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1. THE SYNERGY BETWEEN COGNITIVE MODELING AND HUMAN-
COMPUTER INTERACTION

Cognitive models—simulations of human behavior—mow perform tasks
ranging in complexity from simple mental arithmetic to controlling simula-
tions of complex real-time computer-based systems, such as nuclear power
plants. In the future these models will become even more powerful and
useful.

Providing cognitive models® access to users’ tasks can be done in three
ways [Ritter and Major 1995]. In the first, the task simulation is imple-
mented in the cognitive modeling language. This is the best approach when
the focus of the modeling is mainly on the internal cognitive aspects and
when the task is quite simple. Numerous models have used this approach
(e.g., Beaman and Morton [1998], Newell and Simon [1972], Peck and John
[1992], and Ritter et al. [1998]).

In the second method, a simulation of the user’s task is implemented in a
simulation language, but the interface or task cannot be directly used by
human users, and the model’s task simulation might not provide a visible
representation of the task or of the model’s behavior. The early versions of
EPIC, for example, used this approach [Kieras and Meyer 1997], as do
numerous other models (e.g., Ritter et al. [1998] and Taatgen [1998]).

In the third method, the task simulation can be operated by both the user
and the model (e.g., Gray [2000]). This approach is superior when the
simulation already exists, or when modeling complex dynamic domains
where the task is too difficult to simulate using the previous approaches. It
is preferable for the model to use the existing interface because fewer
assumptions have to be made about equivalencies of the interfaces, and less
work is required because only one interface is created.

We describe here an approach for allowing cognitive models more direct
access to the interfaces users see. This is done by adapting ideas taken
from user interface management systems (UIMSes) and extending them in
a principled way so that cognitive models can interact with any interface
built within the UIMS. This will allow cognitive models to be utilized as an
interface design and evaluation tool on a wider range of interactive systems
as previously envisioned [Olsen et al. 1993]. We next present the advan-
tages of this approach for HCI and for modeling.

1.1 The Advantages for HCI

Cognitive models have been successfully used in three main ways by
human-computer interaction (HCI) [John 1998]. The first way is to help
examine the efficacy of different designs by using cognitive models to predict
task performance times (e.g., Sears [1993]). The Model Human Processor, the
Keystroke Level Model, and particularly the GOMS family of techniques [Card
et al. 1983; John and Kieras 1996] have all been successfully deployed in the

Unless specified, “model” refers to the model of the user, and “simulation” refers to the
simulation of the task.

ACM Transactions on Computer-Human Interaction, Vol. 7, No. 2, June 2000.



Supporting Cognitive Models as Users . 143

laboratory and in industry. These models can help create and choose better
designs, sometimes saving millions of dollars (e.g., Gray et al. [1993]). The
next step for this approach is to provide and include these and more
complex models in design tools to provide feedback for designers.

The second way is by using cognitive models to provide assistance such
as with an embedded assistant. In particular, models can be used to modify
interaction to help users with their tasks. This technique has been em-
ployed in cognitive tutors (e.g., Anderson et al. [1995]). Some of these
model-based tutors can be regarded as an example of what are commonly
described as embedded agents or embedded intelligent assistants. The next
step forward is to make the development of such models a more routine
process.

The third way is by using models to substitute for users. These models
are useful for populating synthetic environments [Pew and Mavor 1998],
for example, to simulate fighter aircraft crews in a simulated war scenario
[Jones et al. 1999]. In the future they will also lead to models that can test
interfaces by behaving like a user. The next steps for this approach are to
provide models with more realistic inputs and outputs mirroring human
performance and to apply them more widely. Using models as users has
been envisioned before (e.g., Byrne et al. [1994] and Lohse [1997]), but has
not yet been widely applied.

One major impediment to each of these uses of cognitive modeling in HCI
has been the difficulty of connecting the cognitive models to their task
environment. Either the connection or the interface has to be built—
sometimes both. There is an additional requirement that the connection
should mimic the limitations and capabilities of human performance.

1.2 The Advantages for Models

Providing models with access to interfaces facilitates further development
of the models and will open up new applications and expand existing ones.
The main advantage is that the models will gain access to a much wider
range of tasks than can be simulated in modeling languages. Early model-
ing work examined static tasks, keeping track of the task state in the
model’s head, at least partly because it is difficult to develop a model of an
interactive task without providing the model with a capability for interac-
tion with an external world (for a review of early models, see Ritter and
Larkin [1994]). If they had been able to use the same interface as the
corresponding subjects used, the models would have been applied and
tested on more tasks and would have been able to cover a wider range of
behavior, skills, and knowledge. These include models of computer inter-
face usage [Altmann 1996; Bauer and John 1995; Howes and Young 1996;
John et al. 1994; Peck and John 1992; Vera et al. 1993], as well as models
of interaction with artifacts that could be simulated with a computer
interface (e.g., air traffic control [Freed and Remington 1998], a VCR [Gray
2000]).
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In addition to providing a richer world, creating a model that is embodied
(i.e., with perception and motor actions) provides further constraint on a
model. Closing the perceptual loop (or completing the perceptual cycle
[Neisser 1976]), thereby restricting the model to interact only through its
hand and eye, constrains the model’s behavior to more closely resemble
that of a real user [Baxter and Ritter 1997]. Although the constraints
imposed by physical interaction may be relatively small on simple puzzle
tasks, they are much more significant on interactive tasks. The models
presented here must incorporate knowledge related to interaction such as
where to look on the interface to find information. Because the models
require a depth and range of knowledge about interaction, they predict that
users do too.

Working with existing external simulations of tasks can make model
development easier because it removes the need to create the task simula-
tion using cognitive modeling languages, a difficult activity prone to error.
Providing the model with access to the user’s interface also leads to more
accurate predictions. If the model and subject use the same interface there
is less question about whether the model and the subject had access to the
same material. There is also less development work required, because only
one interface has to be created. Several of the case studies use simulations
that already existed, thus relieving the modeler of the need to develop the
task simulation from scratch. In addition, if the model can be used to
suggest how to improve the interface, any changes can be applied to a
single interface, rather than having to apply them both to the user
interface and the model’s representation of that user interface.

Finally, this approach will also lead to theory accumulation. In the
examples we describe later, the models are developed using a cognitive
architecture [Newell 1990], also referred to as an integrated architecture
[Pew and Mavor 1998] when interaction is included. Cognitive architec-
tures are theories of the common modules and mechanisms that support
human cognition. They are typically realized as a programming language
specifically designed for modeling, such as Soar [Newell 1990] or ACT-R
[Anderson and Lebiere 1998]. Cognitive architectures offer a platform for
developing cognitive models rapidly whilst still maintaining theoretical
coherence between the models. Including interaction with an external
world results in a more complete architecture.

Although there are tools to facilitate the development of user interfaces,
and there are tools that can be deployed in the development of cognitive
models, there are none that support connecting cognitive models to a wide
range of interfaces. In the rest of this article we develop an approach to
allow cognitive models access to the same user interfaces as users. Section
2 describes the cognitive modeling process, and introduces the concept of a
cognitive model interface management system (CMIMS). Section 3 de-
scribes five example projects where models perform interactive tasks using
the same type of simulated eye and hand implemented in three different
interface tools and three modeling languages. These examples, when consi-
dered together with a review of related systems, suggest possible applications
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Table I. The Artifacts Produced During the Cognitive Modeling of Interactive Tasks

Artifact Purpose
Cognitive model Simulates the cognitive performance and behavior of a human
performing the task.
Task simulation Provides the task, including the user interface that will be used
by the cognitive model.
Linkage mechanism Simulates human perception and action. Provides a way for the

model and simulation to communicate.

and indicate where further work is necessary. Section 4 assesses the
implications of the results of these projects, and identifies a number of
ways in which integrated models could be exploited in the development of
user interfaces, and more generally within HCI.

2. A ROUTE TO SUPPORTING MODELS AS USERS

The cognitive modeling process is unique in many respects, although the
artifacts created by it bear some resemblance to products generated during
the development of interactive software applications. We examine here the
cognitive modeling process and introduce an approach to supporting cogni-
tive models as users.

2.1 The Artifacts of the Cognitive Modeling Process

The cognitive modeling process, particularly as applied to the interactive
tasks we are concerned with here, attempts to produce a cognitive model
that performs like a human. The veracity of the cognitive model is tested by
comparing its performance with human performance. The differences be-
tween the two are analyzed to understand why they occur, and then the
cognitive model is appropriately refined, in an iterative cycle [Ritter and
Larkin 1994].

The cognitive modeling process can be viewed as producing three arti-
facts, each of which fulfils a particular purpose, as shown in Table I. The
first artifact is the cognitive model itself. As a theory, it has primacy.

The second artifact is a task application or its simulation. In simple,
static task applications, such as small puzzles like the Tower of Hanoi,
where the state of the task normally changes only in response to the user’s
actions, the task simulation can often be implemented using the cognitive
modeling language. In dynamic tasks, however, where the state of the
environment can evolve without outside intervention, the task simulation
is best implemented separately. Where the original task is computer based,
the simplest and most accurate approach is to allow the model to use the
original task environment.

The third artifact is a mechanism that supports interaction between the
cognitive model and the task simulation. The need for this linkage mecha-
nism is most apparent in tasks in which the cognitive model has to interact
with a task simulation implemented as a separate program, possibly
running on a different computer.
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There are existing tools that support the development of cognitive
models, and of task applications. There are few tools that support the
creation of the type of linkage mechanism required in cognitive modeling,
however. User interface management systems are candidates to build upon.2

2.2 The Role of User Interface Management Systems for Supporting Cogni-
tive Models as Users

To provide models with access to the same interfaces as users perhaps the
best place to start is to consider tools used to develop user interfaces. In
interactive software applications, the communication between the user
interface and the underlying application is often implemented as a sepa-
rate component. This component consists of a set of functions that provide a
robust, uniform way of connecting the two. Cognitive models also require a
set of capabilities that allow them to interact with the task simulation but
that can be modified to approximate the same limitations and capabilities
as humans have.

Any initial considerations for a tool kit to support the cognitive modeling
process will therefore need to incorporate the following features:

—A tool to create interfaces.

—A run-time mechanism that lets the cognitive model interact with the
task simulation (i.e., a model eye and hand).

—A communication mechanism that passes information between the cogni-
tive model and the task simulation.

User Interface Management Systems (UIMSes) already provide a similar
set of features for the development of interactive applications. UIMSes are
systems designed to support interface creation and help manage the
interaction when the interface is used (e.g., Myers [1995] and Open
University [1990]). UIMSes can be used to create interfaces and applica-
tions in their implementation language, or can create interfaces that are
tied to external applications. By definition UIMSes provide a set of features
that very closely match our requirements.

UIMSes also offer a way to apply this work widely. They are designed to
create multiple interfaces. Working within an UIMS will lead to the models
being able to use any interface created with the UIMS.

2.3 Cognitive Model Interface Management Systems

The approach we are creating by extending a UIMS to support models as
users can be described as a Cognitive Model Interface Management System
(CMIMS), a system for managing the interactions of a cognitive model
analogous to how a UIMS manages a user’s interactions. The name CMIMS
reflects the parallels with UIMSes, particularly the parallel needs between
(human) users and cognitive models.

2An alternative basis for the linkage mechanism is to do image recognition of the screen
directly, which some are now attempting to do [Zettlemoyer and St. Amant 1999].
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Fig. 1. Implementation of a cognitive model tied to a user interface of a task simulation,
where the model and the simulation may be running in different environments (programming
languages, processes, and/or computers). The hand and eye are implemented in the same
UIMS as the task simulation, and communicate with the cognitive model via a communication
mechanism.

Figure 1 depicts a CMIMS, showing the functional aspects of tying
together a task simulation and a cognitive model. On the left of the figure
is the user interface of a task simulation, and on the right is the cognitive
model. The first step in getting the model to interact with the task
simulation is to extend the cognitive model to be a more complete model of
the user, by adding a simulated eye and a simulated hand to provide the
model with capabilities for perception and action. We have found that the
simulated eye and hand are best implemented in the same environment as
the task simulation. The simulated eye needs access to the visible task
objects (i.e., to the objects in the display) to create descriptions for the
cognitive model, and the simulated hand needs to be able to implement the
model’s actions in the environment. The interface development tools within
UIMSes provide facilities that support these functional capabilities. In
particular, in UIMSes there are tools to find which objects occlude other
objects (such as the simulated eye being over a textual label on the
display), for the representation of objects such as mouse cursors, the
capability to send mouse and keyboard actions to the interface, and the
ability to create displays and control panels.

The second step is to link the cognitive model to the simulation, so that
the model’s eye can observe the simulation and pass back information to
the cognitive model, and so that the model’s hand can pass actions to the
simulation. The end result is a model of a user in contact with a task
environment, where information about the environment, and actions on the
environment, is conveyed and constrained by the simulated eye and hand.

The resulting configuration is shown in the linked boxes across the
middle of Figure 1. The model of the user is now split into two parts, with
the simulated eye and hand implemented in the same software environ-
ment as the simulation, whilst the cognitive model is separate. Interaction
between the model and simulated eye and hand occurs via a communication
mechanism; its nature will vary depending on implementation language
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and machine choice. Incorporating the simulated eye and hand into the
UIMS potentially allows them to interact with any interface in the UIMS.
Thus, it provides models with routine access to interfaces.

The arrows underneath the boxes represent the scope of the various
tools. Particularly where the user’s task involves interaction with a com-
puter interface, the task simulation is well supported by standard UIMSes.
The dashed extension to the UIMS arrow denotes the observation we made
above, that the facilities needed to implement the eye and hand can usually
be based on existing facilities in the UIMS. However, we will see later in
the article that the simulated eye and hand place requirements that not all
UIMSes or related systems currently satisfy.

Next, the CMIMS arrow reflects our suggestion for the development of
Cognitive Modeling Interface Management Systems. As can be seen, in
addition to the usual UIMS role, a CMIMS would need to include the hand
and eye, as well as the communication mechanism between them and the
cognitive model. Finally, on the right of the diagram is the cognitive model.

How cognitive architectures use the simulated eyes and hands is archi-
tecture dependent. Architectures will differ in how they represent and use
the results of vision, and how they prepare to perform motor output. For all
of the architectures, (1) visual search is required to find information to
examine, (2) the amount of information available at any point is limited,
and (3) performing visual search takes time. Similar restrictions apply to
the motor output.

In the far left of Figure 1, the circle labeled User indicates that the
cognitive model can work with the same task interface as users. This feature
supports gathering data to test the model. It also indicates that the user can
work with the model serving as a helper or agent within the user’s interface.

Keeping the task simulation distinct from the cognitive model has three
advantages. First, it makes development easier because the model and the
simulation can then be tested and debugged independently. Second, it
makes it less likely that the modeler will unintentionally incorporate
assumptions about the task into the cognitive model, or about cognition
into the task simulation. Third, it makes it easier to use different cognitive
models with the same task simulation, or to apply the same cognitive model
to different tasks. When a model performs a task in its own “mind,” it is
difficult to utilize the model or the task elsewhere, because they are specific
to a detailed set of circumstances. Where a model is developed that works with
one interface, there may be other interfaces to which it can be applied as well.

2.4 A Functional Model Eye and Hand

The Sim-eye and Sim-hand?® are the most important part of the CMIMS.
They bring the model into contact with the interface. We explain here the
functional capabilities our Sim-eye and Sim-hand provide, and some empirical

3In order to emphasize the distinction between the model’s capabilities and human capabili-
ties, we will refer to the model’s implementation of visual perception as the Sim-eye, and the
model’s implementation of motor action as the Sim-hand.
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regularities they can easily support. Table II lists an initial set of func-
tional capabilities and empirical regularities on which to base models of
interaction. The table also indicates how many of these capabilities and
regularities are demonstrated by the models described in Section 3, show-
ing that with each additional refinement to the implementation (from left
to right), the models had more capabilities and have exhibited more of the
regularities.

The capabilities and regularities in Table II were chosen based on a
literature review [Baxter and Ritter 1996] as the most important for an
initial model of interaction. These are the capabilities and regularities that
will have the most impact on cognitive models, either by providing them
with new capabilities or by providing them with important and gross
performance limitations, particularly for behavior over one second. These
capabilities are fundamental necessities to support interaction.

Models exhibiting a greater number of empirical regularities can be
created with these capabilities. This could, for example, include relative
recognition rates of different colors. Other modelers may choose to focus on
other regularities, such as those influencing behavior below half a second.
The most important point is first to support the process of providing
cognitive models access to interfaces in UIMSes by providing these func-
tional capabilities—matching further empirical regularities can come later
as refinements.

Providing functional capabilities first and then modifying the Sim-eye
and Sim-hand to match more empirical regularities has proved to be a
useful development strategy. For example, by giving the Sim-eye and
Sim-hand visible representations, the modeler can observe their behavior
on the display screen, and use these observations to refine the implemen-
tations of the Sim-eye and Sim-hand themselves.

Some of the other systems discussed in Section 3.6 are designed to look at
dual-tasks, allowing cognition and interaction to occur in parallel. Often,
they have not put development effort into their own usability and have not
used more general UIMSes (such as SLGMS, Tcl/Tk, or Visual Basic). With
time, these approaches will converge because they only represent different
development priorities—none of the developers would argue, we believe,
that usability or that accuracy are unimportant.

2.5 Sketchy Design

The Sim-eye and Sim-hand are controlled by the model through a simple
command language, shown in Table III. The Sim-eye can be moved around
the display using the saccade command to move the eye, and can inspect
what appears at the current location on the display using the fixate
command. The saccade and fixate commands are implemented using func-
tions in the UIMS for handling mouse actions, manipulating display
objects, and drawing. Once implemented, the Sim-eye can see (access) every
object on interfaces built within that UIMS provided that the UIMS uses a
regular representation of objects that can be accessed at run time. Users

ACM Transactions on Computer-Human Interaction, Vol. 7, No. 2, June 2000.



150 . F. E. Ritter et al.

Table II. Summary Functional Capabilities (CAP) and Empirical Regularities
(REG) that Can Be Supported (adapted from Baxter and Ritter [1996]) and the Examples
that Include Them

Tower CG/ EW ACT-R/

Simulated Perception ATC Tabletop of Nott Phone Task PM"
Cap A fovea represented and displayed. Y - Y Y Y Y
Cap A list of items sent to cognition Y -- Y Y Y Y
upon fixation.
Reg A parafovea (5° to each side of the -- -- Y -- Y N

fovea) providing less information
than the fovea.
Reg A periphery reporting object Y - Y -- Y Y
location, moving or not, and a
unique identifier.

Cap Eye movement based on relative Y -- -- Y Y Y
screen coordinates.

Reg Eye movements take appropriate -- -- Y -- Y Y
amounts of time.

Cap The eye can smoothly track an Y -- -- -- Y Y
object.

Simulated Motor Action

Cap Mouse represented and displayed. -- Y Y Y Y Y

Cap Mouse button event actions: press -- Y -- -- Y Y
and hold, release, click, double-
click.

Reg Maximum speed for hand -- Y Y Y Y Y
movements (e.g., 30 cm/s).

Reg Finite mouse button operation -- Y -- Y Y Y
speed.

Reg Adjustable typing speed. -- Y -- Y Y Y

Reg Other typing regularities. -- -- -- -- -- --

Reg Time to move the hand between -- Y -- Y Y Y
mouse and keyboard.

Cap Continuous tracking, sequential, -- -- -- -- Y Y
and repetitive movements.

Reg Mouse move times based on two -- Y -- -- Y Y

phase positioning movements.
(Movements may or may not be
modeled.)

Eye-Hand Coordination

Cap Response time of the eye and hand -- -- Y -- Y Y
fast enough to control motor
movements via visual feedback.

Cap Control panels. -- -- -- Y

Reg Motor movements are sensitive to -- Y -- --
target size.

=

“Except where noted, ACT-R/PM as presented by Byrne and Anderson [1998].

“byrne/RPM/index.html.
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Table III. Summary of Commands to Control the Sim-Eye and Sim-Hand

Sim-Eye Commands Sim-Hand Commands

saccade <deltaX> <deltaY> press mouse button <buttonName>
release mouse button <buttonName>
fixate click mouse button <buttonName>
double click mouse button <buttonName>
start mouse move <deltaX> <deltaY>
update mouse move <deltaX> <deltaY>
stop mouse move
move hand from mouse to keyboard
move hand from keyboard to mouse
type character <character>

and the model can see the same display (to the limit of the theory of vision
implemented in the Sim-eye).

Sim-hand also has a set of commands that allow the model to move its
mouse around the display, and to perform mouse actions: press-mouse-
button, release-mouse-button, and so on. The Sim-hand implementation
will vary based on the UIMS’ relationship to the operating system on which
the Sim-hand is to be used.

In our models, which do not look at very rapid interaction, cognition
generates an interaction command and then waits for the perceptual and
motor operations to complete. While our models have used these capabili-
ties in a synchronous way, this design allows cognition and interaction to
occur in parallel.

We next examine how this functional model of interaction can support
models as users. These five case studies show that it is possible to create
CMIMSes, and that there are advantages in so doing.

3. EXAMPLE COGNITIVE MODELS THAT INTERACT

We have created a series of cognitive models that interact with task
simulations. The five simulations were developed using tools that can be
described as UIMSes. A different set of examples would yield a different set
of lessons, but we believe only slightly different. We see many commonal-
ties across this diverse set. We also review some other systems that model
interaction.

3.1 Simplified Air Traffic Control Model

The first task simulation is a simplified air traffic control (ATC) task [Bass
et al. 1995]. It was designed to explore how to create a general eye, and to
let us understand what a model would do with an eye. We wanted a model
in this domain to generalize to more complex tasks, and to assist us in
understanding what knowledge should be included in models that interact.
Such a model could help support the user by predicting what they would do,
and then to assist them or do it for them.
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= ATC Simulation [ e

File RadarScope Command Communication Logging Information Utilities

1 |

Fig. 2. The display of the ATC simulation showing the model’s fovea (the white rectangle on
the left-hand side of the figure), before it moves to the plane labeled “cx120”.

We had access to ATC task simulators, but not to one that we could have
our model interact with, let alone interact in a psychologically plausible
way. A task simulation had to be developed, therefore, to allow the task to
be performed both by the cognitive model and by users. The user interface,
shown in Figure 2, is a simplified version of an air traffic controller’s
display screen. It includes some of the standard features that would appear
on a real controller’s screen, such as range rings. The current position of
the aircraft is indicated by a track symbol (a solid white square) that has
an associated data block depicting the aircraft identifier (¢x120), its head-
ing (135°), its speed (150 knots), and its altitude in hundreds of feet (e.g.,
200 represents 20,000 feet).

The simulation provides a simplified version of an approach air traffic
control up to the point where aircraft would normally be handed over to
ground controllers. So, for example, when an aircraft is directed to change
its heading, the turning time is not based on a detailed model of aircraft
behavior. The task simulation does, however, provide facilities that allow
the model to control the behavior of the aircraft by instructing it to change
its speed, heading, and altitude. When an aircraft comes close enough to
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the airport it is removed from the display and tagged as having successfully
landed.

The basic task involves learning how to direct a single aircraft to land at
an airport located at the center of the display. The choice of flight path is
based on reading the wind speed and direction. The aircraft has to be
guided along a path identified by a number of way markers, which appear
on the screen as crosses. In order to land the plane, the cognitive model
directs the aircraft to change its heading as it approaches each of the way
markers on its path. A crucial element of the task is that the change of
heading commands must be issued at the appropriate time, which requires
that the cognitive model be able to detect when an aircraft is approaching a
way marker.

The simulation was implemented using the Garnet UIMS [Myers et al.
1990]. Garnet was chosen because it was familiar and provides fairly
general support for creating interfaces. The model was implemented in
Soar [Laird et al. 1987].

3.1.1 Visual Perception and Action. The Sim-eye was implemented as
part of the user interface developed within Garnet. The visible representa-
tion of its data structure consists of a transparent rectangle outlined in
white (representing the area of the screen that would normally project onto
the fovea of a real eye, the area of most acute vision, which is about the size
of a thumbnail when viewed at arm’s length). When a fixate command is
sent by the model, the details of the objects appearing inside the foveal
rectangle are sent back to the cognitive model as symbolic descriptions.
This Sim-eye includes a coarse level of vision outside the fovea, providing to
cognition only the location of objects that appear outside the fovea.

The Sim-eye is moved around the ATC display window (shown center left
in Figure 2) by the model placing saccade commands to be processed into
the Soar-I0 facility. When the Sim-eye saccades, the list of visual elements
is removed from cognition. The Sim-hand was implemented here as simple
function calls to the task simulation via the Soar-I0 facility.

3.1.2 The Communication Mechanism. The communication mechanism
is implemented by a system called MONGSU [Ong 1994], which is based on
Unix sockets. MONGSU allows any pair of Lisp or C-based processes to
communicate using list structures and attribute-value pairs. Here, it was
the ATC simulation in Lisp and the model in Soar (a C-based process).

3.1.3 Summary. The ATC model demonstrated that a simple but func-
tional Sim-eye could be created using an existing UIMS. Knowledge about
when and where to look at the screen is domain dependent. For this reason,
knowledge about the ATC display had to be included in the cognitive model.
Moving the Sim-eye around to see objects on the display slowed down the
performance of the model because it had to work to get information—all the
problem information was not resident in the model. So, an apparently
trivial task, such as finding the single number representing wind speed
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from the screen, became an intricate process, involving its own level of
problem solving and search based on the external interface.

The symbolic descriptions returned upon a fixation are based on the
graphical object hierarchy in Garnet. It is easy to create a general Sim-eye
when all the objects to be recognized are part of a hierarchy. Garnet’s object
hierarchy ensures that all objects can be recognized in the same way.

The use of sockets as a communication mechanism added an extra layer
of complexity because it requires the modeler to start two processes instead
of one. Establishing a connection that is external in some way is also more
prone to human and network errors than working within a single process.

This model used knowledge that has not often been seen in a cognitive
model: where to look and how to visually monitor. The model had to find
both the wind heading and the plane using its peripheral vision. Surprising
to us at the time, but quite clear in hindsight, is that the eye is not just the
fovea: the periphery is needed even for simple search, and otherwise the
model has tunnel vision and must carefully scan the entire screen with its
fovea. In a more complex display there will be many more objects. Knowl-
edge must be available about where to look, even if it takes some searching
to find objects. The cognitive model included new behaviors such as
monitoring a plane, and could later reflect on and learn from its interac-
tions. These behaviors suggest that knowledge acquisition studies of expert
performance should not just examine what experts do but must also
examine what they look for, and where and when they look.

3.2 Simple Tabletop Model

A simple task simulation was developed in Garnet as a test bed for
developing a Sim-hand to provide models with a motor action capability
[Rassouli 1995]. This tabletop task simulation is shown in Figure 3. It is
implemented as a window with a number of different objects and a
(model’s) mouse to move between them. A simple Soar model was developed
to demonstrate that a general Sim-hand created in a UIMS could be
controlled by a cognitive model.

3.2.1 Motor Action. The Sim-hand has its own mouse pointer icon that
moves around the tabletop based on commands issued by the cognitive
model. The Sim-hand accepts requests to perform mouse operations by
passing events to the window system. In this way the cognitive model can
interact through typing and mouse actions.

3.2.2 The Communication Mechanism. The cognitive model is con-
nected to the task simulation using the same interprocess communication
mechanism (MONGSU) as had been previously used in the ATC task.

3.2.3 Summary. The Sim-hand demonstrated that a simple but func-
tional hand could be created using an existing UIMS. The Sim-hand
generated mouse button events (click, press, and release) in software
mimicking the hardware mouse.
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Fig. 3. The simple tabletop written in Garnet (from Rassouli [1995]). The model’s mouse
pointer is the hand with the mouse; the hardware mouse used by the modeler is the arrow.

Having to explicitly move the hand and click the mouse button makes the
model perform the task interactively, bringing the model closer to human
behavior by forcing the interaction behavior to be explicit rather than
implicit. Clicking on a button is not automatic or a single step: the model
had to work out where to move the hand, move it, and then click the mouse
button.

The initial implementation of the Sim-hand could not select items from
the menus it brought up. Garnet, like many graphics systems, requires
interface objects, such as the Sim-hand’s mouse pointer, to be attached to a
specific window, and Garnet implements pull-down menus as separate
windows. The initial Sim-hand mouse pointer could not be positioned over
the menu items, which were in a different window. This problem can be
fixed by putting a model’s mouse pointer on every window or by moving the
model’s mouse pointer to the top-most window after every interaction or
window change. This mouse/window problem illustrates how implementa-
tion details of the interaction model will be dependent on the system used
(e.g., the lack of transparent windows in the X window system), as well as
some possibly general solutions (e.g., keeping a software mouse pointer on
every window).

When this project was complete, the Sim-hand was included in the ATC
task model described above. The revised version of the ATC cognitive model
helped to illustrate two of the difficulties involved in modeling task
interaction: (1) some eye-hand coordination knowledge is needed, and
further work needs to be done to explore the best way to gather this from
subjects and include it in models; and (2) there is an opportunity to gather
and include additional regularities about visual attention, including those
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relating to mouse movements, such as moving the mouse to a flashing light
or object.

3.3 Tower of Nottingham Models

The Tower of Nottingham is a puzzle where 21 wooden blocks are assem-
bled to form a pyramid structure. The pyramid is constructed from five
different size layers each comprising four blocks of the same size, with one
pinnacle block. It has been used extensively to study how children’s
abilities to learn and communicate develop between the ages of 3 and 9
years (e.g., Wood and Middleton [1975]).

The model’s and subjects’ visual search in service of problem solving and
object manipulations are analogous to manipulation in graphical user
interfaces and to some aspects of graphic design in drawing and CAD/CAM
packages. The extensive interactive nature of this model and its task,
including learning while searching, is a fairly useful, simple way to explore
some of the important and common issues in interaction in many screen-
based manipulation tasks.

The blocks simulation is written in Garnet. The complexity of the task
precludes simulating it with a cognitive modeling language. An initial
model in Lisp was used to develop and exercise an initial simpler task
simulation [Ritter et al. 1994]. The current model is written using the
ACT-R (v. 3.0) cognitive architecture [Anderson and Lebiere 1998] and
interacts with a completely enhanced version of the task simulation.

3.3.1 Visual Perception and Motor Action. The task simulation, shown
in Figure 4, includes a Sim-eye and a pair of Sim-hands, which are
represented graphically, making task behavior readily visible. The Sim-eye
and Sim-hand are controlled using the commands previously listed in Table
I1I, particularly, moving the Sim-eye to a location and fixating upon that
location, and moving the Sim-hands. The command language was extended
to enable the Sim-hands to grasp and release blocks (which allows them to
fit, stack, and disassemble blocks) and to rotate blocks. Although this level
of representation is more abstract than mouse movements it represents the
atomic cognitive actions in this task, allowing the model and the modeler to
represent interaction in an appropriate way. It avoids the level of individ-
ual finger movements, which while interesting, do not appear to be an
important aspect of this task.

When the Sim-eye is requested to fixate, it passes back to the model the
relevant blocks and block features as moderated by area of the eye the
blocks are in. The blocks information is represented in the model as
declarative knowledge, and overwrites the results of previous fixations.
Objects that appear in the periphery of the Sim-eye are represented by an
identifier only. Overwriting is a plausible theory of visual input [Horowitz
and Wolfe 1998]. The quality of this approach will have to be tested with
further models, but in this case it helps the model fit our data.

There is a small difference between the level of information available
from the Sim-eye’s fovea and parafovea. The features and sizes of blocks in
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Fig. 4. The Tower of Nottingham. The fovea is the small black outlined square in the center
of the block in the top left corner. The parafovea, shown as a dashed line, extends approxi-
mately two fovea widths in each direction beyond the fovea. The left Sim-hand has picked up
one of the largest blocks.

the fovea are reported accurately, and those in the parafovea are subject to
a small, adjustable amount of noise. This mechanism provides a way to
mistake similar sizes and similar features. These mistakes are in accor-
dance with adult performance on the task [Jones and Ritter 1998; Jones et
al. 2000].

The model sends requests for the Sim-hands to perform actions, such as
moving to a location. If a Sim-hand is grasping a block, then that block is
also moved. Once an action is completed the cognitive model is informed.
The model can then manipulate the Sim-eye to verify that the chosen action
has been completed. Although actions are currently always completed
successfully, it is especially useful for the Sim-eye to fixate when fitting
blocks together or disassembling block structures, because this can change
the model’s representation of the current state of the task.

3.3.2 The Communication Mechanism. Interaction between the cogni-
tive model and the task simulation is easily achieved using Lisp function
calls because both are based on Common Lisp. The cognitive model sets up
a goal in ACT-R for each interaction it wishes to perform. Each goal causes
the appropriate function for the Sim-eye or the selected Sim-hand to be
called. When the interaction is complete, the relevant goal in the cognitive
model is flagged as having been achieved. The model can then terminate
the goal and continue its behavior.

3.3.3 Summary. This case study further indicates that the designs of
the Sim-hand and Sim-eye are generally applicable, and that they can be
used by a different cognitive architecture, in this case, ACT-R.

Using a common language for the model and the task simulation makes
them easier to implement, test, and run. The simplicity in interaction, the
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fact that parts of the task simulation already existed, and the fact that an
initial Sim-eye and Sim-hand had already been successfully used meant
that Garnet was a very viable tool.

The importance of perception in task performance that had been found in
the ATC model was confirmed. Explicitly controlling the Sim-eye and
Sim-hands changed the model’s behavior. Including perception and explicit
motor actions forced the model to expend time and effort to find and
assemble blocks. The model spent approximately half of its time interacting
with the simulation, suggesting that any model for a task involving
interaction requires an external task in order to accurately reflect human
behavior.*

The Tower of Nottingham example demonstrates that it is possible and
useful to model interactive tasks. The performance of the model matches
the performance of adult subjects on the task reasonably well because the
whole task was modeled and because the necessary learning could occur in
visual search, in cognition, and in output [Jones and Ritter 1998].

We were able to examine more closely how problem solving develops.
Several important developmental theories were implemented in the model,
and their predictions compared with children’s data, showing that differ-
ences in strategy choice is the most likely candidate for what leads to
children’s longer solution times in this task [Jones et al. 2000].

The model also predicts that some mistakes are caught before they are
executed. The features of blocks in the parafovea are not always correctly
seen. If a block is incorrectly seen as having the target features when it is
in the parafovea, the eye will saccade to the block to prepare to pick it up,
and the hand will move to the block as well. When the block image is
located in the fovea, the correct features will be seen, and the action will be
abandoned. This behavior of moving hands to blocks but not picking them
up seems to occur in adult data, and suggests there are types of mistakes
that are not fully overt. This type of mistake could occur for adults using
interfaces as well.

Modeling the complete task allowed us to compare the results directly
with quantitative regularities, including learning across layers (for further
details see Jones [1999] and Jones et al. [2000]). As an example, Figure 5
shows the mean time taken to construct each layer for adult subjects and
the model. There is a high correlation between the performance of adults
and the model for the mean time taken to construct each layer (r? =
0.92). Comparisons are also favorable for the RMS error for each layer
(which indicates the average percentage difference between the model
scores and subject scores for each layer). The RMS error is low for both the
time to construct each layer (4.1%) and the number of construction at-
tempts made in producing each layer (5.7%). This comparison would have

4This is detailed in a submitted paper by Jones, G. and Ritter, F. E., “Over-estimating
cognition time: The benefits of using a task simulation.”
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Fig. 5. Time taken (in seconds) by adults and the model to complete each layer. Error bars

are to the left for adults, to the right for the model.

been impossible or less reliable without basing it on the model with a
Sim-eye and Sim-hand.

3.4 Tcl/Tk Models

Tcl is a widely used programming language with Tk an accompanying set of
graphical extensions for creating graphical interfaces [Ousterhout 1994]
and user interface design environments such as SpecTcl. There are exten-
sive examples available in the numerous textbooks and Web sites devoted
to it. The latest full release of Soar (v. 7) incorporates Tcl/Tk. This makes it
possible to develop a task simulation that could be directly and easily
linked to a Soar model.

Two models have been created developing a CMIMS for Soar based on
Tcl/Tk. The first model created was one of exploratory search. When
moderately experienced Apple Macintosh users are faced with using an
application they have not previously encountered, they carry out an explor-
atory search to find objects and associated actions that can help them
achieve the task at hand [Rieman et al. 1996]. A model of this exploratory
search had been initially developed in Soar (v. 6), with the simulation of
the task—generating a chart using the CricketGraph program—also being
written in Soar. When the same model (in Soar 7) was tied to a simulated
version of CricketGraph its limited behavior was more apparent.

This system also included for the first time control panels to drive the eye
and hand independently of the cognitive model. The control panel also
displayed the current state of the Sim-eye and Sim-hand, making debug-

ACM Transactions on Computer-Human Interaction, Vol. 7, No. 2, June 2000.



160 . F. E. Ritter et al.

@ File Edit Help 15/11/99°f | < soarmacs.2

Viewing tele

tele 7 Button Text: 7
tele star Button Text: *

]
| En JJ

tele frame#q
tele 8 Button Text: 8 Sim-Eye

=
_tele button10 Button Text: 0
O =topmo..=H
Ztopmouse

tele 9 Button Text: 9 =I
tele hash Button Text: #
Jtopmouse.label | Label Text: Mouse

Control Panel

X Y Amows Controlling: B 4 # Hand Position i
EyeP_os |537 |207 & Eye 40P & Mouse

Eyesize [ 12 < Mouse #® ¥ & © Keyboard He ek

MousePos |50 |50

soar Agent Interaction Window

Sim Keyhoard File  Show Memory Productions ‘Walch Yiew Commands Demos Help

Window destination . .
Mowing the hand to the fixation point Al

Calling Tol procedure move_to_fixate

Window Selection

soar> run 1.d

6. 070 (click-mouse)

19
Key to be sent Clicking the left mouse button

Calling Tcl procedure LMClick
Calling Tcl procedure mext_digit
PRESS
soar> £
£
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ging easier because the state was visible and because the Sim-eye and
Sim-hand could be manipulated prior to programming the model.

The second model implements a simple model similar to GOMS [Kieras
1997] to dial numbers from memory on five graphical phones [Harris 1999;
Lonsdale 1999]. A sample phone and what the modeler sees are shown in
Figure 6. The model is designed to be able to dial any number on any phone
written in Tcl/Tk. This will break down, of course, in interfaces that are
novel, but starts to represent in a procedural and runnable way what
knowledge is necessary, and to make the knowledge reusable across multi-
ple interfaces. The model shows improvement with practice, and predicts
that some misdialing errors are due to moving the mouse into the center of
the fovea when the target button is on the edge of the fovea. The model’s
predictions of time to dial a standard UK number of 11 digits (ranging from
15.4 seconds to 30.2 seconds depending on practice and relative fovea size)
are similar to NGOMs’ [Kieras 1997], but are higher than actual times
(approximately 10 seconds). Like GOMS, though, the relative times be-
tween interfaces should allow useful comparisons.
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3.4.1 Visual Perception and Motor Action. A Sim-eye reports informa-
tion from the interface. A square box outline indicates where the model is
looking. The Sim-eye is visibly represented as a rectangle made up of four
line-shaped windows joined together because Tcl/Tk does not easily support
overlaying objects. These problems are similar to the problems that arose
with the tabletop model’s Sim-hand in that the solution is not completely
straightforward, but in these general environments a solution was avail-
able. While not all the areas of the eye are modeled, the groundwork to
implement them has been created.

3.4.2 The Communication Mechanism. Interaction between the cogni-
tive model and the task simulation is easily achieved using Tcl function
calls because they are in the same language. The cognitive model puts its
command on the Soar-IO link, and it is passed each model cycle to the
Sim-eye or Sim-hand. Results are put back on the Soar-IO link for use by
cognition.

3.4.3 Summary. The Sim-eye and Sim-hand here demonstrate that a
simple but functional hand could be created in a widely used UIMS. The
ability to interact with Tcl/Tk interfaces opens up a wider world of
applications to Soar models because of the range of existing and potential
interfaces in Tcl/Tk. The cognitive model of exploratory search is now being
expanded to develop a more complete model of search in real interfaces
(i.e., those not written by the model developers). While these models are
simple, they point the way to models that could be used to interactively test
interfaces.

A regular object hierarchy is what allows the Sim-eye to be general. The
Tk data structures are not as regular as those in Garnet.® This lack of
uiformity requires a more elaborate algorithm to find what the Sim-eye
should see.

The control panels greatly help with understanding what the cognitive
model has to achieve and with debugging. They make it very clear why the
phone model sometimes misdials. The panels also make it possible to test
the Sim-eye and Sim-hand separately. The panels allow visual search
strategies to be tried manually before implementing them in the model.

3.5 Electronic Warfare Task Model

The final example is work in progress, in which we have attempted to build
on the lessons learned from our earlier models. The Electronic Warfare
(EW) task is to protect a ship from enemy missiles by maneuvering the
ship, jamming the radar of incoming missiles, and firing chaff to decoy the
missiles away from the ship [Chapman et al. 1996].

The interface for the EW task is shown in Figure 7. The task simulation,
OOPSDG [Ramsay 1995], was developed in Common Lisp. The user inter-
face and the Sim-eye and Sim-hand were developed by Tenet Systems using

5A summary is available from http://www.psy.herts.ac.uk/pub/R.M.Young/.
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Fig. 7. The EW task interface, annotated with descriptions of the various components.

Sherrill-Lubinski’s object-oriented, real-time dynamic Graphical Manage-
ment System, SL-GMS [Sherrill-Lubinski Corporation 1994]. Figure 8
shows a simplified interface that was used to develop the Sim-eye and
Sim-hand in the upper window and the control panel in the bottom window.

There are several reasons for creating a cognitive model of this particular
task. It could help examine the efficacy of different designs. Also, we would
have a model of what the user was trying to do. This would support
exploring new ways to provide assistance, including manuals, tutoring
systems, and embedded assistants.

When the model’s behavior is compared with that of the user to validate
the model, using the same interface ensures consistency. The EW task has
a complex interface, and duplicating it would be difficult and error prone. If
the model can be used to suggest how to improve the interface, working
with the same interface means that changes do not have to be duplicated in
two interfaces; it also allows the model to work with the user as an
assistant.

3.5.1 Visual Perception and Motor Action. The Sim-eye has been ex-
tended to provide perception of objects located in parafoveal and peripheral
vision with several configurable options to facilitate theory development,
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Fig. 8. The test display (top) for developing the eye and hand for the EW task in SL-GMS and
the control panel (bottom). Normally these two windows are on different monitors. The control
panel includes manipulation controls (upper left of this window), and continuing along its top,
two displays showing the current position (screen view) and detailed contents of the fovea (eye
view). Along the bottom are listings of the output of the eye to the model, and the commands
sent through the linkage mechanism.

such as fovea size and how shape and color interact to attract attention. By
default, the detail provided for objects appearing in the parafovea is less
than that of objects appearing in the fovea, but greater than that of objects
appearing in the periphery. Only a few features like location and motion
are available for peripheral objects, whereas shape, color, orientation, size,
and location are available for foveal objects. There were many new types of
objects in this task, so this implementation allowed for the eye to be
appropriately adjusted based on further relevant experimental or published
information. The extended version of the Sim-eye has as its default settings
the Sim-Eye in the Tower model.

It is difficult in SL-GMS to create an extra mouse pointer for use by the
model. Having a single mouse would be a problem if only one display screen
is used because the cognitive model and the cognitive modeler would have
to share the mouse. Using two display screens removes this conflict, and
provides additional display space. One of the displays is dedicated to the
running application with its full-screen display, including the Sim-eye and
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Sim-hand, whilst the other display provides the control panel that allows
the Sim-eye and Sim-hand to be monitored and manually controlled.

3.5.2 The Communication Mechanism. The connection between the cog-
nitive model and the task simulation is based on the ideas in the MONGSU
interprocess communication utility that we used in the ATC and tabletop
examples. The cognitive model is being implemented in Soar (v. 7.1), which
incorporates Tcl/Tk and hence provides built-in commands to manage
socket communication. The communication between the model and the task
simulation implements the command language described in Table III.

3.5.3 Summary. Even though this cognitive model is currently incom-
plete, we have already learned several lessons. First, the transfer of the
general Sim-eye and Sim-hand design to another development environment
provided further evidence of the generality of this design. The Sim-eye and
Sim-hand were implemented in SL-GMS in just two weeks. Also, this
demonstrated that our approach to interaction can be understood and
implemented by UIMS programmers.

Using two separate display screens, with the simulation (driven by the
cognitive model) on one screen and the control panel (driven by the
modeler) on the other, solves several problems. During debugging there is a
need for the modeler to be able to view the interaction control panel and the
task simulation simultaneously. By using a dedicated display screen, the
control panel can be extended to incorporate the additional debugging
facilities necessitated by the increased complexity of the EW task interface.
Using separate screens allows the cognitive model to control the Sim-
hand’s mouse pointer on one screen, whilst the modeler has control of the
mouse pointer for the control panel on the other screen. Without this
capability the modeler cannot query the model while it runs (with the
mouse), and the model and modeler come into conflict trying to use the
same mouse.

An initial model of this task was implemented in Soar before the Sim-eye
and Sim-hand implementations became available. None of the model’s 70
production rules scan the display or perform interaction. It is clear that
tying this model to the task in Figure 8 will profoundly change the task
from a geometry task of computing intercept angles to a scanning and
monitoring task with geometry as only a subcomponent.

3.6 Related Systems

Other examples where models interact with simulations provide further
lessons. These systems as well as our examples are summarized in Table
IV. The columns correspond to objects in Figure 1. The related systems
presented here have used three UIMSes, and typically can present displays
on more than one type of machine. The simulation languages are usually
closely tied to the UIMS, but in the EW task a simple simulation is
available in SLGMS and a more complete one in OOPSDG. There are a
variety of communication mechanisms, but direct function calls are the
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Table IV. Summary of Examples

Cognitive
Simulation Linkage Modeling
UIMS Display Language Mechanism Language
ATC Garnet X windows/Mac Common Lisp UNIX sockets Soar
Table top Garnet X windows/Mac Common Lisp sockets Soar
Tower of Garnet X windows/Mac Common Lisp function calls Lisp/
Nottingham ACT-R
CG/Phone Tk and/or X windows/PC/  Tecl/Tk function calls Soar
SpecTecl Mac
EW Task SLGMS X windows SLGMS and/or sockets Soar
OOPSDG
Soar agents/ custom varies varies varies varies
MIDAS/ interfaces
APEX/
Driver-Soar
EPIC none none” EPIC interface function calls EPIC
simulation production
language system
ACT-R/PM Macintosh Mac Common Lisp function calls ACT-R

Common Lisp

“Later versions have a visual display.

easiest to use. Soar, Lisp, and ACT-R have been used to implement the
models.

The Soar agent simulations [Jones et al. 1999], which support large-scale
military training exercises, and MIDAS [Corker and Smith 1993], which is
a design tool for aviation systems that includes a model user, are further
illustations of how cognitive models can be useful. They interact directly
with simulations without a perceptual/motor filter (via function calls for
actions and data structures for perception). This approach to interaction
has the advantages that it is easy to implement; it is not tied to a specific
cognitive architecture; and, most importantly, it can quickly provide a rich
environment and task for the models (which is the primary focus of this
work). Interacting through simple function calls, however, fails to provide
as much constraint on cognition. In this approach as well, humans cannot
necessarily use the same systems, which reduces the ability to test and
validate the models.

APEX [Freed and Remington 1998] is a design tool to predict what errors
operators would make in complex domains. It has been applied so far to air
traffic control systems and cockpits. It provides cognitive models in its own
architecture, a communication mechanism, and simulated eyes and hands.
It is not based on a UIMS, and users cannot interact with the same
interface; modelers, however, can see the interface. APEX starts to model
the effects of interaction, how visual displays can support problem solving,
and how errors can arise in air traffic control.

Driver-Soar [Aasman and Michon 1992] is a detailed model of driving. It
includes a model written in Soar that interacts with its own software car to
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navigate through simulated road intersections. In addition to a simulated
eye, Driver-Soar includes interaction modalities not addressed here, includ-
ing head movements, further hand movements, and feet. These interaction
modalities are implemented both in a Pascal-based and a Lisp-based
simulation. While there are displays for modelers to watch the model’s
behavior, users cannot interact with the simulation in the same way.
Driver-Soar’s predictions have been compared with detailed human mea-
surements, showing that such predictions can be quite accurate.

The models and simulations in APEX and Driver-Soar are not designed
for reuse. They illustrate, however, some of the possible applications and
results that are available from employing models as surrogate users.

EPIC [Kieras and Meyer 1997] is a system addressing the intricate
details of perception and action. The cognitive models are written in its
own production system that can communicate directly with a model eye and
hand that interact with an interface simulator. Models do not access a
visual display shared with users. Interfaces to be examined are imple-
mented separately using a special production system to provide informa-
tion to the model at either set times or upon set conditions. Users cannot
interact with the interface the model sees. EPIC can be used to make
accurate predictions of interaction behavior such as menu use [Kieras et al.
1997]. Some of EPIC’s capabilities and the regularities they support have
been used by Soar models [Chong and Laird 1997] and by ACT-R/PM
[Byrne and Anderson 1998].

The only other system that could properly be described as a CMIMS is
ACT-R/PM [Byrne 1999; Byrne and Anderson 1998]. It is a theory of
perception and motor behavior realized in Macintosh Common Lisp. It
provides an environment in which ACT-R models can interact with task
simulations (psychological experiments, for example) that humans can use
as well. The interaction is modeled on a detailed level, down to 50 ms—we
have neither designed nor tested our functional models for this level of
precision. The generality and utility of the ACT-R/PM analysis of percep-
tion and action have been demonstrated through multiple use by models
[Byrne and Anderson 1998; 1999; Gray 1999].

ACT-R/PM is similar in many ways to the previous models of interaction
we have built. We believe that part of the reason for the success of
ACT-R/PM is that it provides the facilities required by a basic CMIMS. The
ACT-R/PM model of perception is based on graphical objects in Macintosh
Common Lisp so it can include a graphic display that can be seen by the
modeler and used by subjects. Furthermore, its reuse—the incorporation
and adaptation of some of EPIC’s results, particularly the general structure
(i.e., parallel execution of perception and action) and the motor compo-
nent—are consistent with the approach of theory reuse that we advocate.

The major difference, if there is one, lies in the choice of priorities.
ACT-R/PM is more concerned with detailed psychological predictions, but is
not yet positioned to be a tool that can be widely used to develop user
interfaces for two reasons: (a) ACT-R/PM was not designed to interact with
every interface that can be built in Macintosh Common Lisp [Byrne and
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Anderson 1998]; however, it can already recognize most objects, and it can
be extended by the modeler; (b) ACT-R/PM is not in a major graphic
interface tool. In the context of Figure 1, it provides a linkage mechanism
but does not include a common or widely portable UIMS.

3.7 Limitations of this Approach

There are several limitations to the current generation of systems that
could be classed as CMIMSes. The examples presented here cover only a
small subset of all possible tasks and interfaces. As a functional model,
these implementations of the Sim-eye and Sim-hand intentionally do not
cover all that is known about interaction, nor do they include all forms of
interaction. These models do not yet include fine-grained behavioral regu-
larities or those that are based on emergent perceptual phenomena, for
example, recognizing blank space as a region. When we have used these
Sim-eyes and Sim-hands more, we will be in a better position to know
where we need to extend the accuracy of perception and motor actions. In
certain tasks, having a simpler representation of behavior will be useful
(e.g., checking the function of an interface, qualitative learning effects) in
the way that Newtonian mechanics is compared with quantum mechanics.
Even the simulated eyes and hand in EPIC and ACT-R/PM are based on
simplifying assumptions such as the use of a command language. It is
almost certainly a simplification (albeit a useful one) to assume that
perception, cognition, and action are this separate (e.g., see Pylyshyn
[1999]).

The problem most often raised with respect to using models to test
interfaces is that the interface must be completely specified before the
model can be applied. There are several responses to this limitation. First,
the limitation does not appear to be insuperable, but it would be an entirely
separate project to apply models to sketchy designs (e.g., Szekely et al.
[1993]). Second, there are many systems and approaches requiring a full
design before their analysis can be done. Interfaces may be particularly
prone to requiring a full specification before their use and efficiency can be
estimated (e.g., Gray et al. [1998]). Third, this approach will put designers
in touch with the limitations of users in testing preliminary designs. With
experience, the designers may learn to avoid problems, based on their
experience with the model user. Finally, tests of the interface are immedi-
ately informative, and problems can be directly rectified. An unusual
advantage of this approach to testing interfaces is that, unlike electrical
circuits, testing is done with the actual system.

4. COGNITIVE MODELS AND INTERFACES IN THE NEW MILLENNIUM

Supporting cognitive models as surrogate users is possible. The case
studies have shown that the Sim-eyes and Sim-hands can be used by a
variety of models interacting with a range of interface tools. It is now
possible to apply theoretically grounded cognitive models to real-world HCI
tasks.
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Building a Sim-eye and Sim-hand for each computational cognitive model
might be as ad hoc as building each new model in Lisp—you could lose the
constraints imposed by an Integrated Cognitive Architecture. Here, eyes
and hands have been built in several UIMSes from the same design. This
reimplementation of the same approach provides a form of constraint
because it is the same design that is being reused and because the
capabilities and regularities are noted explicitly. The more important
aspect is that the Sim-eye and Sim-hand are now available in several
widely used software tools. This will allow them to be reused in a variety of
interfaces and will provide much greater constraint and reuse. There are
several CMIMSes in various UIMSes, so reuse should become a possibility
for models in the future.

Modelers should use these Sim-eyes and Sim-hands in order to provide
their models with an interactive capability. Newer cognitive architectures,
such as Jack [Busetta et al. 1999], should attempt to provide at least one
CMIMS for their models to use. ACT-R/PM’s hand is available at http://
www.ruf.rice.edu/"byrne/RPM/; the Tcl/Tk eye/hand will be available at
http://ritter.ist.psu.edu.

UIMS designers should include support for cognitive models as users in
their tools. The functional capabilities and experimental requirements in
Table II show what is necessary to support cognitive models as a type of
user and some of the experimental regularities that can be included. This
list will help create models of interaction in other UIMSes.

We can now review this approach, noting how it can contribute to the
development of cognitive models and what it means for the future of
interfaces.

4.1 The Implications for Models

The models presented here would not have been possible to develop without
access to external simulations. Having these models interact with inter-
faces has led to the ability to create models of far more complex tasks than
if the tasks had to be simulated in the cognitive modeling language. Tasks
too complicated to simulate in a cognitive modeling language are straight-
forward to simulate in a UIMS. A wider range of human behavior can be
explored and modeled with this approach.

Having a Sim-eye and Sim-hand to interact with the outside world has
lead to a greater sophistication and accuracy for these models. Including a
theory of interaction has both provided models with more capabilities, and
constrained the speed and abilities of the models, in a way approximating
human behavior. CMIMSes provide a way to encapsulate these constraints.

Interacting has required the addition to the models of new knowledge
and new types of knowledge, including where to look and what to do with it.
This knowledge suggests that there are types of knowledge that the user
has to know that is not often taught or referenced. When users do not know
where to look, they have to search through the interface or use peripheral
vision. The amount of knowledge and effort it typically takes the models to
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interact suggest that the difficulty of what users have to do has been
consistently underestimated.

The case studies also show that this approach supports several kinds of
reuse. Multiple models can use the same interface (e.g., through the
Sim-eye and Sim-hand with the Tower of Nottingham simulation). The
same model can use multiple interfaces (e.g., the Soar phone model).
Models, as well as users, can work with the same interface (e.g., the ATC
task, the EW-Task). This approach will contribute to the reuse of models
envisioned for cognitive architectures [Newell 1990] and thus be a further
constraint on the architecture. This approach can be used to make more
complete cognitive architectures.

There are several other systems that model interaction. The approach to
modeling interactive tasks that we have adopted falls somewhere between
the extremes of allowing models to directly access the internals of the task
simulation and modeling interaction in full psychological detail. Focusing
on functional capabilities has allowed us to apply this technique more
widely, but the next step will be to incorporate more experimental regular-
ities to model human performance more closely. Enforcing further experi-
mental regularities (as summarized in ACT-R/PM and EPIC) on the func-
tional capabilities we have created in Tcl/Tk would provide a system that
both Soar and people could use, and one that has numerous existing
interfaces and tasks.

4.2 The Implications for Interfaces

The potential benefit of deploying cognitive models as surrogate users
during interface development is large. There are at least two significant
ways in which CMIMSes can be exploited by cognitive modeling to facilitate
the improvement of user interfaces.

First, cognitive models can be used to evaluate user interfaces. By using
cognitive models in place of people, we could start to ask what-if questions
about user interfaces, such as changing the interface and examining the
effects on task performance. The models of phone interaction are starting to
do this [Lonsdale 1999]. In this way, it becomes possible to dynamically
evaluate how an interface is used, and where important events like errors
may occur [Freed and Remington 1998]. Cognitive models of interface use,
such as IDXL [Rieman et al. 1996] and the other models of problem solving
and task performance we have described, could be developed further and
applied. The models can also be used to inform the design of user interfaces
by indicating which parts of the interface are used the most or are hard to
learn.

Second, the ability to embed more accurate user models opens up a range
of applications, such as more accurate intelligent assistants to help novices.
With the interaction process developed, it will allow more time to be spent
on creating the applications. These embedded assistants would encapsulate
knowledge about a new range of possible behaviors, that is, interaction.
This knowledge would then be used to determine what the user should do
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next, and provide appropriate assistance to the user when requested or if
the user selected an inappropriate course of action.

Although there is a synergy between the disciplines of HCI and cognitive
modeling, it has not yet been fully exploited. Several results and techniques
in HCI have been discovered using cognitive modeling [John 1998], but few
of the lessons from HCI have been reapplied to increase the understanding
and application of the models. We have highlighted one particular area
where we believe UIMSes can be exploited to help in the development of
cognitive models. It will take time to learn how to take advantage of all the
benefits that will come through supporting cognitive models as users.
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