constraint
other than fitting the data? Also, though our explanation
was grounded in a cognitive theory (ACT-R; see Anderson
& Lebiére, 1998), it ignored basic operational principles of
that theory, including strengthening, decay, and noise in
memory. The mechanisms representing these principles were
simply “turned off” in our computational ACT-R model.

Here we present an expanded model of serial attention that
explains maintenance cost and offers a preliminary account
of switch cost. From the previous model we carry over the
premise that serial attention is essentially a memory
phenomenon. We now also adopt the premise that memory
in serial attention acts like memory in general in that it
strengthens with use and decays without, and is subject to
noise like any other data channel. The implication is that
cognition must employ active processes or strategies that
manipulate memory strength to cope with these constraints.
These memory-manipulation strategies are responsible for
the costs of maintaining and switching attention. We thus
characterize serial attention as strategic memory, or SASM.

We first briefly review our serial attention paradigm and
the evidence for maintenance cost. Next, we argue that
maintenance costs are inevitable given our premises. We
then develop the parameters of the SASM model in
geometric terms, and develop and test novel predictions
against empirical data. We end by discussing implications of
the model for such questions as cognitive workload. The
appendix presents an algebraic derivation of the model. We
have also implemented SASM as a computational ACT-R
model and fit Monte Carlo simulations to our empirical
data, but this work is not reported here.

The Paradigm and Sample Data
Our serial attention paradigm involves giving participants
two simple tasks and periodically issuing an instruction to
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switch from one task to the other. For example, the tasks
might be to judge a single digit (from the set 1, 2, 3, 4, 6,
7, 8, 9) as Odd or Even or as High ( > 5) or Low ( < 5). In a
typical experiment, trials are presented in blocks. Each block
begins with an instruction trial saying which task to do, for
example “Odd Even.” This trial is followed by a sequence of
classification trials. These are single digits and provide no
clue to the current task. The run of classification trials is
interrupted by a second instruction trial, which may or may
not indicate the same task as the first instruction trial. The
second instruction trial is followed by a second run of
classification trials, followed by feedback on accuracy and
response time for that block. A block contains 20
classification trials, and the second instruction trial occurs
randomly between the 7th and 14th classification trials. In a
typical experiment, participants receive 192 blocks, for a
total of 384 instruction trials (192 for each task). Responses
to all trials are self-paced and there is no calibrated inter-trial
interval. All stimuli appear at the same location in the
center of the screen.

Data from this paradigm appear in Figure 1 (from
Altmann & Gray, 1998). The abscissa shows the first seven
classification trials after the second instruction trial in a
block, with trial position meaning position relative to the
instruction. Switch cost occurs on P1, in that response time
(RT) is substantially slower than on P2. Maintenance cost
is the gradual slowing from P2 to P7.

Figure 1: Response time (RT) on post-instruction trials.

Maintenance cost is the slowing trend from P2 to P7.

Memory for Instructions
An important distinction is that between a task and an
instruction. A task is semantic and in our paradigm there are
only two (e.g., OddEven and HighLow). An instruction is
semantic and episodic – there are as many instructions as
there are instruction trials (384 in a typical experiment). An
instruction specifies what task to do now, superseding all
previous instructions.

An assumption central to SASM is that each instruction
is encoded as a distinct trace in memory. No instruction is
instantaneously forgotten or deleted. Rather, old instructions
linger and may interfere with the current one. Cognition
must cope with this potential interference by encoding each
new instruction to resist intrusions from old ones.

The mechanism for coping with this interference is
grounded in basic laws of memory. Under the law of exercise
a memory element becomes stronger with use, and under the
law of forgetting a memory element becomes weaker when
unused. Both laws are implemented in ACT-R in the
functions governing the activation of declarative memory
elements (chunks). A chunk use constitutes either a new
encoding of that chunk in memory or a retrieval of that
chunk from memory.

When cognition attempts a retrieval, ACT-R’s memory
system returns the most active chunk. This reflects the
rational memory assumption, in which activation represents
the memory system’s best guess at the chunk most likely to
be needed now (Anderson, 1990). Activation in ACT-R has
two components, one representing a chunk’s history of use
and the other representing the chunk’s relevance to the
current context. Base-level activation represents history of
use. For example, a period of concentrated rehearsal or
encoding makes a chunk very active. Associative activation,
which we refer to as priming, represents relevance to the
current context. Priming accounted for maintenance cost in
our previous model (Altmann & Gray, 1998); in the current
model it complements base-level activation to improve
memory accuracy, as we discuss later.

The base-level activation of instructions is a critical factor
in serial attention, as illustrated in Figure 2. The abscissa
shows two contiguous runs of trials, with the previous run
on the left and the current run on the right. Each run is
governed by an instruction (IP and IC, respectively). The
ordinate shows instruction activation. The top two curves
(in solid ink) show each instruction at peak activation
initially (at P1P and P1C) then decaying throughout its run.
When IP gives way to IC (at P1C), it decays somewhat faster
because it is no longer being used.

Figure 2: When instructions decay (solid curves), the
current instruction (IC) is always stronger than the previous
instruction (IP), by amount δ at P1C. Were instructions to
strengthen (dashed curves), serial attention would fail
because IC would be weaker than IP, by amount δ* at P1C.

The important relationship in Figure 2 is between the
activation of IC and IP. Once IC is encoded, both instructions
coexist in memory because IP is not completely forgotten.
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However, the top two curves show IC always being more
active than IP. Under the rational memory assumption, this
ensures that the memory system returns IC on each trial
during the current run, producing correct performance. IC

dominates IP because both activation curves slope downwards
— if all instructions decay from a high initial level, the
newest one will always be the most active.

The bottom two curves in Figure 2 (in dashed ink) show
an intuitive but problematic interpretation of the law of
exercise in this paradigm. The intuition is that if an
instruction is retrieved on each trial, it should gain
activation over trials. However, this would mean that it ends
up more active than it begins. At P1C, therefore, IC would be
less active than IP by amount δ*. Under the rational memory
assumption, this would preclude correct performance. Hence,
instruction activation must start high and end low.

Thus decay in episodic memory is a necessary condition
for serial attention and this decay implies maintenance cost.
Time to retrieve a memory element, in ACT-R as in other
memory models, is a function of its activation, with higher
activation implying faster retrieval. If instructions decay
from when they are first used, retrieval time will increase on
each subsequent trial within a run.

Parameters of Instruction Memory
We have argued that instructions must decay ab initio for
serial attention to be possible. We next examine four
parameters that determine what initial level of activation is
necessary to produce such decay. Here we use a geometric
notation, leaving the algebra to the Appendix.

One parameter is noise, which we assume affects memory
much as it affects any data channel. Following ACT-R, we
take noise to be manifested as transient increases or decreases
in chunk activation. Each chunk has an expected level of
activation, but its actual level on a given retrieval cycle
varies according to a logistic (roughly normal) distribution
(Anderson & Lebiére, 1998, ch. 3). This activation variance
can cause memory errors and in turn performance errors.

A memory error occurs when noise makes the target less
active than some other chunk on a given retrieval cycle. The
likelihood of such an error depends both on the amount of
noise in the system and on how active the target is, on
average, compared to other chunks. This is illustrated in
Figure 3, which shows activation distributions for IC (the
target) and IP. Activation is now on the abscissa and the
probability of an instruction having a given activation is on
the ordinate. Noise is reflected in the dispersion of each
distribution. This dispersion is one factor determining the
overlap of the activation distributions. The greater the
overlap, the more likely IP will be retrieved in place of IC,
and hence the greater the number of memory errors.

The other factor affecting memory error is δ, the difference
in expected activation between IC and IP (Figure 3). This
difference, resembling the d’ of signal detection theory, is

itself a function of three parameters, two affecting base-level
activation and one affecting associative activation.

The first parameter affecting δ is the amount of time spent
encoding the instruction while it is visible on the display.
We assume that more time spent encoding the instruction
means more base-level activation for the instruction chunk,
consistent with memory paradigms in which stimulus
exposure and trace strength are taken to be synonymous.
With respect to Figure 3, a longer encoding time would shift
IC to the right, thereby increasing δ. Because instruction
trials are self-paced, participants can wait to dismiss the
instruction until it is sufficiently encoded. Thus, encoding
time is under strategic control.
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Figure 3: Activation distributions of the previous (IP) and
current (IC) instructions. The less overlap between them the
more likely IC will be retrieved.

The second parameter affecting δ is run length. As this
grows, all else being equal, so does the amount of base-level
activation coming from trial-by-trial retrieval as opposed to
initial encoding. In Figure 2, each curve decays at first and
then flattens out; with more trials per run but no extra
encoding, the curve would inflect before the end of the run
and begin to slope upwards. In Figure 3, greater run length
(all else being equal) would shift IP to the right, decreasing δ
and thus increasing the chance of memory error.

The third parameter affecting δ is associative activation, or
priming from cues in the cognitive context. For priming to
contribute to δ, some cue must prime IC more than it primes
IP. This might occur, for example, were the trial stimulus to
cue the task. In a variant on our paradigm, the two tasks
might be OddEven and ConsonantVowel (instead of
OddEven and HighLow), each with a different stimulus set
(i.e., numbers vs. letters). In this case, the stimulus itself
would be an effective cue for IC. In contrast, in our paradigm
the stimulus (e.g., always a number) affords either task,
making it unhelpful as a cue.

However, not all cues need be external. One likely internal
cue is a residual memory for the previous trial. Although
this may be weak, it may play a role in priming the current
trial, producing a kind of repetition effect. Within a run, on
trial positions after P1, the task performed on the previous
trial primes IC but does not IP, which specifies the other
task. Thus, the previous trial increases δ for the current trial
by contributing to the expected activation of IC.

In sum, we have identified four parameters of memory for
the current instruction, or more generally of memory for the
current item in serial attention. Memory noise determines
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activation dispersion; encoding time, run length, and
priming affect an instruction’s expected total activation. We
next examine predictions of a closed-form model built on
these parameters.

Predictions of the Model
The parameters described above are related to each other and
to empirical measures in a system of mutual constraint. For
example, increased accuracy might require increased encoding
time. The model that captures this system is formalized in
the Appendix; here we derive two predictions from it, one
empirical and one theoretical.

Errors Increase Within a Run

One possible interpretation of maintenance cost is that it
reflects increasingly careful processing across trial positions.
People might be shifting their speed-accuracy criterion
gradually toward accuracy. Such a shift would imply a
constant or decreasing error rate across trials.

In contrast, SASM predicts that error rates will increase
within a run for two reasons. First, over the first few trials
of a run the activation curves for IC and IP approach each
other (Figure 2). This decreases δ which increases memory
errors and, hence, performance errors. Second, errors early in
a run beget more errors later in that run. An error occurs
when IP is used in place of IC. This use causes IP to gain in
base-level activation at the expense of IC. Thus, an error
decreases δ for all subsequent trials in that run.

Error data from the experiment described earlier are shown
in Figure 4. The ordinate shows total errors out of 176 trials
and the abscissa shows trial position. Rather than a constant
or decreasing error rate, errors increase throughout the run, as
SASM predicts. The effect of trial position is significant, F
(6, 114) = 4.9, p < .001, as is the linear trend, F (1, 114) =
24.2, p < .001.

Figure 4: Errors error on post-instruction trials, out of 176
trials. Error maintenance cost spans P1 to P7.

This correct prediction strongly supports our model. We
assumed that each instruction is encoded distinctly in
episodic memory and decays gradually rather than
instantaneously when superseded. These assumptions,
together with ACT-R’s memory theory, imply the decay
trajectory in Figure 2, which in turn predicts the observed
error pattern.

Base-Level Activation and Priming are Irreducible

Under the rational memory assumption, activation is
composed of two terms: base-level activation (from past use)
and priming (from the current cognitive context). This
decomposition is based on a Bayesian characterization of the
statistical structure of the environment. However, to our
knowledge, there has been no analysis of whether both
components of activation are functionally necessary. Is it
possible that one can be reduced to the other?

By binding the model’s parameters we can determine what
combinations of base-level and associative activation yield a
given error rate. The first parameter, noise, has been
estimated many times and typically falls in a limited range
(0.30 to 0.85 in terms of the logistic parameter s; Anderson
& Lebiére, 1998, p. 217). Hence, although noise is not
fixed, it is constrained enough for a sensitivity analysis. As
a measure of encoding time we take mean instruction
response time, which in our data is 0.97 sec. Run length in
our paradigm is 10 trials on average. Finally, the dependent
variable, error rate, is 0.023 on trial position P1.

The remaining parameter is priming. Because base-level
activation and priming are the only two sources of
activation, we can express one as a combination of the other
and the δ needed for a given level of accuracy. We designate
PB as the proportion of δ due to base-level activation. PB is
thus nominally defined on an interval of 0 (δ entirely due to
priming) to 1 (δ entirely due to base-level activation).

Figure 5 shows a sensitivity analysis of SASM for noise
and priming, the two parameters constrained by boundary
values. The abscissa shows PB and the curves predict
instruction response time for boundary values of the noise
parameter s. Thus the predicted times are those required to
achieve δ for given values of PB and s.
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Figure 5 shows that neither base-level activation nor
priming alone can achieve the δ needed for high-accuracy
serial attention. A PB of zero predicts a minimum encoding
time of roughly 500 msec (regardless of s). Even if δ is
entirely due to priming, this amount of initial encoding is
needed to bring the initial base-level activation of IC up to
the final base-level activation of IP.

For large values of PB, predicted instruction response
times go off the scale. That is, even large amounts of initial
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encoding cannot completely replace priming. As encoding
time increases, δ due to base-level activation approaches a
limit (see Appendix, Eqn. 3). Performance accuracy requires
δ to be above this limit, so priming must supply the
balance of the needed activation. In sum, high-accuracy serial
attention depends on both base-level activation and priming.

If some amount of δ must come from priming, what cues
could provide this? The environment offers no effective cues;
the classification-trial stimulus (a number) equally primes
both kinds of instruction (OddEven and HighLow) and thus
fails to contribute to δ. Therefore, any effective cues must
be internal. We proposed earlier that residual memory for the
previous trial is a likely cue. Indeed, it is unclear what other
internal cues there could be that affect IC and IP differentially.
Thus, SASM predicts an inherent inertia to serial-attention
performance. Priming by the previous trial implies an
architectural propensity to do the same task over again.
However, because priming alone cannot produce the needed
δ, perseveration is not a danger.

Upper and lower bounds on PB can be estimated from our
data. Figure 5 shows that PB between 0.1 and 0.32 predicts
the empirical instruction response time of 0.97 sec. We
interpret this to mean that inertia from trial-to-trial priming
substantially facilitates serial attention.

In sum, serial attention depends on both base-level and
associative activation — neither is reducible to the other.
The general implication is that memory retrieval relies not
on one but on two sources of information about the target.
This is an axiom of Bayesian analyses in general and ACT-
R in particular, but SASM suggests that two sources of
information are required for reliable retrieval in a dynamic
environment. To the extent that serial attention is a building
block of higher-level cognition, base-level and associative
activation are building blocks as well and earn their
designation as atomic components of thought.

Discussion
The SASM model reduces serial attention to a set of
memory phenomena, going some way toward banishing the
homunculous of mental attention. Switching attention
involves rapidly strengthening a new item to be temporarily
dominant, and maintaining attention involves letting the
current item decay slightly to prevent it from intruding later.

The signature evidence for the model is maintenance cost,
as measured by the gradual increase in response times across
trials in a run. Although to our knowledge this effect is
novel, we have replicated it under a variety of situations
(Altmann & Gray, 1999). We explain this effect in terms of
short-term, trial-by-trial decay of instructions encoded in
episodic memory. This decay is a feature, not a bug, in that
it contributes to δ, the activation difference that makes the
current instruction always the most active.

The complement to maintenance cost is switch cost. This
is typically measured on the first classification trial governed
by the new task (Allport, Styles, & Hsieh, 1994; Garavan,

1998; Gopher et al., 1996; Rogers & Monsell, 1995).
Switch cost is often (but not always; Allport et al., 1994)
interpreted as the cost of moving an attentional spotlight
from one location to another, with no related account of
maintenance cost. SASM suggests a broader interpretation
of switch cost as the cost of processes that increase δ. These
processes may occur on classification trials, instruction
trials, or elsewhere. On this view, the largest switch cost in
our paradigm is instruction response time. On instruction
trials, participants strategically encode the displayed
instruction to decay through use.

From an applied perspective, SASM may help
operationalize cognitive workload in real-time dynamic
tasks. Excess workload in a dynamic environment means
essentially that too much is happening too fast, causing the
operator’s performance to suffer. SASM provides a way to
analyze such excess workload as a memory phenomenon.
For example, in modeling sustained operations, fatigue may
be instantiated as increased noise in memory, and accuracy
and run length may map directly to measures of task
performance. Thus SASM might be used, for example, to
predict need for external memory aids as a function of task
complexity and opacity (Brehmer & Dorner, 1993).

An open question concerns the first trial position of a run
(P1). This position appears not to benefit from high initial
instruction strength, in that RT is substantially slower than
on later trial positions (Figure 1). One possible explanation
is that this slowdown reflects a final phase of the encoding
process. If initial encoding stops when activation reaches
criterion, then transient noise may boost activation to this
criterion prematurely and bring an early end to the
instruction trial. However, if the instruction persists in
iconic memory, a final encoding phase would be possible as
P1 begins. In our computational ACT-R model, this final
encoding phase regresses activation toward its criterion
value, because instruction chunks not made active enough
during the instruction trial get a second chance. In future
research it will be important to investigate empirically the
extra processing that seems to take place on P1, and the role
of this processing in the general scheme of serial attention.
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Appendix
SASM is predicated on the notion that, to be reliably
retrieved, the current item (e.g., an instruction) must be
more active than the previous item by some amount δ:

B BC P= + δ     Serial Attention Equation    (1)

δ depends on the probability of retrieving the current
instruction, P(IC). This is given by the Chunk Choice
Equation (Anderson & Lebiére, 1998, p. 77):

P i e em
t

m
tj

i j( ) [ ]= ∑ −1

P(i) is the probability of retrieving chunk i given noise t and
given j chunks in memory each with expected activation m j.
We assume an infinite number of previous instructions of
which the most recent few materially affect the probability
of a previous instruction intruding on the current one. The
expected activations of these few previous instructions are
roughly δ apart, so we estimate m m jj i≈ − δ . This allows

for a closed-form solution to the Chunk Choice Equation,

P IC e t( ) = −
−

1
δ

. Rearranging, we getδ = − −t P ICln[ ( )]1 .

P(IC) is also constrained by performance accuracy, A . We
assume an accurate response if the retrieved instruction is (a)
IC, which always specifies the appropriate task; (b) a

previous instruction IPA that specifies the appropriate task;
or (c) a previous instruction IPN that specifies the not-
appropriate task but whose response for the current stimulus
is the same as that of the appropriate task. Thus,
A P I P I P IC PA PN= + +( ) ( ) ( ) . The paradigm is structured

such that P I P IPA PN( ) ( )= 2  and, assuming that an

instruction is always retrieved when retreival is attempted,
P I P I P IC PA PN( ) [ ( ) ( )]= − +1 2 . These constraints together

imply that P I AC( ) = −4 3. Substituting this for P(IC) in the

equation for δ, and using the error rate E A= −1  instead of
A , yields the equation below, where PB, defined on [0…1],
limits δ to the proportion due to base-level activation.

δ = −tP EB ln( )4    (2)

With δ bound by E, we can find how many initial uses are
needed to achieve that δ. Assuming one use per trial, average
run length R, and N initial uses, we can express the age of
an instruction in terms of uses. At P1C, the age of IP is one
instruction trial and R classification trials from the previous
run, plus another instruction trial and one classification trial
in the current run, or R+3. The age of IC is only 2. The
number of uses of IP is N+R and of IC is N+1. We can now
expand Eqn. 1 using the Base-Level Learning Equation
(Anderson & Lebiére, 1998, p. 124), which defaults to

B nT= −ln( ).2 0 5  for n uses over chunk age T . Eqn. 1 in
terms of N, R, and δ (and exponentiated) is then:

( ) ( )( ). .N N R R e+ = + +− −1 2 30 5 0 5 δ     (3 )

To estimate the maximum contribution of initial use to δ,
we can solve Eqn. 3 for δ and take the limit as N goes to

infinity. This produces ln . ( )0 5 3R + , or 0.94 for R=10.

However, E with minimal noise entails a δ of at least 1.02
(via Eqn. 2 with PB=1; E and t are bound below). Therefore,
some δ must come from differential priming of IC over IP.

To estimate encoding time as a function of PB, we can
solve Eqn. 3 for N and substitute for δ from Eqn. 2. Two
ACT-R production firings serve to encode a chunk once, one
to create the chunk and push it onto the goal stack and one
to pop it into memory. Default firing time is 50 msec, so
time per use is 100 msec. Thus predicted encoding time, as
measured by instruction response time (IRT), is:

IRT
R R E

E R

tP

tP

B

B
=

+ −

− +

−

−100
3 2 4

2 4 3

( )

( )
, with t s= 2     (4 )

Eqn. 4, with E=0.023 (bound empirically), s=0.30 and 0.85
(Anderson & Lebiére, 1998, ch. 7), R=10 (task-specific), and
PB = [0...1], produces the curves in Figure 5.


