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ELABORATING ACT-R’S THEORY
OF CHOICE

For both humans and animals, choice is a necessary part of life. Some choices
mark global decisions (e.g., for whom to cast a vote, whom to choose as a
mate), but the majority of choices, encountered in daily life, have more
immediate consequences and tend not to evoke explicit, deliberate reason-
ing {e.g., which route to take to work, in which patch to forage for food).
This chapter focuses on the processes mediating the latter kind of
choice—choice in service of a local goal—particularly when the chooser
has repeated exposures to the same choice point. Problem-solving tasks offer
many examples of choice in service of a local goal. For example, when
working on a problem {e.g., solving an algebra equation), solvers often have
multiple strategies available (e.g., graphing, quadratic formula) and must
choose among these strategies in order to progress toward the local goal of
reaching a solution. The same framework maps onto many animal choice
situations. For example, in foraging, the animal’s goal is to obtain some food,
and the choices are the multiple patches in which food may be sought.
Making such choices involves facing two questions: (1) how to evaluate
different options when the successful option cannot be known in advance,
and (2) how to adapt one's choice tendencies to a potentially changing
environment. The ability to evaluate options (and choose among them) in
a way that is sensitive to the contingencies of one’s environment is impor-
tant for success. For example, people who choose more robust solution
strategies will tend to solve more problems, and foraging animals who seek
food in ticher patches will tend to find more food. This sensitivity to
environmental contingencies, however, is useless unless it adjusts to chang-
ing circumstances. For example, problem solvers need to be able to shift
their choice tendencies when a strategy that was unsuccessful at first
eventually outperforms other strategies once it is practiced. Similarly, ani-
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mals need to adjust their foraging choices when a patch that was previously
plentiful eventually becomes depleted, making it much less rewarding. In
both situations, the choosers’ goals are best served when their choice
tendencies adapt to changing experiences of success and failure with the
various alrernatives.

ACT-R must face the same questions of evaluation and adaptation in
choice situations. What does ACT-R do when more than one production
applies to the current situation? The performance discussion in the third
section of Chapter 3 specified how ACT-R’s conflict resolution mechanism
uses productions’ parameter values to select the production with the highest
expected utility. How does ACT-R adjust its choice tendencies to a chang-
ing environment! The learning discussion in the fourth section of Chapter
4 specified how ACT-R estimates production parameters from past experi-
ences. Together, these performance and learning mechanisms allow ACT-R
to choose adaptively within its environment. When the environment
changes, the model learns new values for its productions’ parameters, and
its selection among those productions changes accordingly. As shown in
various examples throughout Chapters 3 and 4, these ACT-R mechanisms
do a good job of fitting problem solvers' choice tendencies in relatively stable
environments.

In this chapter, we raise several issues regarding ACT-R’s ahility to adjust
to rapidly changing environments and its applicability to choice situations
beyond problem-solving choice. In particular, we focus on the predictions
of ACT-R when time -based decay is incorporated into the computation of
productions' success histories. This time-based adjustment was addressed
briefly at the end of Chapter 4. Here we discuss in more detail how it affects
the way productions' parameters are learned and how it influences the time
course of choice among competing productions. Through a variety of
examples, we demonstrate that the decay-based parameter-learning mecha-
nism allows ACT-R models to account for a variety of learning and choice
data at a fine-grained level of detail.

A Review of How ACT-R Learns to Choose

In ACT-R, each production rule i is chosen according to a probability that
reflects its expected gain, E, relative to its competitors' expected gains, Ej.
ACT-R chooses the production with highest gain, but because of noise in
the evaluation, the production with highest expected gain is only chosen a
certain proportion of the time. The Conflict Resolution Equation 3.4
describes the probability that a production with expected gain E, will have
the highest noise-added expected gain:
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where t controls the noise in the evaluations. These evaluations of expected
gain are computed as the quantity E = PG — C, where P is the estimated
probability of achieving the production’s goal, G is the value of_the goal,
and C is the estimated cost to be expended in reaching the goal. This chapter
focuses on the impact of successes and failures on choice, so we take C as
fixed and expand on P. Because P is the estimated probability of eventual
success in attaining the goal, it is decomposed into two parts: P = qn whe're
q is the probability that the production under consideration will ac}ne\{e its
intended next state, and 7 is the probability of achieving the production’s
goal given arrival at the intended next state. For practical purpoOses, we can
take ¢ as 1, leaving 7 as the main quantity to estimate. [.Jnder this constraint,
the r parameter is important for determining the choice among competing
productions. When a production’s r parameter is low, it 1mpl.1es‘that the
production tends not to lead to the goal even when it leads to its m‘tendgd
next state; this low r value will be represented in a low P value, which Wdi
lead the production to have a low expected gain. In contrast, a prpductlon
with a high likelihood of leading to its goal (i.e., high r value) will hgve a
higher estimated probability of achieving the goal and hence a higher
expected gain evaluation.

In ACT-R, the value of a production’s r parameter is estimated as:

re= Successes Probability Learning Equation 4.5
Successes -+ Failures

where Successes and Failures refer to the number of eventual successes apd
failures that occurred when this production was used. This includes all prior
such events (i.e., those before the beginning of the simulation) and experi-
enced events (i.e., those during the current simulation). Thus, before a
production has been used in the current simulation, r.i.iese values represent
a prior estimation of the production’s successes and failures. As the current
simulation runs and the production is exercised, the values of Successes and
Failures will include more and more experienced successes and failures, _and
the ratio in Equation 4.5 will emphasize the experienced success rate of the
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production. A more explicit breakdown of experience into “prior” and
“experienced” quantities rewrites Equation 4.5 as:

r= (¢ +m)y/(a+p+m+n)

where o and P represent prior successes and failures and m and n represent
observed successes and failures.
Two important ACT-R predictions stem from this basic mechanism:

1. As solvers experience success and failure, their choices will shift from
initial tendencies to a preference of the more successful production(s).

2. Because success and failure information is maintained at the produc-
tion level, solvers’ preferences will be exhibited at the production
level-—that is, success with a certain production will generalize to all
situations where it is applicable (even if the solver’s successes with this
production were limited to a small set of situations).

An Example of ACT-R’s Mechanisms for Choice

The building sticks task (BST), described in the fourth section of Chapter
4, offers a problem-solving situation where solvers must learn to choose
between various solution approaches. By studying how solvers’ choice
patterns change with different experiences in this task, we can test the
preceding predictions and illustrate the basic ACT-R mechanisms de-
scribed earlier. After doing so, the remainder of this chapter explores choice
in ACT-R when the decay-based component is enabled.

Figure 8.1 (top) presents a typical problem that solvers face in the BST
It includes an unlimited supply of three different-sized building sticks that
can be added together or subtracted from each other to build 2 new stick.
The solver’s goal is to build this new stick to be equal in length to the desired
stick. There are two approaches to this task: The overshoot approach starts
with a building stick that is longer than the goal stick and cuts it down using
the other building sticks; the undershoot approach starts with a building stick
that is shorter than the goal stick and lengthens it using the other sticks.
{Note that the undershoot approach is generally initiated with the medium-
sized stick; solvers almost never select the smallest stick for their first move.)
If separate productions implement these two approaches, ACT-R will be
able to keep separate records of the number of successes and failures
associated with each and hence learn associated r parameters that estimate
the probability of each production leading to achievement of the goal.

In the fourth section of Chapter 4, we described a model of the first
experiment in Lovett and Anderson (1996). Table 4.7 described some of the
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FIG 8.1 The initial state (rop) and three possible Airst moves (bottom) for a problem
in the building sticks rask,

basic productions for doing the task. To review, there were four critical
productions:

1. Decide-under. This production decided to try undershoot for those
problems where the differerice between the goal and the medium-
length building stick seemed less than the difference between the
fongest building stick and the goal.

2. Decide-over. This production decided to try overshoot for those prob-
lems where the difference between the longest building stick and the
goal seemed less than the difference between the goal and the medium
building stick.

3. Force-under. This production chose undershoot no matter how the
differences appeared.

4. Force-over. This production chose overshoot nio matter how the dif-
ferences appeared.

Figure 4.4 reported a successful fit of this model to the first experiment
of Lovett and Anderson (1996). Here we describe the fit of the model to
their third experiment, which pushes the parameter-learning mechanism to
account for choice learning across a longer sequence of problems.!

“The BST models presented in this book differ from th model specified in Lovett and
Anderson {1998) in one important way: the models here conform to the ACT-R 4.0
conflict-resolution scheme which only allows separate production rules to compete: the
Lovett and Anderson (1996) model instead allowed multiple instantiations of the same .
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In the third experiment, participants solved 90 BST problems while their
solution choices were tracked. For each participant, one of the approaches
(undershoot or overshoot) was more successful. This more successf}zl ap-
proach was counterbalanced over subjects. The structure qf the experiment
was designed so that 10 out of each 30 problems looked like they Eouic_i bg
solved by the more successful approach (ie, the corresponding ‘ c!ecxde
praduction would match the current goal), whereas the remaining 20
problems locked like they could be solved by the less successful approach
(i-e., the less successful approach’s "decide” production would match the
current goal). The 10 problems that looked like they could be solved by the
more successful approach were indeed solvable by that approach (and only
that approach) However, depending on the condition, only 5 or 10 of the
problems that looked like they could be solved E?Y the less successful
approach were actually solvable by that approach (ie., a full 15 or 10 of
these 20 problems were actually solved by the more successful apprg&ch),
Thus, the two probability conditions in this experiment are labeled 83% and
67% (i.e., 10/10 + 15/20 = 83% of problems solved by the more successful
approach and 10/10 + 10/20 = 67% of problems solved by the more
successful approach). Note that each problem was solvable by one gnd only
one of the two approaches (i.e., undershoot or overshoot}, and subjects had
to complete a solution of the current problem before they cc_auld advange to
the next problem. In addition to these solved problems, sub!ects were given
test problems on which they specified their first move but did not camplete
the problem (i.e., they could not see whether that move led to a solution).
These test problems occurred before the first solved problems ar_ld between
each block of 30 solved problems. The ten test problems varied along a
dimension we call test problem bias (i.e., the relative closeness of an
undershoot move versus an overshoot move to the desired stick length?).
Specifically, the test problems ranged from strongly overshoot biased {over-
shoot was much closer) to strongly undershoot biased (undershoot was
much closer) and included the three intermediate categories of weak

.- production to compete based both on the production's cvgraii success rate and on f:he
spectfic instantiation's anticipated success rate. {A production mstar}uat‘mn is a production
whose vatiables have been baund to certain values ) Conflict resolution in ACT-R 4.0 does
not distinguish different instantiations of a production, so it is often hﬁ}lpﬁl% to .represe;lt
different productions that will apply in situations where suceess rates are likely to d}ffer The
BST model presented here exemplifies this practice by incorporating two productions eqch
for undershoot and overshoot {a *decide” production applies when the corresponding
approach looks closer for the current problem, and both “force” productions apply regardless
of the current problem details).

*Specifically, we estimated a problem's undershcot bias to l?e g~ (g —c) wh:s:re b aml:lc
c are the big and medium-sized building stick lengths respectively and g is the desired stic
length. The larger this quantity, the closer an initial undershoot move gets to the goal as
compared to an initial overshoot move.
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overshoot bias, weak undershoot bias, and neutral (undershoot and over-
shoot were equally close to the goal).

Figure 8.1 presents a summary of subjects’ choices on the test problems
and the corresponding ACT-R 4.0 model predictions. These dara are
plotted as a function of test problem bias, where “High Against" test
problems are those for which the less successful approach looked closer to
the goal and “High Toward” test problems are those for which the more
successful approach looked closer to the goal. The data points labeled 0
show solvers' initial choice tendencies (before the experimental trials be-
gan}. The other data points (labeled 1 and 3) show solvers' choice tenden-
cies on the same test problers after 30 and 90 problems of experience with
the two approaches. The left panel presents average choice proportions of
participants in the 67% condition, and the right panel presents average
choice proportions of participants in the 83% condition.

In both conditions, solvers increased their tendency to choose the more
successful strategy across subsequent test phases. Moreover, these shifts are
greater for the condition experiencing 2 more extreme (83%) success rate.
These results conform to the first prediction mentioned earlier, namely, that
solvers adapt their choice tendencies to prefer the more successful strategy.
Solvers also show a large effect of test problem bias, tending to choose the
approach that appears to be more successful. A striking feature of the data
is that the various curves are approximately parallel except where they run
into the ceiling of 100%. This suggests that solvers increased their use of
the more successful strategy across all problem types even though they had
only solved problems that were similar to two of the five rest problem types
(“High Against” and “High Toward”). This general shift in solvers’ choices
thus conforms to the second ACT-R prediction mentioned earlier, namely,
that solvers change their choice tendencies at the production level, not on
a problem-by-problem basis. That is, solvers increased their choice of the
more successful strategy for all problem types, not just the ones with which
they had gained experience. This is consistent with the ACT-R notion that
history-of -success parameters are stored at the production level.

As can be seen from the bottom of Fig. 8 2, ACT-R does a good job in
accounting for this shift in probabilities. The ACT-R mode! was fit to this
data by fixing the parameters o and P for the “force” productions and B for
the “decide” productions at 0.5 and by estimating the remaining critical
preduction parameter, the “decide” productions’ &. The best-ficting value
for the decide productions’ « was 10.68. We also estimared the model’s ¢
parameter to be 8.17 (o1, s = 5.78), which reflects the amount of noise added
to productions’ expected gain evaluations (with the value of the goal GG set
to 20.0). Finally, the perceptual noise added to stick length differences (used
in determining which approach looks closer) was logistic with spread
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Observed Data

Biased Condition Extreme-Blased Condition
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approach) and increase their evaluations of the more successful productions
(e.g, Decide-Overshoot and Force-Overshoot). Table 8.1 documents
what happens to the r values of these productions. The first column of that
table shows the initial r value for the “force” productions as 0.5 (based on

the priors, —%_=_ 05 ) and the initial r value for the “decide” produc-
a+B 05405
tions as 0.96 (based on the priors, wuguuzul—oi). This represents an

o+ 1068+05

initial preference for using the “decide” productions, that is, choosing the
strategy toward which the stick lengths are biased. Because the approach
that looks closest will not always lead to a solution, however, the correspond-
ing “decide” production will experience a certain number of failures (de-
pending on the condition). Also, with expected gain noise, there is always
some chance that a less successful production will be attempted; this allows
the system to gather at least some information about the success of all of the
four critical productions. After 90 trials of experience, the productions' r
values will have been adjusted based on this information (see Table 8.1).
Note that in both conditions, the production corresponding to the more
successful approach (within both the “force” and “decide” pairs) had a
higher evaluation. Moreover, in the 83% condition, this preference for the
more successful production was even more extreme than in the 67%
condition.}

TABLE 8.1
ACT-R Model r Values Before and After Problem-Solving Experience
in Experiment 3 (Lovett & Anderson, 1996)
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FIG 8.2 Problem solvers' choice proportions as a funcrion of the test problem type
{plotted on the abscissa) and amount of experience in the task Solvers were tested
before solving any problems (test 0}, after solving 30 problems (test 1), and after
solving 90 problems {test 3) Test Z data are not shown on the praphs, for clarity of
presentation

parameter s = 2.5 The resulting model predictions, based on these two free
parameters, fit the data quite well with the best-fitting line being Observed
= (.99 x predicted ~ 0.0005, MSE = 0.003, R? = .96.

In terms of the critical production rules, what happens is that subjects
decrease their evaluation of the less successful productions (e.g., Decide-
Undershoot and Force-Undershoot when undershoot is the less successful

Production Initial Value Final Value
679 Condition 83% Condition
MS “foree” 50 60 J1
LS “force” 50 38 27
MS “decide™ 96 98 98
LS “decide"™ 96 63 54

Notz. MS = more successful approach, LS = less successful approach.
“Production only competes when problem suggests more successful approach.

bProduction only competes when problem suppests less successful approach.

3Note that the final r values for production p do not exactly correspond to {ep + success-
ratep * 90} / {ep + Pp + 90) because the number of successes and failures will tend to be
less than the corresponding rate times 90 because a given production will not be attempted
on all 90 problems.
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Decay in ACT-R's Conflict-Resolution Learning

The preceding results suggest that ACT-R’s general predictions concerning
learning and choice are consistent with problem solvers' overall choice
tendencies. These results, however, do not address choosers’ potential sen-
sitivity to the timing of successes and failures; instead, only intermittent test
data, averaged by condition, were fit. ACT-R originally had no way to make
its behavior sensitive to the timing of successes and failures. However, as
explained in Chapter 4, this was changed to accommodate results such as
the ones discussed in this chapter. Now one can optionally allow ACT-R to
decay the success and failure experiences used in computing expected gain.*

There are a number of issues that motivate this switch to the decay-based
version of the theory:

Issue 1. The ACT-R parameter-learning mechanism without decay
cannot exhibit special sensitivity to a recent success or to a particular
sequence of success. That mechanism will exhibit the same choice
tendencies after m successes and n failures, regardless of different time
delays or orderings of these experiences. This is because, without
decay, ACT-R takes all experiences of success and failure as inter-
changeable in time and equal in weight.

[ssue 2. Without decay, the information recorded in a production’s r
parameter is maintained perpetually. The estimation of r in Equation
4.5 only changes when there is an intervening experience, so a
production that goes unused will maintain its parameter values indefi-
nitely. This is not true of ACT-R Base-Level Learning Equation 4.1.
And, as shown later, it is not true of production parameters when
decay-based parameter learning is enabled.

Issue 3. Without decay, an ACT-R model with vast experience can
change its choice tendencies only slowly. Because the basic learning
mechanism estimates the r parameter as a ratio of successes to all
experiences, this ratio will change more and more sluggishly with
accumulating experience (i.e., when Successes and Failures are large,
any additional experience exerts a very small change in r).” And yet,

*For nondecaying production parameter learning, the global :pl flag in the ACT-R
simulation must be set to t For decay-based production parameter learning, this flag should
be set to the decay rate desired, that is, a non-negative number (usually around 0.5).

*The nondecaying learning mechanism makes a fairly extreme prediction in this regard.
For example, when two productions’ r parameters have complementary vahues based onn txials
of experience (e g, 0.7 and 0.3), it will take more than n additional rrials of experience with
the productions’ success rates reversed {e.g, 0.3 and G.7) for those r values to reflect the
teversal.
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there may be cases where choosers can adapt more quickly (even with
vast experience).

Issue 4. The magnitudes of the prior values for Successes and Failures
(e and B in the second version of Equation 4.5) affect the rate at which
7 can adjust to experience. Without decay, the larger these prior values,
the smaller is the effect of a single experienced success or failure on r.
Because ACT-R allows these prior parameters to be assigned sepa-
rately for each production, there is no architecturally required com-
monality to the rate of production-parameter learning.

This chapter considers the implications of enabling time-based decay in
ACT-R’s production parameter learning. This decay leads to a discounting
of past experience and enables sensitivity to the timing of success and failure
experiences. In particular, each experience of success and failure with a
given production is decayed according to a power function. This function
is similar to the decay of chunk activation after each access of a given chunk
{see Base-Level Learning Equation 4.1). Equation 4.5 thus becomes:

r(t) = Successes(s) Probability Learning Equation 8.1
Successes(t) + Failures(t)

with Successes(t) and Failures(t) now defined as

Successes(t) = 3. £; Success Discounting Equation 8.2
jl
Failures() = 3, £ Failure Discounting Equation 8.3
j=

8 This is a mixed blessing in that different learning rates may arise in situations where
different prior weights provide a reasonable explanation for the difference, but they may also
arise in situations where different prior weights do not make sense. For example, learning
rates (measured in terms of change in choice tendencies per trial) for the same productions
in different experiments are sometimes different even though subjects participating in the
experiments would not be expected to have different prior histories. In paticular, Lovett and
Anderson (1996) modeled two experiments of different number of trials using the same
productions. The learning rates observed in these two experiments differed {e.g, learning
rates tend to be lower for longer experiments), leading to estimates for & and B that varied
by an order of magnitude. These parameters allowed the same model to fit two experiments
involving the same task, but the different values did not make sense, given the similarity of
the task and subject populations.
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where t, is defined as how long ago each past success or failure was,
(Equations 8.1, 8.2, and 8.3 correspond to Equations 4.5 and 4.7 from
Chapter 4.) Like the nondecaying mechanism, these equations adjust a
production’s r values after each experience in the direction of that most
recent experience (i.e., r increases after success and decreases after failure).
With decay enabled, however, the size of the shift depends on the number
and timing of previous experiences and the rate of decay d. For instance,
the shift will be larger when d is larger and when the delay from previous
experiences is longer. This decay-based learning mechanism thus allows a
time -weighted ratio of successes and failures, with more recent experiences
weighted more heavily than distant ones. (Note that this decay-based
version of parameter learning decays both the prior and experienced com-
ponents of Successes and Failures.)

Figure 8.3 shows how r changes in response to two different productions’
histories of experience: SSSSFFFF for production A and SFFSFSFS for
production B. The top panel shows the time-decayed r(t), and the bottom
panel shows the nondecaying r. Note that the experiences for these two
productions contain the same number of successes and failures but in
different orders. And yet, in the top panel of Fig. 8.3 (with decay), the r
values of the two productions cross over at time t = 5, leaving production
A with a lower r value at time t = 8. In contrast, in the bottom panel of Fig.
8.3 (without decay), r values are based on equally weighted experiences, so
the two productions have equal r values at time t = 8. This example
illustrates a new prediction of decay-based parameter learning——that the
exact order and timing of successes and failures in a production’s history
impact choice.

Incorporating this decay function into ACT-R allows some responses to
the issues raised eatlier regarding the parameter-learning mechanism.

Issue 1. With the decay-based leaming mechanism enabled, ACT-R
can exhibit special sensitivity to a recent success or to a particular
sequence of successes. Success and failure experiences that occur at
different times or in different orders will contribute differentially to
the r parameter (i.e., distant-in-time experiences contribute less than
recent experiences). This enables madels to differentially weight suc-
cess information that is new versus old and to choose in a way that is
sensitive to the timing of past experiences.

Issue 2. With the decay-based learning mechanism, the information
recorded in a production's r parameter is not maintained perpetually.
Success and failure information decays with the passage of time,
changing r values, even when no experiences intervene. This kind of
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FIG. 83 Estimat.es of the success rates of two productions, A and B, when success
and failure experiences are time-decayed (top) or equally weighted (bottom).

tempgrai weighting makes sense because success information is likely
to be increasingly unreliable as time passes.

Issue 3. With its decay process enabled, an ACT-R model with vast
experience can more quickly adjust to changes in environmental
contingencies, even among productions that have long track records.
This is because decay reduces the influence of a potentially large

meher of past experiences (by downweighting them) relative to the
impact of a new success or failure.
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Issue 4. Several factors affect the learning rate of production parame-
ters when decay-based learning is enabled: the number and timing of
prior successes and failures, the number and timing of exPenenced
successes and failures, and the decay rate for parameter learning. Note,
however, that because a single decay rate applies to all of the success
and failure contributions, there is a more systematic theory of produc-
tion-parameter learning.

Another advantage of adding a decay component to groduction»parame -
ter learning is that it points to potential unification with other aspects of
cognition such as memory and categorization. The_pcmfmr-la\:'.’r decay fur'1c~
tions presented earlier are analogous to those used in ACT-R's declarative
memory. A model of categorization by Elliott and Anderson (1995} also uses
a similar power-law decay function to weigh recent exer'nplars more hanaly
than distant ones. With this new learning mechanism for produt?tzon
parameters, information regarding the statistical regularities of the environ-
ment is maintained in a similar fashion for declarative knowledge and for

procedural knowledge.

Plan

In the remaining sections of this chapter, we explore how decay-‘based
production parameters impact choice in the ACT-R theoTyr In partmu‘iar,
we use the decay-based mechanism to fit models to data in the following

five areas:

“Probability matching” behavior in probability learning.

Overmatching under conditions of reward.

Sensitivity to history of success during problem solving.

“Ratio matching” behavior under concurrent variable
interval schedules.

* Sensitivity to time delay in foraging.

L

L

Capturing this breadth of results is a challenge bY itself. Where p{:}ssibie,
we also attempt to capture these results at a fine -grained level of detail, that
is, modeling trial-by-trial or subject-by-subject data. qu each of the five
phenomena, the presentation is organized as follows: First, we d_efme the
basic result, generalizing across multiple studies. Then, we describe a par-
ticular experiment that exemplifies the phenomenon. We de'vote cgnszder—
able attention to the procedure of the highlighted experiment in each
section because the same details {e.g., iming and ordering of trials) are us.ed
in fitting the model to that experiment’s results. Finally, we present choice
predictions for the experiment and discuss the goodness of fit.
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FPROBABILITY LLEARNING

“Probability Matching” in Probability Learning

The phenomenon of probability matching occurs when people choose an
option a proportion of the time equal to its probability of being correct. For
example, in a simple binary choice task, if one of the two options has a 70%
probability of being correct and the other has a 30% probability of being
correct, probability matching occurs when people choose the first option
70% of the time, on average. This basic effect has been documented in
many probability-learning experiments (e.g., Estes, 1964; Friedman et al.,
1964; Hake & Hyman, 1953; Humphreys, 1939). These experiments
support the importance of probability matching: The phenomenon has
been observed among children, adults, and various patient populations, as
well as across disparate situations—from word learning to spatiomotor
tasks. One caveat, however, is that the label probability matching is some-
times only an approximate characterization of the observed behavior. That
is, subjects’ choice behavior often deviates from the exact proportion that
probability matching would predict. (For examples of this, see the third
section of Chapter 3 and the following section on overmatching with
reward.) Regardless of the accuracy of its name, however, probability
matching (or probability-matching-like behavior) is a very robust phe-
nomenon. Chapter 3 provided a very simple account of this literature as
an introduction to ACT-R’s conflict resolution mechanisms. Here, we
provide a more detailed analysis that is additionally sensitive to issues of
learning in the face of a changing environment.

Data from a study by Friedman et al. (1964) are used for the first test of
the decay-based learning mechanism. In this study, college students com-
pleted more than 1,000 choice trials over the course of 3 days. For each trial,
a signal light was illuminated, participants pressed one of two buttons, and
then one of two outcome lights was illuminated. A button press that
matched the subsequent outcome light was considered “correct,” and a
button press that did not match the outcome light was considered “incor-
rect.”" Task instructions encouraged participants to try to guess the correct
outcome for each trial.

This study extended the standard probability-learning paradigm by
changing the two buttons success probabilities (p and 1 — p) across 48-trial
blocks during the experiment. Specifically, for the even-numbered blocks
2-16, p took on the values .1,.2, .3, 4, .6, .7, .8, .9 in a randomly permuted
order. These were labeled the variable-p blocks. For the odd-numbered
blocks 1-17, p was set to .5. These .5 blocks served to equilibrate the success
probabilities of the two responses before the next variable-p block We focus
this analysis and modeling on the data from these 17 blocks because they
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are reported in greatest detail. In the experiment as a whole, however, there
were additional .5 blocks and .8 blocks preceding and following the 17 blocks
described here.

This experiment allowed for the test of several hypotheses with respect
to probability matching. First, as Fig. 8.4 indicates, people were exhibiting
probability-matching behavior within each block. Each small graph in this
figure represents a 48-trial variable-p block during which participants’
choice probabilities (filled circles) asymptoted to close to the outcome
probabilities (horizontal lines). Second, the time course of probability
matching was affected by the outcome probability that had occurred during
the previous block. This result is also supported by Fig. 8.4, which shows
that participants’ choice probabilities tended toward .5 (the outcome prob-
ability of the preceding block) at the beginning of each block before climbing
or falling to the probability associated with the current block. Third, choices
were influenced by individual, recent outcomes. By inspecting the choice
probabilities in Fig. 8.5, it is clear that participants’ choices differed system-
atically, depending on the outcome of the previous one or two trials. For
instance, the first-order conditional probabilities (AA and BA columns
combined vs. AB and BR columns combined) show that participants were
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FIG. 85. Observed and predicted second-order conditional probabilides averaged
over the variable-p blocks in Friedman et al. (1964)

more likely to choose the button on trial n that had been correct on the
preceding trial than the button that had been incorrect on the preceding
trial. Participants’ choices were also somewhat influenced by the outcome
that occurred ewo trials ago, as demonstrated by differences in the second-
order conditional probabilities. For example, the probability of choosing A
after the AA outcome sequence was greater than that after the BA se-
quence, and the probability of choosing A after the AB sequence was greater
than that after the BB sequence. In sum, the data from this experiment
demonstrate a sensitivity to past experience of success at three
scopes~~—across block, within block, and trial-to-trial.

To compute model predictions for this experiment, we must first gather
data on participants’ history of success throughout the experiment. We take
the two critical productions for this task as Choose-Left-Button and
Choose-Right-Button. Both productions match at the beginning of each
trial, but only one will be correct. For each of the variable-p blocks, Friedman
et al. (1964) reported the exact sequence of outcomes experienced by
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participants.” This provides a sequence of successes and failures within each
of the variable-p blocks. The same procedure is followed for the p = .5
blocks. Notice that the reported history of success information is only
accurate within blocks; participants experienced the variable-p blocks in
random orders. Therefore, we must approximate participants’ exact history
of success for trials preceding the current block. We take this average
preceding experience to be 384 trials of evenly spaced successes and failures
of the two options; 384 trials at p = .5 is the expected history before each
variable-p block because, on average, participants have 8 blocks of experi-
ence preceding a variable-p block, and 384 trials = 8 blocks at 48 trials each.
This approximation, together with the exact within-block histories, pro-
vides an explicit representation of participants’ history of success preceding
each trial.

This information serves as input to the computation of r(t) (see Prob-
ability Learning Equation 8.1) for the two alternatives. (Note that we
approximate the average time per trial as 1 sec.) For simplicity in model
fitting, we took G = 1, C = 0, and g = 1 for both productions. Setting the
value of the goal, G, equal to 1 merely sets a particular scale for expected
net gain. The assumption that expected cost, C, equals 0 is made throughout
the chapter, but it is not required by ACT-RE

This leaves only two free parameters, d and t. To predict choice prob-
abilities spanning the range [0-1], we constrained the noise parameter t to
be 0.24 (which is equivalent tos = 0.17 and o? = 0.1) and then estimated
the decay rate d to minimize the SSE between the trial-by-trial observed
choice proportions (computed as proportions of participants} and the
predicted choice probabilities.” Thus, we are presenting a one-parameter
fit to these data.

Figure 8.6 plots these observed choice proportions against the predicted
choice probabilities, with d = 0.714. This fit has R? = 88, SSE = 8.697,
and MSE = 0.01. The best-fitting line is Observed = 0.943 X predicted +
0.014, which is quite close to the “perfect prediction” line, y = x. The unique

"W/hen ACT-R learns by experience in this task, itonly records a single suceess or failure
experience for the production responsible for the current trial’s outcome. Thus, ACT-R's
learning is not only specific to the actual sequence of outcomes, but also to its sequence of
choices.

%in general, decay-based parameter learning affects the estimation of a and b, the two
components of C in PG-C By setting prior and experienced costs to 0 we eliminate their
influence.

9Although Friedman et al did not provide complete history of success information, their
report contained the most precise information on participants’ sequences of success and
failure and the longest set of trial-by-trial choice data of all the studies we could find.
Therefore, we use these data to derive an estimate for the decay parameter and then use the
estimated value in as many model fits as possible thiroughout this chapter
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achte}reme‘nt here is that the ACT-R model is accurately predicting partici-
pants’ choice proportions trial by trial. Figure 8.4 presents these predicted
values (as open circles) aggregated by 12-trial subblocks to give a better
sense of how they would be ordered in time within the variable-p blocks
Here, one can see that the model exhibits within-block changes in choice;
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proportions that are similar to those of partici.pants il’zl %eg‘ﬁsrigcénéaf gteag.
experiment. At this level of aggregation, thf: .ﬁt has R* = 95, = \t y
and MSE = 0.002. Also, the model’s conditional p[Obabllltl?S '(cempu li
based on the original trial-by-trial ptedicétiso)ns%vfa: gery 51;;112121; ;35 ieS
ding observed values {see Fig. 8.5). With decay, the r '
zgf::izoxlry fiose to the observed data on several measures of choice, with
e free parameter in total. - . .
Onl"i{}?; model?s fit to these data shows that probablhtyl-mgtghmg sehav.tor
can arise from a basic mechanism thatchooses b?si::d on inc‘iimdual, E?Eﬁ
i ifure. We used trial-by-trial data across
experiences of success and fai ed wial by tria < s the ful
i ystematic chang
ime course of the experiment to model the gradual a te :
it;xnztzloice. This approach thus promotes the view of p'rc‘)babthlty mgéchilng ai
a natural by-product of choice processes that are sensitive to n.adm uah;?as
experiences. In addition, the model's decay component is Cl‘ltlf:al to ;f(f"?‘ﬁ
ing a good fit to the data from this exgeriment(: Wh;n we fi‘; gr; 5 0)‘ &‘e
i i t (i.e., decay )
model without decay to the preceding data se ot 0), the
i ial fi ith R? dropping to -41; the best-fitting ki
trial-by-trial fit suffered greati\( wit opping (0 Al e b A
s Observed = 1.3 X predicted ~ 0.13. "This mis : ‘
‘t&rr?ai-by‘-trial sensitivity in the no-decay modgl, \‘vhu:h even 1m§acts thet}ixé
when these predictions are aggregated int;; ilénlaél;lgcgiin E; Sat:é,:::, the
t-fitting line is Observed = 2.8 X predicted - 0.90, R* = .00. fere,
Eizspe of Z‘g8 which is significantly different from 1, suggestis} E}??tt’y‘?;izgi
’ i ith a new outcome probabili
decay, any new set of experiences wit qu o e
big enough impact on choice (see Issue 3 given eariier). in
:zfl::oiwigearlier,g the decay-based model captures these data easily at both

levels of aggregation.

Overmatching With Reward

Although the general characterization of chc;ice during pmbﬁbg-irt‘i{iiazﬁrﬁ
i i “ " tcome probabilities,
iments is that people tend to “match” the ou bab c

fsxflzg evidence that, under certain circumstance;, pfaopif WIH‘E f:ﬁ;gitiﬁe

imize” i i i joT— , they wi
en “maximize” in their choice behavior that is, th
?;oiz probable alternative a proportion of the time ti:lat is greatg.r éi;an tél:
proportion it has been successﬁﬁ (e.gi(?ggv&man %L Iqusti}:s;) 1n961 9,64' ‘gr?;eg;
56: Myers, Fort, Katz, & Suydam, ; Myers & . , ;
%S?(" r,useY 1968; Siegel & Goldstein, 1959). Max;m:zmg ﬁc):cufrs; }\:rhfir; iec;iig
o ) 1 ; . '
ore successful alternative all (or almost all) o : ]
EZ?;iatt}clﬁirzg occurs when they select the more successfuiz alt;mlinve w;:ii
ility p’ ! I but greater than p, the experi-
e probability p’, where p' is less than' A :

se?ifedpsuccess probability of that alternative. "‘Whenlthe expt?rienceg Ii:'(i)‘b

ability p is close to 1, it is clear that choices consistent with probability
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matching, overmatching, and maximizing will be hard to differentiate. In
this section, then, we refrain from classifying results into these different
categories and instead quantitatively study people's choice tendencies.

To evoke overmatching and maximizing behavior, experiments tend to
employ monetary reward or specific task instructions. The instructional
manipulations required to obtain significant levels of overmatching tend ro
be quite extreme. For instance, subjects might be told to “think of this task
as a whole, and try to come up with one solution for the entire task ” Given
such instructions, it is likely that participants would view the rask as
qualitatively different from the standard discrete-trial choice situation. For
this reason, we focus on how monetary reward, manipulated under standard
instructions, leads people to overmatch.

Myers et al. (1963) performed an experiment in which they varied both
(1) the probability that one alternative would be correct and (2) the amount
of reward that participants would receive for each correct guess. Specifically,
participants were assigned to conditions p = .6, p = .7, or p = .8 in which
the better of two alternatives was correct with probability p and the other
alternative was correct with probabilicy 1 — p- Crossed with this manipula-
tion, people were assigned to conditions in which they would receive +10¢
for each correctfincorrect guess, *1¢ for each correct/incorrect guess, or
=0¢ (no reward or penalty) for each correct/incorrect guess.

The proportions of choices of the better alternative on the last 100 out
of 400 trials are presented for each condition in Table 8.2. In general, choice
of the better alternative is close to probability-matching levels (where
probability matching equals the p for each condition). Notice, however, that
an additional effect appears in these data: The greater the reward, the more
the choice proportion exceeds the matching probability Thus, it seems that
under monetary reward conditions, exact probability matching is not the
tule, but the exception. A subset of these data were fit in the second section
of Chapter 3, but there only a performance model was fir to subjects’
asymptotic choice behavior. Here, we show that an ACT-R model can learn
production parameters through experience in such an experiment and
produce the same quality of fit.

The model for this simple choice task (as in the previous section) has two
critical productions, Choose-Left and Choose-Right. We model the reward
manipulation from this experiment with different values for G, the value of
achieving success. Because the monetary rewards were 0¢, 1¢, and 10¢, we
would expect the values of G to be monotonically increasing for these three
conditions, that is, Gy < G, < G,;. The other parameter values, however,
remain constant across conditions. Specifically, we fix d = 0.714, ¢t =
0.24—the values from the previous model fit. This le
ters, Gy, G|, G,y

aves three free parame-
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Recause Myers et al. did not provide any sequence information with
respect to history of success and choice, we approximate the temporal nature
of participants’ success and failure experiences by generating a randc?m
sequence of correct outcomes consistent with each condition’s probability.
As in the previous model fit, we represent each outcome as a success
experience for the correct alternative or as a failure experience for the
incorrect alternative. Based on this estimated history of success for each
condition, we compute the model's predicted choice probabilities using the
G values that minimize the SSE between the observed choice proportions
and the model’s average choice probability over the last 100 trials in each
condition. These best-fitting G values are G, = 0.753, G, = 1.039,and G,
~ 1.165. Note that as reward increases the G value increases, but that the
increase is not proportional to or even linear with reward amount. This is
consistent with other research on the psychological measurement of differ-
ential rewards (eg, Kahneman & Tverksy, 1984). The predicted choice
proportions from this fit are presented in parentheses in Table 8.2. The fit
has R? = .97, SSE = 0.008, and MSE = 0.0009.

Again, a model that makes choices based on decaying success informa-
tion achieves a good fit to the data with relatively few parameters. Notice
that, just like the participants in this study, the model tends to overmatch
and does 50 by a greater amount under higher reward conditions. This effect
can be understood by examining ACT-R’s basic choice mechanism. In this
situation, choice depends mainly on the product PG for each alternative,
0 G can be viewed as scaling the model’s sensitivity to differences in the
alternatives' predicted probabilities of success, P. (Remember, when g = 1,
P = 7.) When G is large, the difference between two alternatives’ P values

TABLE 8.2 ‘
Observed and Predicted Choice Proportions of the More Probable Option
Under Different Reward Condilions

Probabilities

Reward p=.8 p=.7 pe= B
0 cents (8 gé?) (g;gg) ({0}‘ Sgg)

fcent 0719 ©839) 0517
R SR S

Note: Predicted proportions for each condition are given in parentheses. From Myers er al
{1963).
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will be magnified and (assuming a fixed amount of noise in the system) the
alternative with higher P will more likely be chosen. In other words, with
increasing reward, the model is more sensitive to the relative success rates
of the alternatives and, hence, is more likely to choose the more successful
option. This same result was captured in Chapter 3, where a standard
ACT-R model was fit to a subset of these data.®® However, in that case,
the parameter learning mechanism was not invoked. Here, we have shown
that giving the model a history of experience consistent with what partici-
pants experienced allows the model to learn production parameters that
give an adequate fit. If more trial-by-trial information on subjects’ experi-
ences were available for this data set, we could have put the learning
mechanism to a more stringent test. The next section uses a data set we
collected with the intent of maintaining such trial-by-trial information.

Sensitivity to History of Success in Problem Solving

Probability learning does not just occur in simple, contextually sparse tasks
like those already described. It also occurs in more complex, naturally
oceurning situations where a solver has multiple solution approaches, or
strategies, for a particular problem. The different strategies available to the
solver constitute the different choices, each of which may or may not lead
to a successful solution. As solvers gain experience in these situations, they
tend to use more successful problem-solving strategies more often and less
successful strategies less often {Lemaire & Siegler, 1995; Lovett & Ander-
son, 1996; Reder, 1987, 1988; Wu & Anderson, 1993). Experiments in
which the success rates of different strategies are varied across time reveal
that problem solvers also distinguish between recent and global success rates
when making strategy choices (Reder, 1988).

The building sticks task (BST) offers one example of probability learning
in a complex task. Lovett and Anderson (1995) used it to study the
relationship between problem-solving success on one trial and strategy
choice on the next. For each problem, solvers were presented with three
building sticks and a desired stick and were asked to use these building sticks
to create a new stick equal in length to the desired stick (see Fig. 8.1). For
a given problem in this task, solvers had to choose which strategy to use,
Undershoot or Overshoot. The problems were designed so that (1) both
strategies were applicable in the first move, (2) only one strategy led to a
solution, and (3) all problems made the two strategies appear equally close

'®’Note that the current model's best-fitting values for Go and Gio are approximately one
fourth thase of the corresponding parameters in the performance-based fit from Chapter 3.
This makes sense because the notse value used here is also approximately one fourth that
used in the previous model. When G and the noise are similarly magnified, choice behavior
remains the same.
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FIG. 8.7. Observed and predicted choice proportions of the more successful strategy
for the experiment by Lovett and Anderson (1995).

to the goal. Because of this third constraint, all problems looked neutral and
the Decide productions from the previous BST model were not necessary.
Here, then, there are two critical productions that match at the beginning
of every problem, Force-Undershoot and Force-Overshoot.

Participants in the different conditions received different sequences of
problems that would lead them to experience certain histories of success
and failure with these two productions. The overall success rates of over-
shoot versus undershoot were extreme for two conditions (80%:20% and
20%:80%) and less extreme for two other conditions (60%:40% and
40%:60%). Figure 8.7 presents the proportion of solvers choosing the more
successful strategy (where “more successful” is defined by their condition},
averaged over blocks of 15 problems. In both the extreme and the less
extreme conditions, participants learned to prefer the more successful
strategy as the experiment progressed, with the extreme conditions attaining
a more noticeable preference. The two horizontal lines in the figure repre-
sent pure probability-matching behavior for the two conditions. In both

cases, the observed proportions in the last three blocks are within 95%
confidence intervals of the matching proportions.

Although the aggregate data suggest that probability matching occurs in
this problem-solving context, the individual participant data presented in
Fig. 8.8 belie that notion. Here, each individual’s probability of choosing the
more successful strategy (over the last 45 problems) is plotted against the
proportion of problems actually solved by the more successful strategy
(averaged over the last 45 problems).!! The line y = x represents probability
matching, and yet many data points deviate from that line, R? = 41. If any
trend can be found, it appears that the majority of solvers are overmatching
relative to their experience. Nevertheless, only two participants show
absolute “maximizing” behavior by choosing the more successful strategy on
all of the last 45 trials of the experiment.

Even though overall probabilities of success were fixed for participants in

1 . '
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0.7 .
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Observed More Successful Choices
[ ]

02 | 1 i i i I |

02 03 04 05 06 07 08 09 1
Observed More Successful Solutions

FIG. 8.8. Proportion of last 45 problems on which the more successful strategy (MS)

was selected against the experienced proportion of success for the more successful
strategy, computed for each participant based on the individual's solution history.

U As each subject’s experience was randomly generated, they would not experience
exactly 60% or 80% correct solutions.
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a given condition, different problem solvers in this experiment had their
own unique histories of success and failure with overshoot and undershoot
because they could choose freely between the two strategies on each
problem. We can use this history information to see if we can predict the
agegregate choice tendencies in Fig. 8.7 and the individual differences in Fig.
8.8. In particular, we used the individual success and failure information to
compute model predictions on a problem-by-problem, solver-by-solver ba-
sis. These probabilities were compared with the actual choices (i.e., over-
shoot or undershoot) made on the corresponding trials. For this fit, we
constrained t = 0.24 and d = 0.714 {from previous fits), fixed G at 1, and
allowed the prior experience for the two critical productions to vary. In
particular, we constrained the prior experiences of success and failure for
both productions to be equal in number (setting r initially to 0.5) and to be
long ago in the past so that their decay would have asymptoted (i.e., the
time lag for eventual-successes and eventual-failures was fixed at 100.0 sec
before the beginning of the simulation). Thus, there was one free parameter
to fit the data, the number of previous successes.

Estimating this parameter to fit the entire data set by individual subject-
trials leads to 281 previous successes—an effective @ = [ = 11.2 for both
critical productions. The predicted choice proportions, aggregated and
plotted with the observed values in Fig. 8.7, produce an R? of .92, MSE =
0.001, and best-fitting line is Observed = 1.1 X predicted —0.08. This model
fit successfully captures the trends and changes in solvers’ choices during
problem solving. Moreover, it helps to explain the lack of pure probability-
matching behavior at the individual level in terms of the particular sequence
of successes and failures experienced by each subject. Figure 8.9 plots the
model’s predicted choice behavior over the last 45 trials for each participant
against their observed choice behavior on the last 45 trials. This individual-
subject fit based on each participant’s history of success is quite good, even
though it used a single parameter set (with only one freely varying parame-
ter) across the entire population of participants. In particular, the best-fitting
line is Observed = 1.1 X predicted - 0.07, R? = (.52, which is superior to
the fit obtained by predicting probability matching behavior for each par-
ticipant (Fig. 8.8).

Comparisons of this model, which decays success and failure experiences,
with a nondecaying ACT-R model that treats all such experiences as equal
does not show marked differences. For example, the no-decay model has
only slightly lower R? of .90 for its fit to the aggrepate data. However, by
looking at a more fine -grained level of analysis than 15-problem blocks, the
decay-based model's advantage becomes more apparent. Figure 8.10 shows
the second-order conditional probabilities for the entire experiment (top
panel) and for the second half of the experiment (bottom panel). Next to
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each conditional probability is the prediction of the decay-based model and
the no-decay counterpart. In both panels, the decay-based model shows
sensitivity across the four situations (UU, OU, UO, and QO) that is
comparable to subjects’ sensitivity, whereas the no-decay model shows
insufficient sensitivity.

ANIMAL CHOICE

Concurrent Variable-Interval Schedules

The phenomena described thus far have all involved human choice. Nev-
ertheless, choice behavior among animals has a vast literature of its own.
The phenomenon described in this subsection is one of the classic results in
operant conditioning. It consists of the basic result that animals tend to
match their ratio of choices between two different options to the ratio of
rewards they have received from those two options. For example, if an
animal has experienced five times as many rewards from option A as from
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FIG. 8.10. Observed and predicted second-order conditional probabilities for Lovett
and Anderson (1995). Top panel is for the entire experiment and the bottom panel
i5 for the second half of the experiment.

option B, such ratio matching would imply that the animal would choose
option A five times as often as B. This relationship has been named the
matching law (Herrnstein, 1961):
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Number of A choices _ Nurmber of A successes
Number of B choices  Number of B successes

Behavior that fits the matching law can be related to probability-match-
ing behavior discussed earlier. Both imply that choice tendencies in some
sense “match” environmental payoff rendencies. However, there are a few
practical differences that we note briefly. First, the matching law is stated
in terms of choice and success ratios that relate one option to the other (i.e.,
A/B), whereas probability matching is stated in terms of choice and success
proportions that relate one option to the total of all options [i.e., A/{A +
B)]. Second, in most probability-matching experiments, every trial produces
a success (for one option or the other), whereas in matching-law experi-
ments there tend to be many trials with no success. This difference implies
that probability-matching computations of success take into account all
trials, and matching-law computations of success focus on a subset of trials
(success trials)- Finally, matching-law behavior is usually observed in con-
tinuous-trial paradigms, where one choice is not necessarily equivalent to
one trial, whereas probability-matching behavior is usually discussed in the
context of discrete-trial paradigms (see the second section of this chapter).
Therefore, in this section we explore how ACT-R's relatively discrete (at
the production level) learning of success and failure can account for
continuous-trial learning.

The matching law was first demonstrated with pigeons choosing between
two concurrent variable-interval (V1) schedules (Herrnstein, 1961). In a
variable-interval schedule, a reward is programmed to occur a certain
number of seconds after the corresponding key has been pecked, regardless
of the number of intervening pecks in that time interval. As the name
suggests, however, this time interval is not fixed from reward to reward but
varies about a central number of seconds. For instance, the time to each
reward (assuming the triggering peck) in a V1-5 schedule would be 5 sec on
average.

In Herrnstein's (1961) experiment, pigeons were placed in choice situ-
ations where they could peck on each of two keys programmed according
to independent VI schedules. Figure 8.11 (top panel) presents the pigeons'
proportion of choices of key A against their proportion of rewards from key
A for each of several conditions. Each condition was specified by a certain
pair of VI schedules (one schedule for each key), and each data point
represents the average of the last five sessions under that condition. The
data points of the same shape in Fig. 8.11 {top) represent choice behavior
of a single pigeon. From this figure, it is clear that, across a variety of VI-VI
schedules, the animals’ choices asymptoted to match the experienced ratio
of rewards.
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T . To fir these data using the decay-based learning mechanism, we had to
69+ ; // overcome a new challenge that had more to do with the nature of this
. , _

2 experimental paradigm than with the model itself. The challenge was
< 08T M ewofold. First, we had no specific information from Herrnstein's report on
=07 4 A the timing or sequence of successes and failures that the animals experi-
x e enced. Second, because success in a VI-VI environment is a complex
§ 0.8 7 .‘;, stochastic process depending on both past rewards and past choices, we had
205+ P no simple way to approximate a fixed history of experience for animals in
a s the different VI-V] environments. Instead, we chose to emulate the VI-VI
?% 0.4 1 g environments (using Lisp code) and then test the model’s choice perform-
Eoa3l // ance within these environments. Because both the ACT-R model and the
2 7 VI-VI environments include their own sources of stochasticity and because

02 . the actions of each depend in a specific way on the output of the other, this
o1+ . is a highly interactive system. For example, even if the environment were
‘ o set to represent a VI 5 VI 25 schedule, there is no guarantee that the rewards
0 s S S R L B will be given in exactly a 5:1 ratio; the reward outcomes depend on the
0 0.10203040506070809 1 timing of the schedules relative to the timing of the animals’ choices. For
% Rewards on Key A these reasons, the anz_aiyticaliy based paramet.er—»ﬁt.ting techniques used in
the preceding model fits were not much help in this case.

Therefore, we elected to run a set of simulations using the same schedules
'T as in Herrnstein's experiment and to compare the model's output to the
0.9 + // data. The simulation was endowed with separate productions for pecking
n on the left key, pecking on the right key, switching to the left key, and

0.8 + Core _ SR . . e “ _—

< o switching to the right key. The reason for the distinction between “pecking
0.7+ , 4 and “switching” is that the two types of productions incur different costs;

ﬁ oe L ! ' for example, switching requires that the pigeon actually walk around an

o - : obstacle to reach the other key, whereas pecking just involves pecking on
05+ P ’,—‘ : the local key. In these simulations, the model made its choices among the

5 041 vt : four critical productions with the decay-based parameter-learning mecha-

% : oL nism enabled. If the model chose to peck a certain key and did not receive

o 03 s a reward immediately on completion of the “peck” (according to the

2 02 4 v : schedule that was running for that key), a failure was recorded for the

‘ : productions leading up to that failure. Similarly, in the rare event that the

0.1 model chose to peck a certain key and did receive a reward, a success was

0 e} R recorded for the productions leading up to that success. (Also, the timer for

o - thatkey’s schedule was reset.!?) We ran this simulation under a few parame-

0 010203040506070.8¢098 1 g

% Rewards on Key A O _ 214 this environment, as in the conditions presented in Fig. 8.8, we included a change-

S over delay (COD), which prohibited the dispensing of a reward on a “new” key until 1.5 sec

FIG. 8 11. Choice and reward proportions from Hermstein (1961} (top panel) and had passed after the anirlnal swi'cched to that icey: The i}'xciusicn of a COD in this paradigm
those simulated by ACT-R with history-of-success information decayed (bottom gready'af{ects the behawo‘r ofplgeons.bydecreasmg their tendency to alternate bem‘reen the

: panel). The VI-VI schedules used in this study were 5:25, 5:10, 5:5, 10:5, 25:5. These keys }Vlch each peck. \":Va sm.lulgted this (.presumaiély_ leamed) b;hav;or by representing both
I correspond to the first through ffth clusters of data poins, reading from left to right. ﬁhe right ar’\rd the iefr. pecking” productions as leading to pecking bursts That is, when the
L Different curves correspond to different pigeons (top panel) or different simulations peck right” production is chosen, a certain amount of pecking time (fluctuating around ...

(bottom panel).
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ter settings and compared the model's choices from the end of each
simulation run with Herrnstein's data. We also specified a certain amount
of previous success with each of the four critical productions to represent
the fact that these pigeons had previously been tested in this choice
paradipm. Thus, the modeling results presented in this section are more
qualitative demonstrations of ACT-R’s ability to model the phenomenon
under study using the decay-based parameter learning.

To constrain this parameter exploration, we fixed d and ¢ to the values
used in previous model fits, 0.714 and 0.24, respectively. Further, we set the
prior successes and failures associated with the four critical productions to
have approximately 50 past experiences of success out of either 250 past
uses (“peck” productions for an initial r of .20) or 200 past uses (“switch”
productions for an initial v of .25). This left one free parameter G, the value
of achieving the goal. The bottom panel of Fig. 8.11 presents the model's
choice behavior with G = 75 for all conditions, but other values provided
similar results. (The main constraint on G in this simulation is that it be
high enough such that all productions’ PG — C values do not fall below 0.
This is an issue in any task where the probabilities of success are low as they
are here.) Each data point in this graph plots the proportion of choices of
key A against the proportion of rewards from key A during the last 300 out
of 1,200 simulation cycles, for a particular VI-VI pair.

Because all of the model's predicted values in Fig. 8.11 lie close to the
line y = x, these simulations demonstrate consistency with the matching
law. Moreover, the similarity across the two panels in Fig. 8.11 suggests that
the decay-based model exhibits the same choice tendencies as did the
pigeons in Herrnstein's experiment. This demonstration is particularly
important because it is the first example to show that ACT-R with decay-
based parameter learning can capture real choice behavior in a continuous
time environment. Gallistel and others {Gallistel, 1993; Mark & Gallistel,
1994) have claimed that this phenomenon arises because animals are
estimating the rate parameter of a Poisson process (i.e., the time between
successes). Fowever, without explicitly recording or estimating the time
interval between rewards, the ACT-R model was able to exhibit the same
choice tendencies as did the pigeons. It accomplished this by virtue of its
time-based decay of information on success. With the differential weighting
of recent versus distant experiences, the model combined local and global
differences in the two keys' success rates so that the richer key would be

...COD time) passed before the next choice was made . Although this solution sidesteps the
issue of how such “staying” behavior arises, ACT-R could be used to study and model this
learning process via the expected cost component. ACT-R is sensitive to the expected costs
of different options and can adapt its estimates of expected cost based on experience. Because
the COD manipulates (i.e., increases) the cost of switching keys, an ACT-R model would
likely be able to adapt to it
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preferred but not selected exclusively. For example, a recent series of failures
with the richer key could lead to a key switch, but this switch would not last
long because the influence of those experiences would soon decay and be
counterbalanced by the globally greater success of the richer key. Without
decay of this success information, the thousands of trials typical in this
paradigm would have led the model to become sluggish and unable to
change its behavior based on recent experience.

We have demonstrated that the model can capture both ratio-matching
behavior (this model) and probability-matching behavior (second section
of this chapter). As mentioned earlier, matching-law and probability-match-
ing behavior arise in different choice environments (VI-VI schedules and
probability-learning paradigms). For example, probability-learning para-
digms generally have one success per trial, which implies a complementarity
among the options, which does not hold in VI-VI schedules (i.e., in VI-VI
environments, one option failing does not imply that the other option
succeeded). ACT-R can model the different adaptive behavior in these two
cases by using the same decay-based parameter-learning mechanism in both
situations. The key is that the different environments produce different
histories of success to which the same decay-based learning mechanism is
applied. ACT-R produces the appropriate behavior in the two types of
choice environments because it bases its choices on the particular timing
and sequence of past successes in their different histories.

Effects of Time Delay on Foraging

Another classic task for animal choice, studied from a more ecological
approach, is foraging: In which of n different patches does the animal choose
to forage for food? The generic result in the animal foraging literature is that
animals, like humans, are sensitive to their past experiences of success, so
they tend to forage in patches that have better records of leading to food.
Further, as in the case of human problem solving, there are additional factors
that contribute to this choice. For example, animals’ patch choices suggest
that they are also taking into account the effort they would have to expend
to reach the different alternatives (Kamil, Lindstrom, & Peters, 1985), the
danger involved in the trip (Wishaw & Dringenberg, 1991), and the
“reliability” of success information gathered for each patch {Devenport &
Devenport, 1993, 1994; Devenport, Hill, & Ogden, in press). Here, we focus
on the last factor weighing into animals’ foraging choices—the reliability of
patch information.

By the term reliability, Devenport, Devenport, and their colleagues are
referring to both the recency and durability of information on the past
success of different patches. They have shown in both lab and field studies
that animals make foraging decisions based on these factors. Specifically,
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animals tend to choose a patch that has been recently successful over one
that was successful a long time ago, and they tend to choose a patch that
has had a long history of success over a patch with a short-lived history of
success. Both of these tendencies would seem effective for making choices
in a potentially changing environment because they base choice on past
success information that is more likely to be reliable now—either because
that information was gathered recently or because it was found to be stable
over a long period of time. This sensitivity to the reliability of past success
information has been observed in studies with domestic dogs, ground
squirrels, chipmunks, and rats (Devenport & Devenport, 1993, 1994;
Devenport et al., in press).

In one experiment performed by Devenport et al. (in press), animals were
presented with a series of foraging experiences in the laboratory and then,
after various delays, they were tested in the same choice situation. Specifi-
cally, rats were run in a two-arm maze and were forced to experience a
particular time-based sequence of successes (baited trials) and failures
(unbaited trials) before the delay and testing. The experimental procedure
included three phases after a preliminary familiarization phase. During the
first phase, the rats went through 36 alternating trials on which they were
forced to run down one arm and the other. This was accomplished by
lowering a door that would block one arm of the maze at a time. For these
trials, only arm A was baited, so half of the trials were success experiences
with arm A, and the other half of the trials were failure experiences with
arm B. The second phase began after a 30-min break. During the second
phase, the same alternate arm-blocking procedure was used, but now only
arm B was baited and there were only one third as many trials. Finally, after
a variable time delay of 5 min, 25 min, 1 hr, 3.5 hr, 10 hr, or 2 days, the third
phase began In this “test” phase, both arms were unblocked and unbaited,
and the animal was allowed to freely choose in a single test trial.

Table 8.3 shows the percentage of animals in each delay condition
choosing arm B for the test trial. Note that the number of animals in each
condition varied from 4 to 16 (see Table 8.3). After short delays, the animals
chose B exclusively, suggesting a greater weighting of their recent successes
with arm B. After long delays, however, the animals chose A almost
exclusively, suggesting a sensitivity to the longer duration of this arm'’s
success despite the greater time delay since its success. At an intermediate
delay, approximately 40% of the rats’ choices involved arm B, suggesting
that at this delay the long duration of arm A's success weighed about equally
against the more recent exposure to arm B’s success. Devenport et al.
concluded from these results that animals are temporally weighting success
information in such a way that information is emphasized according to its
reliability: Recent information is reliable because it is unlikely that the
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environment has changed in the small amount of intervening time, and
stable (or long-lasting) information is reliable because it represents a good
long-term estimate of success in the environment.

To fit the choice data observed in this study, we assumed two separate
productions for choosing to travel down arm A versus arm B. Phase 1 trials
were input as alternating arm A successes and arm B failures and phase 2
trials as alternating arm B successes and arm A failures (just as the animals
experienced). With this history of experience and the “standard” decay rate
of 0.714, the model predicts the switch in arm preference to occur after 25
min instead of after 210 min, as was observed. The decay parameter is most
influential on the timing of this switch because it specifies the relative
weighting of old versus recent experiences, which essentially balances the
“A success” and “B success” phases in this experiment. Thus, to obtain a set
of predictions that fit the exact switchover time in the observed data, we
varied the decay parameter and found that with 2.0 < d = 8.0, the crossover
point accurs in the appropriate 210-min delay condition. For the best
quantitative fit to the data, we fixed G at 3 (from the previous model) and
estimated d, obtaining the best-fitting value of 4.61; this produces an almost
perfect fit to the data (R? = .99, SSE = 0.03, and MSE = 0.005) . Table 8.3
provides the predicted choice proportions for this fit

Again, the model has provided an excellent fit to the data. However, this
is the first case in which doing so required a decay parameter that was
substantially different from the other model fits. What makes this experi-
ment different? Two features stand out. First, during the training (phases 1
and 2) the animals were not given the opportunity to choose between the
two arms. This could have affected their early representations of the task as
well as what they learned from it; that is, they may not have distinguished

TABLE 8.3
Observed and Predicted Proportions of Animals Choosing the More Recently
Suecessiul Arm (Amn B) According to Delay Condition

Delay Condition Number of Subjects Propartion Predicted
(in min) Choosing B Proportion

5 7 1.00 0.99

15 4 1.00 0.98

60 5 1.00 050

210 16 0.38 0.40

360 8 0.13 0.26

2,880 8 0.13 0.t4

Note: Adapted from Figure 1, Devenport et al. {in press}.
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the two arms of the maze as readily as if they had been in a free-choice
training situation. In some sense, then, the model may be representing this
“decreased learning” as “increased forgetting” relative to the other experi-
ments’ fits. Second, the choice data in this experiment were based on
relatively few subjects (as low as four in one condition), which led to many
choice measurements at the extremes of [0,1]. Such extreme choice pro-
portions exert a strong influence on the model’s “best-fitting” parameters.
These distinguishing features suggest that we not take the exact parameter
estimates from this fit too seriously.

The basic conclusion is that both the experimental data and the predic-
tions suggest that, even in an adapted laboratory environment, these rats
are choosing based on a time -weighted function of their past experiences of
success and failure. Without the time weighting that the decay component
implies, “test” performance in this experiment would forever favor the more
often successful option over the more recently successful option. Thatis, a
standard ACT-R model with no decay of past success experiences would
be unable to show any shift in preference across time delays. In contrast, the
decay component allows the model to capture the observed behavior across
a variety of d parameter values.

CONCLUSIONS

Summary

We have fit a new version of ACT-R to five separate data sets that span a
wide range of choice phenomena: choice by both humans and animals,
choice in service of various goals, choice in rich and sparse contexts, choice
in discrete-time and continuous-time situations, and choice in stable and
variable environments. In all cases, models with decay-based parameter
learning did a good job of capturing the observed choice behavior. Table 8.4
provides a quantitative summary of the model fits. In particular, notice that
we have fit these disparate data sets while still maintaining a fairly consistent
set of parameters.

It is interesting to note that the new decay-based feature incorporated
into production-parameter learning for the models presented in this chapter
is quite similar to the decay of declarative chunks in ACT-R. It is possible
that declarative, example-based models of some of these tasks would be able
to show a similar sensitivity to recent experiences. One difference between

models involving the decay of declarative examples versus the decay of

production-relevant information is that example-based models will tend to
exhibit strong effects of sensitivity to specific problems, whereas rule-based
models will tend to display similar behavior on new trials, regardless of their
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TABLE 8.4
Summary of Parameter Values and Model-Fit Statistics Across Five Dala Sets
Model Friedman Myers Lovett & Hermstein Devenport
Parameters etal. et al. Anderson (1961)" et al.
(1964) {1963) {1595} (in press)
d 0.714 0.714 0714 0.714 4.61
¢ 0.24 0.24 024 0.24 024
g {=p) 0 0 11.2 0 0
Go=0.75
G 1 Gi=1.04 1 75 3
Ge=1.17

Model-fit statistics

N 32 9 12 14 &
F
pararrggters 1 3 L N/A 1
MSZE 0.002 0.001 0.001 0.003 0.0005
R .93 97 92 97 R

Note. Bold numbers indicate parameter values that were estimated. Model-fit statistics in
the table are computed from aggregated data (as reflected in adjusted N) even though the pa-
rameters were estimated from individual data whenever possible.

) °Due to the stochastic complexities in Hermstein's (1961} wsk, this mode! fie was obtained
via simulation (see text for details).

similarity to previous problems. Another difference is that the selection of
relevant examples from declarative memory is based only on their activation
(relative to some activation threshold), whereas the selection of which
production to be fired is based on an evaluation of expected gain (that is
sensitive to probability of success of the competing productions, estimated
costs of competing productions, and current value of the goal). Past work
(Lovett & Anderson, 1996} compared a rule -based model and an example-
based model of choice in the BST and found the rule-based model provided
a superior fit. However, the example-based model used in that case was not
built within the ACT-R framework. Further research on choice may reveal
whether the differences between ACT-R’s example -based learning and this
chapter's procedural leaming ate distinguishable in the data.
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Relating ACT-R to Normative
and Other Theories of Cholice

The models in this chapter show that ACT-R’s learning and performance
mechanisms are able to fit choice data of humans and animals quite
accurately and at a good level of detail. This empirical approach still leaves
open the question of the adaptiveness of the mechanisms employed by these
models. In other words, even though these models fit the data, are there
related models of choice that could perform better {i.e., better than people
or animals do)? There are two features in ACT-R that might appear to be
“imperfections” with respect to optimal choice. One is the noisiness of the
choice mechanism: With expected gain noise, these models did not always
choose the production with the highest expected gain. The second such
feature is the decay of success and failure experiences that was the focus of
this chapter. This decay process forces models to increasingly ignore infor-
mation from the past. However, to judge these features as imperfections
assumes certain things about the world. In particular, it assumes that the
probabilities of success associated with various options stay constant over
time. This is demonstrably not so in many environments. In foraging,
patches become depleted and others blossom and become rich. Fortunes of
companies change such that average performance over the last century
tends not to predict performance in the next quarter. Problem solvers
improve their execution of various strategies, so judging a strategy based on
its early record of success may hide its new-found potential. In such a
variable environment, it may actually be advantageous (1) to explore
options that previously appeared suboptimal and (2) to downweight “old”
information of the relative success of a certain option because things may
have changed.

The noise in ACT-R's production evaluation process allows the system
to occasionally choose poorer options and so allows the system to discover
whether these other options have become more fruitful. The decay process
for learning production parameters allows the system to weight its most
recent experiences most heavily. Do these two features reflect the right
combination of deviation from maximizing and discounting of the past? The
answer to this question depends in part on what the correct characterization
of the environment is. Anderson and Milson (1989) showed that power law
decay gave the best estimate of probability of success in an environment
where (1) options gradually became depleted and decayed away from
original high levels and (Z) options could occasionally undergo “revivals”
and return to their original high levels. Moreover, they provided evidence
that this characterized at least some environments. Thus, there may be some
optimality in the power law decay proposed and used earlier.
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Nevertheless, the situation faced by a chooser requires more than coming
up with best estimates of the probabilities of success. Italso involves deciding
when it is worthwhile to choose the less-successful -appearing option to see
if it has changed. This is basically the n-arm bandit problem that has been
studied by statisticians (Berry & Fristedt, 1985). These problems are diffi-
cult, and suffice it to say there are no results on optimal strategies that begin
to match the complexity of situations faced by typical organisms choosing
in the real world.

In the absence of any results on optimality, then, we decided to compare
a number of generic choice models that varied in their discounting of past
information and maximization policy. Each model had a learning compo-
nent that it used to estimate the value of each option based on past
experience with the option, and each model had a choice component that
governed how it used those values to choose. The learning component of
each model used one of the two following schemes: equal weighting of all
past events, or time-decay of past experiences with a decay parameter of d
= 0.5. Crossed with this, the choice component of each model used one of
the two following policies: Always choose the option with the highest
estimated success rate (which we denote maximizing) or choose each option
with a probability that matched its success rate estimate (which we denote
probability matching). One could argue that the “perfect” choice model is the
one that includes no decay of past experiences (equal weighting) and
maximizing. In contrast, the ACT-R models explored in this chapter are
consistent with the generic model that includes decay of past events and
approximate probability matching.

Table 8 5 presents a 2 X 2 grid representing these four generic choice
models. The table also places several specific models of choice in the
appropriate cells. Note that each of the specific choice models included have
been fit to various choice data and performed well. The fact that each cell
is represented by an extant model of choice suggests that the field is still
wrangling over the issues of choice policy and weighting of past information.
This table also serves to place ACT-R in a larger context of theories of
choice. Note that the lower right cell includes several models that share
with ACT-R the features of time-based weighting of success information
and probability-matching-like choice among options. Interestingly, these
models were developed for and have primarily been concerned with mod-
eling categorization tasks and simple choice tasks and have done so very
well. In particular, ACT-R is the only model in that cell that has been
applied to problem-solving choice. Based on the work presented in this
chapter, we suggest that ACT-R can fit data from both humans and animals
and that it can model both simple choice tasks and choice in service of
problem-solving goals.
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TABLE 8.5
Table of Choice Models According to Learning Component and Choice Policy

Leaming Component

Cholce Policy No Weighting Decay-Based
Maximizing CE TWR
(Davis, Staddon, Machado, (Devenport et al,
& Palmer, 1993) 1995)
Probability-matching ASCM ACTR (this volume)
(Siegler & Shipley, 1995) Adaptive network
Frequency array (Gluck & Bower, 1988)
{Estes, 1986) Rule competition
(Busemeyer & Myeung,
1992)
Rescorla-Wagner
(Rescorla & Wagner,
1971)

With the four generic models now described, we decided to test them in
a simulated world that approximated the environment formalized by An-
derson and Milson. In this simulated environment, the probability of an
option having a probability of success x was

fx)= -i-.x"“ ¥ %{1 — a0

Figure 8.12 illustrates such a probability density. This distribution of prob-
abilities has a mean of .5, which suggests that on average, options have
success probabilities of .5. But the distribution tends to emphasize large and
small probabilities (the edges of the U-shape), which suggests that most
options have success rates near 0 or 1.0, meaning choice hetween two
options will often be consequential. The environment we simulated did not
have options with fixed probabilities taken from this distribution. Rather,
we designed the environment so that on any trial there was a 10% chance
that the success probability of one of the two options would switch to
another value from this distribution. Thus, there were two options with
independently varying probabilities of success, and the chooser had to try
to maximize its wins.

In the simulated environment, random guessing would yield 50% success,
and the expected maximum possible correct (if the chooser were omniscient
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FIG. 8.12. Probability density used in the simulation of different probabilistic envi-

TONMents,

and knew the true probabilities of the two options at all times) is 69.7%.
How do the four different choice models described earlier fare? We ran all
four generic choice models over 250 events in this simulated environment.
All models started out assuming that each alternative had a .5 probability
of success and then learned and chose according to their features in Table
8.5. All four models performed more closely to random than omniscient
choice, but they were ordered as follows. The best was the probability-
matching/decay combination, which returned 53.4% correct choices. The
next best at 52.7% was the choice model that used a maximizing/decay
combination. Then followed the “perfect” choice model of maximizing
without decay at 51.7% correct. The worst choice model was probability
matching without decay at 50.9% correct. One thousand Monte Carlo trials
with each of the four options yielded standard errors of these estimated
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percentages between 0.2% and 0.3%. Thus, in the simulation of a variable
world, the probability-matching/decay combination (representative of
ACT-R’s noisy choice and decay-based evaluation) is significantly better
than the three other generic models.

It is rather difficult to choose well in an uncertain and variable world, so
learning and adapting to one’s environmental contingencies are critical. A
decay-based and noisy set of learning and choice mechanisms produces an
effective system for making choices in probabilistic environments. The
decay and noise processes integrated in the ACT-R models given earlier fit
a variety of choice phenomena, outperform other learning and choice
processes in a simulated environment, and, perhaps most importantly,

demonstrate a framework for unifying our understanding of choice across
several tasks and species.

Cognitive Arithmetic

Christian Lebiere
John R. Anderson
Carnegie Mellon University

CHARACTERISTICS OF THE DOMAIN

Cognitive arithmetic studies the mental representation of numbers and
arithmetic facts {counting, addition, subtraction, multiplication, division)
and the processes that create, access, and manipulate them. Although the
task is trivial for computers, it is quite difficult for humans to master, and
presents a domain that is both propitious and challenging for ACT-R.

Arithmetic is one of the fundamental cognitive tasks {(one of the three
basic “Rs”) that humans have to master. Children go through years of formal
schooling to learn first the numbers and then the facts and skills needed to
manipulate them. Many adults have not mastered and will never completely
master the domain. Yet it is a task that is trivial for computer architectures
to perform correctly. It is also trivial for ACT-R if we only consider its
symbolic level. All one needs to do is give ACT-R the correct chunks
representing arithmetic facts and productions encoding procedures to ma-
nipulate them, and perfect performance will result. This, however, ignores
the impact of ACT-R's subsymbolic level and s not a very satisfactory model
of human performance, especially that of children.

Some tasks, such as natural language processing or chess, are hard for both
humans and machines to perform and require years of learning or engineer-
ing. Other tasks, such as vision, which seem to come naturally to humans,
require much programming for computers to perform even poorly. One can
attribute this to humans possessing complex systems for vision and other
tasks which resulted from millions of years of evolution, but will require
painstaking work to reverse-engineer and replicate in computers. But a task
such as arithmetic seems so straightforward and easy to accomplish that it
is surprising that it takes years of learning for humans to master. This suggests
that human cognition at the subsymbolic level embodies some assumptions
about its environment that are at odds with the structure of arithmetic as
it is raught. Arithmetic, being a formal mathematical theory, assumes a set
of precise and immutable objects {the numbers), facts, and procedures.
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