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1. Introduction

A rational analysis (Anderson, 1990) is an attempt to specify a theory of
some cognitive domain by specifying the goal of the domain, the statis-
tical structure of the environment in which that goal is being achieved,
and whatever computational constraints the system is operating under.
The predictions about the behavior of the system can be derived assum-
ing that the system will maximize the goals it expects to achieve while
minimizing expected costs where expectation is defined with respect to
the statistical structure of the environment. This approach is different
from most approaches in cognitive psychology because it tries to de-
rive a theory from assumptions about the structure of the environment
rather than assumptions about the structure of the mind.

We have applied this approach to human categorization and have
developed a rather effective algorithm for categorization. The analysis
assumes that the goal of categorization is to maximize the accuracy of
predictions about features of new objects. For instance, one might want
to predict whether an object will be dangerous or not. This approach
to categorization sees nothing special about category labels. The fact
an object might be called a tiger is just another feature one might want
to predict about the object.
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2. The Structure of the Environment

It is an interesting question what kind of structure we can assume of
the environment in order to drive prediction. The theory developed
rested on the structure of nateFatiand categories produced by the phe-
nomenon of species. Species form a nearly disjoint partitioning of the
natural objects because of the inability to interbreed. Within a species
there is a common genetic pool which means that individual members of
the species will display particular feature values with probabilities that
reflect the proportion of that phenotype in the population. Amnother
useful feature of species structure is that the display of features within
a freely-interbreeding species is largely independent. Thus, there is lit-
tle relationship between size and eye color in species where those two
dimensions vary. Thus, the critical aspects of speciation is the disjoint
partitioning of the object set and the independent probabilistic display
of features within a species.

An interesting question is whether other types of objects display
these same properties. Another common type of object is the artifact.
Artifacts approximate a disjoint partitioning but there are occasional
exceptions—for instance, mobile homes which are both homes and ve-
hicles. Other types of objects (stones, geological formations, heavenly
bodies, etc.) seem to approximate a disjoint partitioning but here it
is hard to know whether this is just a matter of our perceptions or
whether there is any objective sense in which they do. One can use the
understanding of speciation for natural kinds and understanding of the
intended function in manufacture in the case of artifacts to ob jectively
assess the hypothesis of a disjoint partitioning,.

We have taken this disjoint, probabilistic model of categories and
used it as the understanding of the structure of the environment for
doing prediction about object features. To maximize the prediction of
features of objects we need to induce a disjoint partitioning of the ob ject
set into categories and determine what the probability of features will
be for each category. The ideal prediction function would be described
by the following formula:

Predij = Y P(z|Fy)Prob(jlz) (1)

where Pred;; is the probability an object will display a value j on a
dimension ¢ which is not observed for that object, the summation is

living Po1y
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across all possible partitionings of the n objects seen into disjoint sets,
P(z|F,) is the probability of partitioning = given the objects display
observed feature structure Fy, and Probi(j|z) is the probability the
object in question would display value j in dimension i if z were the
partition. The problem with this approach is that the number of par-
titions of n objects grows exponentially as the Bell exponential number
(Berge, 1971). Assuming that humans cannot consider an exponentially
exploding number of hypothesis we were motivated to explore itera-
tive algorithms such as those developed by Fisher (1987) and Lebowitz
(1987).
The following is a formal specification of the iterative algorithm:

1. Before seeing any objects, the category partitioning of the objects is
initialized to be the empty set of no categories.

2. Given a partitioning for the first m objects, calculate for each cate-
gory k the probability Py that the m+1st object comes from category
k. Let Pp be the probability that the ob ject comes from a completely
new category.

3. Create a partitioning of the m 4 1 objects with the m 4 1st object
assigned to the category with maximum probability.

4. To predict value j on dimension ¢ for the n 4 1st object calculate

Pred;; =y P P(ijlk) (2)
k

where P is the probability the n + Ist object comes from category
k and P(ij|k) is the probability of displaying value j on dimension
.

The basic algorithm is one in which the category structure is grown
by assigning each incoming object to the category it is most likely to
come from. Thus, a specific partitioning of the objects is produced.
Note, however, that the prediction for the new n 4+ 1st object is not
calculated by determining its most likely category and the probability
of j given that category. Rather, the calculation is performed over all
categories. This gives a much more accurate approximation to the ideal
Pred;; because it handles situations where the new object is ambiguous
between multiple categories. It will weight approximafely equally these
competing categories.

The algorithm is not guaranteed to produce the maximally-probable
partitioning of the object set since it only considers partitionings that
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can be incrementally grown. It also does not weight multiple possible
partitionings as the ideal algorithm would. In cases of strong category
structure, there will be only one probable partitioning and the itera-
tive algorithm will uncover it. In cases of weak category structure, it
will often fail to obtain the ideal partitioning, but still the predictions
obtained by Equation 2 closely approximate the ideal quantity because
of the weighting of multiple categozies. As we will see, the correlations
are about 0.95 between the predictions of our algorithm and the ideal
quantities in cases of small data sets.

It remains to come up with a formula for calculating Py and P(ijk).
Since P(ij|k) proves to be involved in the definition of Py, we will focus
on Pj. In Bayesian terminology Py is a posterior probability P(k|F) that
the object belongs to category k given that it has feature structure F.
Bayes formula can be used to express this in terms of a prior probahility
P(k) of coming from category k before the feature structure is inspected
and a conditional probability P(F}k) of displaying the feature structure
F given that it comes from category k:

P(k)P(FIk)
2. P(1)P(Fe)

where the summation in the denominator is over all categories 7 cur-
rently in the partitioning including the potential new one. This then
focuses our analysis on the derivation of a prior probability P(k) and a
conditional probability P{F|k).

P, = P(k|F) = (3)

2.1 Prior Probability

With respect to prior probabilities the critical assumption is that there
is a fixed probability ¢ that any two objects come from the same category
and this probability does not depend on the number of objects seen so
far. This is called the coupling probability. If one takes this assumption
about the coupling probability between two objects being independent
of the other objects and generalizes it, one can derive a simple form for
P(k) (See Anderson, 1990, for the derivation):

eny;

Pk} = (1—c)+en

(4)

where ¢ is the coupling probability, ny is the number of objects assigned
to category k so far, and n is the total number of objects seen so far.
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Note for large n this closely approximates ng/n which means that we
have a strong base rate effect in these calculations with a bias to put
new objects into large categories. Presumably the rational basis for this
is apparent.

We also need a formula for P(0) which is the probability that the new
object comes from an entirely new category. This is

PO) = et ©

For large n this closely approximates (1 — ¢)/en which is again a
reasonable form-i.e., the probability of a brand new category depends
on the coupling probability and number of objects seen. The greater
the coupling probability and the more objects, the less likely it is that
the new object comes from an entirely new category.

The impact of the coupling parameter ¢ will be to influence the num-
ber and size of categories formed. The larger the value, the fewer and
larger the categories that will be formed. Since computation costs are
linearly related to number of categories and not to size of categories,
there might be some pressure to set ¢ larger than its true value in the
environment.

One consequence noted of Equations 4 and 5 is that there is a bias to
put objects into large categories. Some have questioned the rationality
of this. However, it needs to be stressed that Equation 4 just sets
the priors and has to be combined with conditional probabilities for
Equation 3. If an instance much better matches a smaller category, the
conditional probabilities for the smaller category will be much higher
and the instance will be assigned to the smaller category. Thus, the bias
in Equations 4 and 5 does not mean that such evidence will be ignored.
However, if such feature-matching evidence is equivocal, the system will
assign the instance to the larger category which is the sensible thing to
do.

This base rate effect contributes to the order sensitivity of our algo-
rithm. Suppose we have an instance that is ambiguous between two
categories. If by chance we have seen more instances of one category
before the instance, we will be biased to assign it to that category. This
will make that category larger and increase tendency to assign instances
to the category. In some cases of ambiguous stimuli this can snowball.
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2.2 Conditional Probability

‘We can consider the probability of displaying features on various dimen-
sions given category membership to be independent of the probabilities
on other dimensions. Then we can write

P(Flk) = ] P(jlk) (6)

where P(ij|k) is the probability of displaying value j on dimension @
given that one comes from category k.

This independence assumption does not prevent us from recogniz-
ing categories with correlated features. Thus, we may know that being
black and 1etrieving sticks are features found together in labradors. This
would be represented by high probabilities of the stick-retrieving and
the black features in the labrador category. What the independence
assumption prevents us from doing is representing categories where val-
wes on two dimensions are either both one way or both the opposite.
Thus, it would prevent us from recognizing a single category of animals
which were either large and fierce or small and gentle, for instance.
However, this turns out not to be a very serious limitation. What our
algorithm does in this case is to spawn a different category to capture
each two-feature combination-it would create a category of large and
fierce creatures and another category of small and gentle creatures.

The effect of Equation 6 is to focus us down on an analysis of the
individual P(ijlk). Derivation of this quantity is itself an exercise in
Bayesian analysis. We will treat separately discrete and continuous
dimensions.

2.3 Discrete Dimensions

The basic Bayesian strategy for doing inference along a dimension is to
assume a prior distribution of values along the dimension, determine
the conditional probability of the data under various possible values of
the priors, and then calculate a posterior distribution of possible values.
The common practice is to start with a rather weak distribution of
possible priors and as more and more data accumulates come up with
a tighter and tighter posterior distribution.

In the case of a discrete dimension, the typical Bayeslan analysis
(Berger, 1985) is to assume that the prior distribution is a Dirichlet
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density. For a dimension with m values a Dirichlet distribution is char-
acterized by m parameters a;. We can define o, = )7 @;. The mean
probability of the jth value is p; = a;/a,. The value o, reflects the
strength of belief in these priors probabilities, p;. The data after n
observations will consist of a set of C; counts of observations of value
j on dimension i. The posterior distribution of probabilities is also
a Dirichlet distzibution but with parameters a; -+ C;. This implies
that the mean expected value of displaying value j in dimension { is
(a; + C;)/ Tla; + C;). This is P(ij|k) for Equation 6:

g Cit oy

P(ijlk) = ——— (7)
where ny is the number of objects in category & which have a value
on dimension ; and C; is the number of objects in category & with the
same value as the object to be classified. For large ny, this approximates
C;/ny which one frequently sees promoted as the rational probability.
However, it has to have this more complicated form to deal with prob-
lems of small samples. For instance, if one has just seen one object in a
category and it has had the color red, one would not want to guess that
all objects are 1ed. If we assume these are seven colors and all the o;
were 1, the above formula would give 1/4 as the posterior probability
of red and 1/8 for the other six colors unseen as yet.

2.4 Continuous Dimensions

Application of Bayesian inference schemes to continuous dimensions is
more problematic but there is one approach that appears most tractable
(Lee, 1989). The natural assumption is that the variable is distributed
normally and the induction problem is to infer the mean and variance
of that distribution. In standard Bayesian inference methodology we
must begin with some prior assumptions about what the mean and
variance of this distribution is. It is unreasonable to suppose we can
know in advance precisely what either the mean and variance will be.
Our prior knowledge must take the form of probability densities over
possible means and variances. This is basically the same idea as in the
discrete case where we had a Dirichlet distribution giving priors about
probabilities of various values. The major complication is the need to
state separately prior distributions for mean and variance.

The tractable suggestion for the prior distributions is that the inverse
of the variance $? is distributed according to a chi-square distribution
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and the mean has a normal distribution. Given these priors, the poste-
rior distribution of values, z, on a continuous dimension i for category
k, after n observations has the following t distribution:

Fiall) ~ to (i1 17:) (8)

The parameters a;, i;, ¢, and A; are defined as follows:

Ai=dotn (9)
a; =ag+n (10)
Agio + nE
i —— 1
jwpr (11)
. G008+ (n—1)s* + 28 (F — p10)°

ay = (12)

g+ n

where T is the mean of the n observations and s? is their variance. These
equations basically provide us with a formula for merging the prior mean
and variance, pg and of, with the empirical mean and variance, T and
s%, in a manner that is weighted by our confidences in these priors, Ao
and ag.

Equation 8 for the continuous case describes a probability density
which serves the same role as Equation 7 for the discrete case which de-
scribes a probability. The product of conditional probabilities in Equa-
tion 6 will then be a product of probabilities and density values. Basi-
cally, Equations (6), (7), and (8) give us a basis for judging how similar
an object is to the category’s central tendency.

2.5 Conclusion

This completes our specification of the theory of categorization. Before
looking at its application to various empirical phenomena a word of
caution is in order. The claim is not that the human mind performs
any of the Bayesian mathematics that fills the preceding pages. Rather
the claim of the rational analysis is that, whatever the mind does, its
output must be optimal. The mathematical analyses of the preceding
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pages serve the function of allowing us, as theorists, to determine what
is optimal.

A second comment is in order concerning the output of the rational
analysis. It delivers a probability that an object will display a particular
feature. There remains the issue of how this relates to behavior. Our
basic assumption will only be that there is a monotonic relationship
between these probabilities and behavioral measures such as response
probability, response latency, and confidence of response. The exact
mapping will depend on such things as the subject’s utilities for various
possible outcomes, the degree to which individual subjects share the
same priors and experiences, and the computational costs of achieving
various possible mappings from rational probability to behavior. These
are all issues for future exploration. What is remarkable is how well we
can fit the data simply assuming a monotonic relationship.

3. Application of the Algorithm

We have applied the algorithm to a number of examples to illustrate
its properties. The predictions of this algorithm are potentially order
sensitive in that different partitionings may be uncovered for different
orderings of instances. In the presence of a strong categorical structure,
the algorithm picks out the obvious categories and, as we will discuss
later, there usually is little practical consequence to the different cate-
gories it extracts in the case of weak category structure. The iterative
algorithm is also extremely fast. A Franz LISP implementation catego-
rized the 290 items from Michalski and Chilausky’s (1980) data set on
Soybean disease (each with 36 values) in 1 CPU minute on a Vax 780
or on a MAC II. This is without any special effort to optimize the code.
It also diagnosed the test set of 340 soybean instances with as much ac-
curacy as apparently did the specially crafted system of Michalski and
Chilausky (1980).

The first experiment in Medin and Schaffer (1978) is a nice one for
illustrating the detailed calculations of the algorithm. They had subjects
study the following six instances each with binary features:

11111 00000
10101 010600
01011 10110
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The first four binary values were choices in visual dimensions of size,
shape, color, and number. The fifth dimension reflects the category
label. They then presented these 6 objects without their category label
plus six new objects without a label: 011i., 1101_, 1110., 1000.,
0010_ and 0001.. Subjects were to predict the missing category label.

We derived simulations of this experiment by running the program
across various random orderings of the stimuli and averaging the results.
Figure 1 shows one simulation run where we used the order 11111,
10101, 10110, 00000, 01011, 01000 and had the coupling probabil-
ity ¢ = 0.5 (see Equations 4 and 5) and set all a; = 1 (see Equation 7).
What is illustrated in Figure 1 is the search behavior of the algorithm as
it considers various possible partitionings. The numbers associated with
each partition are measuzres of how probable the new item is given the
category to which it is assigned in that partition. These are the values
P(k)P(F|k) calculated by Equations 4 through 11. Thus, we start out
with categorizing 11111 in the only possible way—that is, assigning it to
its own category. The probability of this is the prior probability of a 1.0
on each dimension or (0.5)° = 0.0313. Then we consider the two ways
to expand this to include 10101 and choose the categorization that has
both objects in the same category because that is more likely. Fach new
object is incorporated by considering the possible extensions of the best
partition so far. We end up choosing the partition {11111, 10101,
10110}, {00000, 01000}, {01011} which has three categories. Note
the system’s categorization does not respect the categorization of Medin
and Schaffer.

Having come up with a particular categorization, we then tested the
algorithm by presenting it with the 12 test stimuli and assessing the
probabilities it would assign to the two possible values for the fifth
dimension which is label. Figure 2 relates our algorithm to their data.
Plotted along the abscissa are the 12 test stimuli of Medin and Schaffer
in their rank order determined by subjects’ confidence that the category
label was a 1. The ordinate is the algorithm’s probability that the
missing value was a 1. Figure 2 illustrates three functions for different
ranges of the coupling probability. The best rank order correlation was
gotten for coupling probabilities in the range 0.2 to 0.3.

Using this coupling probability the rank order correlation was 0.87.
Using a coupling probability of 0.3 rank order correlations of 0.98 and
0.78 were obtained for two slightly larger experimental sets used by
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Figure 1. An illustration of the operation of the iterative algorithm in the ma-
terial from the first experiment of Medin and Schaffer (1978).

Medin and Schaffer. These rank order correlations are as good as those
obtained by Medin and Schaffer with their many-parameter model. If
also does better than the AcT™* simulation reported in Anderson, Kline,
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Figure 2. Estimated probability of category 1 for the 16 test stirnuli in the first
experiment of Medin and Schaffer (1978). Different functions are of
different ranges of the coupling probability.

and Beasley (1979). We have set the coupling probability ¢ to 0.3
throughout our applications.

The reader will note that the actual probabilities of category labels
estimated by the model in Figure 2 only deviate weakly above and below
0.5, This reflects the very poor category structure of these objects.
With better structured material much higher prediction probabilities
are obtained.

Detailed descriptions of the application of the algorithm to particular
experiments can be found in Anderson (1990) and Anderson (in press).
However, we will briefly review the applications of the algorithm fo a
number of empirical phenomena. The following are among the empirical
phenomena we have successfully simulated:
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. Extraction of Central Tendencies, Continuous Dimensions. For con-
tinuous dimensions the Bayesian model implies that categorization
should vary with distance from central tendency. This enables the
model to simulate the data of Posner and Keele (1968) on catego-
rization of dot patterns and Reed (1972) on categorization of faces.

. Extraction of Central Tendencies, Discrete Dimensions. The model
implies that stimuli should be betier categorized if they display the
majority vaiue for a dimension. This enabled the model to simulate
the data of Hayes-Roth and Hayes-Roth (1977).

. Effect of Individual Instances. If an instance is sufliciently different
from the central tendency for its assigned category, the model will
form a distinct category for it. This enables the model to account
for the data of Medin and Schaffer (1978) on discrete dimensions
and Nosofsky (1988) on continuous dimensions.

. Linearly Separable vs. Non-Linearly Separable Categories. In con-
trast to some categorization models, this model is able to learn cat-
egories that cannot be separated by a plane in a n-dimensional hy-
perspace. This is because it can form multiple internal categories to
correspond to an experimenter’s category. This enables the model
to account for the data of Medin (1983) on discrete dimensions and
Nosofsky, Clark, and Shin (1989) on continuous dimensions.

. Basic-Level Categories The internal categories that the model ex-
tracts corresponds to what Rosch (1976) meant by basic-level cate-
gories. Thus, it can simulate the data of Murphy and Smith (1982)
and Hoffman and Ziessler (1983).!

. Probability Matching Faced with truly probabilistic categories and
large samples of instances the model will estimate probability of fea-
tures that correspond exactly to the empirical proportion. Thus, it
predicts the data of Gluck and Bower (1988) on probability match-
ing.

. Base-Rate Effect Because of Equation 4 this model predicts that
usually there will be a greater tendency {o assign items to categories
of large size. Thus, it handles the data of Homa and Cultice (1984).
It also reproduces the more subtle interactions of Medin and Edelson
(1988).

. Correlated Features As noted earlier the model can handle categories
with correlated features by breaking out separate internal categories

. For a similar application, see Gluck and Corter {1985).
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for each feature combination. Thus, it handles the data of Medin,
Altom, Edelson, and Freko (1982)

9. Effects of Feedback If the category structure of the stimuli is strong
enough the model can extract the categories without any feedback
as to category identity. In the face of weak category structure, it
is necessary to provide category labels to get learning. Thus, this
model reproduces the data of Homa and Cultice {1984)

10. Effects of Input Oxder In the presence of weak-category structure,
the categories the model forms is sensitive to presentation order. In
this way we are able to simulate the data of Anderson and Matessa
(in press) and Elio and Anderson (1984).

All these simulations were done with a constant setting of the param-
eters: ¢ from Equations 4 and 5 at 0.3, o; from Equation 7 at 1, Ag from
Equation 9 at 1, ag from Equation 10 at 1, po from Equation 11 at the
mean of the stimuli, and of from Equation 12 at the square of 1/4 the
stimulus range. All of these are plausible settings and often correspond
to conventions for setting Bayesian non-informative priozs.

4. Comparisons to Cheeseman, Kelly, Self, Stutz,
Taylor, and Freeman {1988)

The Bayesian character of this classification model raises the issue of its
relationship to the AUTOCLASS model of Cheeseman et al. While it is
hard to know how significant the differences are, there are a number of
points of contrast.

Algorithm Rather than an algorithm that iteratively incorporates
instances into an existing category structure, Cheeseman et al. use
a parameter searching program that tries to find the best fitting
set of parameters. The Cheeseman program is quite fast and is not
sensitive to the order of the examples. On the other hand, it does
not easily generate predictions that can be incrementally updated
with each example.

Number of Classes AUTOCLASS has a bias in favor of fewer classes
whereas this bias is setable in the rational model according to the
parameter ¢. AUTOCLASS does not calculate a prior corresponding
to the probabilities of various partitionings.
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Conditional Probabilities It appears that AUTOCLASS uses the same
Bayesian model as we do for discrete dimensions. The treatment
of continuous dimensions is somewhat different although we cannot
discern its exact mathematical basis. The posterior distzibution is
a normal distribution which will only be slightly different than the
t-distribution we use. Both AvuTocrLass and the rational model
assume the variocus distributions are independent.

Qualitatively, the most striking difference is that AuToCLASS derives
a probability of an object belonging to a class whereas the rational
model assigns the object to a specific class. However, Cheeseman et al.
report that in the case of strong category structure the probability is
very high that the object comes from a single category.

5. Order Sensitivity

The categorization algorithm that we have described is order sensitive
and this has been a point of criticism of the model (Ahn & Medin,
1989). If critical examples have accidental similarities the model will
create pseudo-categories around these. If the initial examples have ex-
aggerated differences the algorithm will fail to identify the true cate-
gories but split them into lower-level categories. The basic problem of
the algorithm is that it is unable to split categories that it has formed
into subcategories or to merge existing categories into larger categories.
In Anderson (1990) we showed subjects do display some sensitivity to
order but much less than our algorithm.

An interesting question concerns the consequences of this order sensi-
tivity from the goal of the rational analysis which to maximize prediction
where maximal prediction is defined with respect to the ideal algorithm
(Equation 1). It is usually impossible to calculate the predictions of the
ideal algorithm but the first experiment of Medin and Schaffer (1978 -
see Figures 1 and 2) used a sufficiently small stimulus set that this is
feasible. We calculated the ideal probabilities for the test stimuli in Fig-
ure 2 using ¢ = 0.5 and a; = 1. At ¢ = 0.5, depending on ordering, the
iterative algorithm selects out one of the following three partitionings:



58 J. R. ANDERSON AND M. MATESSA

A: (01011) (00000, 01000) (10101, 10110, 11111)
B: (1111, 01011) (DO000, 01000} (10101, 10110)

C: (10101, 10110, 11ii1) (01011, 00000, 01000)

A is the partitioning illustrated in Figure 1; it has log probability
—25.77;% it occurs 22% of the time. B has log probability —26.52 and
occurs 16% of the time. C has log probability —25.64 and occurs 61%
of the time. C is the most probable partitioning of all. By compari-
son a partitioning that merges all into one category has log probability
—26.30, one that breaks them up into single categories has log prob-
ability —27.37,% and something awful like (11111, 00000) (01000,
10101), and (10110, 01011} has log probability —32.07. The median
probability of the 203 partitions expressed in log terms as —28.66 or
about 5% the probability of the most probable.

The Medin and Schaffer stimulus set has weak category structure
and the algorithm does not always find the most probable partition.
In the case of strong category structure the program extracts the most
probable interpretations independent of order of presentation. Fisher
(1987) reports a similar result for his Cobweb program.

The critical issue is how well the various pariitions do at predicting
features. Therefore, we looked at various partitions with respect to pre-
dicting the fifth dimension of the 12 stimuli ilustration in Figure 2. We
looked at the correlations among the predictions of various procedures.
Table 1 reproduces the correlation matrices among the predictions of
the three partitionings A, B, and C, their weighted average (as pro-
duced by the iterative algorithm), and the weighted prediction from the
ideal algorithm (Equation 1). As can be seen, they all are relatively
highly correlated with the ideal and, except for A and C, with each
other. The weighted average of A through C is very highly corzelated
(r = .96) with the ideal. This suggests that there is relatively little cost
associated with using the iterative algorithm.

2. What we are calculating is the product of P(k|F) (from Equation 3) for all the
instances. This represents the likelihood of the data given the parameters ¢ and
a.

3. A singleton category structure is less likely than a single category because of the
high value of ¢. At ¢ = .3, the log probability of the single category becomes
—28.11 and the log probability of the singleton categories is --22.95.
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Table 1. Correlation matrix among various algorithms with respect to predict-
ing the stimuli in Figure 2.

IpEAL A B C
Parrrrion A 0.89 X X X
Parrrrion B 098 085 X X
ParTiTiION C  0.80 049 081 X
AVERAGE 0.96 0.78 0.96 0.92

It is interesting that the prediction is not particularly good using the
most probable partition. This reflects that the most probable partition
has only 5% of the probability of the 203 possible partitions of the 6
stimuli. As the set size gets larger or as the category structure improves,
the most probable partition will tend to dominate the prediction. This
suggests that it makes sense for the system to strive for the most prob-
able partition but prediction from some other highly probable partition
may be as good or better.

5.1 A Hierarchical Algorithm

Considerations of the order-semsitivity of the algorithm has led us to
consider other incremental algorithms that are less order sensitive. We
were also interested in producing a hierarchical category structure and
exploring the issue of whether other levels in the hierarchy, besides the
basic level, might be useful for prediction.

We have developed another algorithm which is somewhat more suc-
cessful at identifying the maximally probable partition but avoids con-
sidering all possible partitions as does the ideal algorithm. This al-
gorithm organizes the data into a hierarchical structure. Figure 3 il-
lustrates a hierarchical structure to organize the stimuli from the first
experiment of Medin and Schaffer. Having built such a hierarchical rep-
resentation of the stimulus set, our algorithm tries to determine which
partitioning within the hierarchy offers the optimal decomposition of
the stimulus set, This will depend on the setting of the coupling pa-
rameter ¢. The higher the value of ¢ the larger the categories that the
algorithm will tend to select. Given the structure in Figure 3, the al-
gorithm will select the top-level node as the single category for values
of ¢ greater than 0.7. For values of ¢ in the range 0.39 to 0.70 it will
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Figure 3. Hierarchical organization of stimuli from first experiment of Medin
and Schaffer (1978).

select the two subnodes. For values of ¢ from 0.32 to 0.39 it will select
the bottom-level nodes except for 00000 and 01000 which it will merge
into a single category. Below 0.32 it selects singleton categories.

The basic algorithm for growing this network is as follows:

1. At any point in time, it will have a hierarchical organization for the
seen instances and, given a value of ¢, it will have identified a set of
categories.

2. As before, given a new instance, it will determine a category to
associate with this instance.

3. If that is an existing category it will sort the new instance to a
location below that category node.

4, If it is a new category it will sort that category to some location in
the hierarchical structure that exists above the category nodes.

5. Tt will search upward from where the new item was inserted to see
if some change in of the category structure is warranted. Note this
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does not reorganize the hierarchy but only changes which nodes in
the hierarchy might be considered category nodes,

Figure 4 illustrates the basic logic for sorting and inserting a new
instance into the hierarchical structure. We have an existing hierarchical
structure consisting of a node a with subnodes b and ¢. We have a new
instance d that we want to incorporate somewhere in the hierarchical
structure under a. There are three possibilities: (i) d will be associated
with the hierarchical structure dominated by b; (i) d will be associated
with the hierarchical structure dominated by ¢; or (iii) a binary branch
will be created with band c in one and & in the other. The way to choose
among these is to identify the branching that will yield the maximally
probable pair of categories to cover all the items under b, ¢, and 4. For
(1) we consider the product of the probability of the category consisting
of b + d and the category comsisting of ¢. For (ii) we consider the
b category and the ¢ + d category. For (iii) we consider the b + ¢
category and the d category.

It is worthwhile comparing the performance of this hierarchical al-
gorithm with that of the previous algorithm. We used the material of
Medin and Schaffer for this purpose. There are 720 possible orderings
of the 6 stimuli. With e = 0.5, the old algorithm identified 3 different
categories and identified the optimal categorical structure 61% of the
time, and produced categorical structures with average log probability of
-25.81. The hierarchical algorithm identified 6 different categories, but
identified the optimal category structure 80% of the time, and produced
categorical structures with average log probability of —25.74. Thus,
there is not much difference in average goodness, but the hierarchical
algorithm is somewhat more successful at finding the optimal structure.
With larger stimulus sets, we have not been able to be exhaustive but
the hierarchical algorithm does appear more stable and does more often
select the ideal structure.

We have also explored hierarchical algorithms that are not order sen-
sitive. Basically, they used classical clustering techniques (Annenberg,
1973) to create hierarchies of stimuli sorted according to similarity where
similarity is measured by Equations 6-8. Such algorithms are more ex-
pensive computationally because they must perform all pairwise com-
parisons. We have not found that they yield notably better results.

A good case for illustrating the problems of these algorithms is the iris
data base of Fisher {1936). According to Fisher there are three under-
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Figure 4. Choose structure to maximize probability. Should it depend on prior
probability?

lying types of Irises. Our algorithms, whether hierarchical or not, and
if hierarchical , whether iterative or not, fail to identify this category
structure. They always identify one of the categories, Iris Setosa, but
either fail to separate the other two (Iris Versicolor and Iris Virginica)
or split them up inappropriately (as defined by Fisher). Cheeseman et
al. claim their algorithm to be successful but our observation is that
it also produces an inappropriate splitting into three categories that do
not correspond to the original three. We also have observed of human
subjects that they also extract two categories or produce an inappropri-
ate splitting into three. This notwithstanding, it can be shown that the
original categorization produced by Fisher is more probable than the
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two-category solution or the various inappropriate three-category solu-
tions. However, it is apparently impossible to find this more probable
partitioning given the various approaches, artificial or human. However,
it turns out that prediction of features is not enhanced by the more
probable partitioning. Thus, it is not clear that we should consider the
behavior of these various algorithms as failuzes.

5.2 Genus and Instance Level Identification

While it does not seem that the hierarchical approach produces sub-
stantially better categorical organization, we think that there might be
some significance to the levels of our hierarchy. There are at least two
other levels of the hierarchy which are significant for purposes of pre-
diction. At a higher level is the genus® and at the lower level is the
individual. We will discuss the significance of prediction at each level,

The genus level offers a level of aggregation above the species. A
genus corresponds to a group of biclogically related species which are
more similar to one another than are arbitrary pairs of species. The
significance of the genus level does not come in making predictions about
known properties of known species. For instance, we are much betier
off predicting the cat-chasing propensity of Fido knowing that he is
a dog than knowing he is 2 mammal. The significance of the genus
level comes in making predictions about unknown properties of a known
species (e.g., whether Fido has a spleen) and making predictions about
unknown species.

In Bayesian terms, the significance of the genus level is that it can be
used to set more informed priors for the species under the genus. This
will help in making predictions about new species and about unexperi-
enced properties of existing species. The interesting complication is that
these priors themselves depend on estimates of the parameters for the
existing species which in turn depend on the priors. Thus, it might seem
that we have a difficult joint estimation problem. The typical Bayesian
approaches to such estimation problems are what are called hierarchical
methods (Berger, 1985, Section 4.6). The technical development of such

4. Qur use of the term genus is in its more general sense to refer to a kind and does
not imply the precision that is involved in the distinction among geaus, family,
order, class, and phylum in biology. We suspect that the level useful in prediction
might be considerably above the biological genus level and actually closer to the
phylum level
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methods can be quite complex and is not justified here since data has
not yet been gathered that requires such complex quantitative analy-
sis. We will simply note, for our purposes, they provide a rationale for
making estimates of the mean and variance within a species sensitive to
estimates mean and variances for other species within a genus.

There certainly is evidence that people have this sensitivity. Even
young children have expectations about the properties of new animals
based on animals which they have seen {Carey, 1985). They also have
expectations that certain dimensions are less variable for certain types
of categories. Thus, there is the expectation that animals within a cat-
egory will have the same constitution while artifacts within a category
will have the same function (Gelman, 1988). Moreover, these expecta-
tions show developmental trends to more accurate forms as experience
accumulates.

The experiment of Nisbett, Krantz, Jepson, and Kunda (1983) also
illustrates differential sensitivity to variance in categories of different
kinds. They asked subjects to suppose they had a sample of a new
mineral, a new bird, or a new tribe of people from a new island. They
were given samples of different size and told that all the objects within
the sample had some property. Subjects were willing to extrapolate
from a single observation for some dimensions like conductivity of the
mineral or color of the tribe of people whereas they required 20 observa-
tions before they were able to extrapolate with any confidence for other
dimensions like the obesity of the people.

This ability to show sensitivity to variance is one thing that distin-
guishes this hierarchical Bayesian approach to categorization from most
others. Many approaches (e.g., instance-based models) would predict
that subjects would be biased in their estimate of the mean of a new
species by the mean of existing species. These other approaches do
not have the mechanisms, however, for showing a similar sensitivity to
variance.

5.3 Individual-Level Identification

The individual provides a much lower level of aggregation below the cat-
egory. For purposes of prediction, there is a real advantage to identifying
a repetition of an individual and making predictions from the individual
rather than the category. This is because the individual may 1eliably
deviate from the mean of the category and because many features are
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much more certain at the individual level than at the category.

Retrieving an individual and making a prediction on this basis cor-
responds to a memory retrieval. From this perspective the difference
between memory and categorization concerns whether prediction is be-
ing made at the individual level or the category level. It is basically the
same logic of prediction; however, it needs to be parameterized differ-
ently:

(a} To reflect the fact that individuals repeat themselves much less
often than categories, we use a lower value of c.

(b) We need to capture the fact that the features are much less likely
to change. To accommodate this we need to have lower values of the a;
for discrete dimensions and much smaller values of o for continuous.

There has been a lot of speculation as to how categorization behav-
jor relates to memory behavior. The instance-based models (Medin
and Schaffer, 1978, Nosofsky, 1986) would argue that everything is re-
ally memory-based while connectionist models (McClelland, Rumelhart,
and Hinton, 1986) would argue that there are no separate representa-
tions of instances and everything is merged together. They both try to
account for differences between categorization and memory by arguing
that a single representation is differently processed. This model offers
a representation which distinguishes the two levels but uses the same
Bayesian logic at both levels. Of course, the rational representation is
only an acknowledgment of the fact that there are individuals and cat-
egories in the real world. It does not really make any claims about how
they are processed in the head. Anderson (in press) can be consulted for
experimental evidence that people do make different predictions when
they operate at the category level or the individual level.

6. Summary

In summary, we have identified an iferative Bayesian algorithm which
is fast, yields near-optimal predictions about stimulus dimensjons, and
which corresponds with uncanny accuracy to the behavior $8 humans.
We have explored the potential of some hierarchical variations of the al-
gorithm. They produce marginal improvements at best in the prediction
behavior. However, there is reason to suppose that human categoriza-
tion behavior has sensitivities to levels above and below the basic level
category.
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QOur interest in the original iterative algorithm began as a way to
get approximations to the ideal, computationally impossible, prediction
{specified by Equation l),f? was not intended as a serious model for
either human cognition nor as an Al application. However, after more
than two years of exploration, we have failed to find a real improvement
and continue to be surprised at how well it does.
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Figure 3.1 An Rustration of the operation of the iterative algorithm in
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Figure The faces in the two artificial categories in Reed's experiment (1970)
studying schema abstraction with respect to faces. The faces in the top row are from
category 1, and the faces in the bottom row are from category 2. (From Reed, 5. K
Pattern recognition and categorization. Cognitive Psychulogy, 1972, 3, 382-407.)




