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Does Learning a Complex Task Have to Be Complex?:
A Study in Learning Decomposition

Frank J. Lee and John R. Anderson

Carnegie Mellon University

Many theories of skill acquisition have had considerable success in addressing
the fine details of learning in relatively simple tasks, but can they scale up to com-
plex tasks that are more typical of human learning in the real world? Some theories
argue for scalability by making the implicit assumption that complex tasks consist
of many smaller parts, which are learned according to basic learning principles.
Surprisingly, there has been rather sparse empirical testing of this crucial assump-
tion. In this article, we examine this assumption directly by decomposing the learn-
ing in the Kanfer–Ackerman Air-Traffic Controller Task (Ackerman, 1988) from
the learning at the global level all the way down to the learning at the keystroke
level. First, we reanalyze the data from Ackerman (1988) and show that the learning
in this complex task does indeed reflect the learning of smaller parts at the keystroke
level. Second, in a follow-up eye-tracking experiment, we show that a large portion
of the learning at the keystroke level reflects the learning even at a lower, i.e.,
attentional level.  2001 Academic Press

Over the past 2 decades there have appeared a number of theories of skill
acquisition (Anderson, 1982; Delaney, Reder, Staszewski, & Ritter, 1998;
Logan, 1988; Mackay, 1982; Rickard, 1997) that have had considerable suc-
cess in addressing the fine details of learning relatively simple tasks. While
encouraging, these demonstrations leave the worry that there may be prob-
lems with scaling up to the complex tasks that are more typical of human
learning in the real world. A challenge to the learning theories is whether
they can provide a complete characterization of the acquisition of truly com-
plex skills. In the limit, this is an impossible ambition. By its nature, any
very complex skill is going to be so knowledge intensive that a complete
characterization (i.e., tracing out all of the components of that knowledge)
will overwhelm the capacities of any researcher. However, a reasonable goal
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for learning theories is that they try to address more complex tasks and strive
for a more complete characterization of these tasks.

To foster this goal the Office of Naval Research (ONR) designated several
tasks, including the Kanfer–Ackerman Air-Traffic Controller (KA-ATC)
Task (Ackerman & Kanfer, 1994), as challenge tasks for the Hybrid Archi-
tectures Project. In the case of the KA-ATC task, Ackerman (Ackerman &
Kanfer, 1994) has made available through ONR the detailed data from 11
experiments. In this article we describe an analysis of the data from 1 of
these experiments and a follow-up eye-tracking experiment designed to elu-
cidate the nature of the learning in this task. We argue that the learning at
the global level reflects the learning of the lower level components. In partic-
ular, we argue that much of the learning in this task is driven by changes
in attentional strategies in which fixations of task-irrelevant information are
reduced as a function of practice. But before we begin, we briefly discuss
the power law of practice (Newell & Rosenbloom, 1981).

THE PRACTICE FUNCTION

In their article on the power law of practice, Newell and Rosenbloom
(1981) surveyed a large range of skills which appeared to speed up according
to a power function and ranged in scale from less than 1 s up to 30 min at
the beginning of the task. A power function relates the time (T ) to perform
a task to the amount of practice by a function as follows:

T 5 A 1 BN-c,

where A is the asymptote, B (which we call the scale factor) is the amount
of time that improves with N number of practices, and c is the exponent that
specifies the rate of the speed up with practice. A power function decreases
from an initial time of A 1 B to A in the limit. To illustrate the power law
with an example, in Fig. 1 we plot the data from a procedure learning task
from Anderson, Fincham, and Douglass (1999) and a power function fit to
that data. As can be seen, a characteristic of a power function is that it is
strongly negatively accelerated. That is, the rate of the speed-up decreases
dramatically with each unit of practice. A challenge to theories of skill acqui-
sition is to explain why there is this dramatic deceleration.

We should note at the outset that there is currently a controversy regarding
whether these learning functions are really power functions or some other
functions, such as exponential functions (cf. Anderson & Tweney, 1997;
Wixted & Ebbesen, 1991, 1997; Heathcote, Brown, & Mewort, 2000;
Myung, Kim, & Pitt, 2000), or mixtures of different power functions (cf.
Rickard, 1997; Delaney, Reder, Staszewski, & Ritter, 1998). Our data does
not have anything to say about the controversy between the power–exponent
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FIG. 1. An example data from Anderson, Fincham, & Douglass (1999) and a power-
function fit to that data.

distinction because we are simply using the power function as an approxi-
mate descriptive characterization of the learning in the KA-ATC task. In-
deed, the arguments presented in this article would not have changed if we
had used an exponential or some other learning function. However, we do
have something to say regarding the issue of the learning function being a
mixture of different power functions. In particular, we suggest that one of
the reasons for the observation of the ‘‘approximate’’ power-law learning
at the global level is because they reflect a mixture of attentional strategies
that are being learned at the lower level.

Broadly speaking, theories of skill acquisition can be classified into three
categories. The first is the view that skill acquisition results from trans-
forming a procedure, such as when a macro procedure is composed from
multistep procedures. Theories that fall under this category include those of
Neves and Anderson (1981) and Newell and Rosenbloom (1981). The second
is the view that skill acquisition results from strengthening a procedure
through strengthening of the individual methods or the connections between
the methods that underlie that procedure. Theories that fall under this cate-
gory include those of Anderson (1982) and Mackay (1982). The third is the
view that skill acquisition results from selecting a more speeded method or
methods. Theories that fall under this category include those of Crossman
(1959); Delaney, Reder, Staszewski, and Ritter (1998); Logan (1988); and
Rickard (1997). We discuss each of the categories in more detail below.
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Skill Acquisition as Transforming a Procedure

The theories that fall under this category derive at least some—if not all—
of their speed-up from the transformation of procedures as a function of
practice. A good example of this type of a theory is Newell and Rosen-
bloom’s (1981) chunking theory of learning, in which they proposed that
the multistep procedures in performing a task collapsed into a macro proce-
dure as a function of practice. While such step collapsing naturally produces
an exponential speed-up, they argued that complex tasks have a combinato-
rial structure such that while there were many possible macro steps, the learn-
ing opportunities for these macro steps decreased with the size of the steps.
The net effect of this exponential learning applied to a growing number of
macro steps was a power-law learning function. Neves and Anderson (1981)
proposed a similar step-collapsing mechanism as part of a larger two-part
theory called knowledge compilation. They argued that the speed-up in learn-
ing is a reflection of a two-step learning process. In the first step the declara-
tive knowledge of performing a task is proceduralized. In the second step,
these procedures are refined through a process called composition, in which
multistep procedures are collapsed into a macro procedure.

Skill Acquisition as Strengthening a Procedure

While both Newell and Rosenbloom’s (1981) and Neves and Anderson’s
(1981) theories are well suited to account for learning in complex task do-
mains, Anderson (1982) argued that the power-law learning can be observed
for much simpler tasks that did not have a combinatorial structure. Since it
is unlikely that a large-scale step collapsing can take place in these simple
tasks, Anderson proposed a strength-based learning mechanism that applied
to the individual steps of a complex task. He argued that the power-law
learning of the complex task was derivative of the power-law learning of
the simple steps of a complex task. A similar strengthening mechanism is
also at the center of MacKay’s (1982) theory. MacKay proposed that knowl-
edge was hierarchically embedded in abstract data structures called nodes.
For instance, a node representing a sentence may consist of abstract nodes
for the noun phrase and the verb phrase that branched all the way down to
the nodes representing the articulators used to sound the syllables of a word
in that sentence. He posited a priming mechanism that speeded the respon-
siveness of other nodes at the same level. He argued that while the priming
is itself exponential, the relative abundance of unpracticed nodes, i.e., high-
level concept nodes, initially allowed for more learning opportunities in the
beginning, but the reduction of these learning opportunities with practice
produced a power function speed-up.

Skill Acquisition as Selecting a Procedure

Crossman (1959) formulated one of the earliest theories of power function
speed-up. He proposed a theory in which the speed-up in the power law of
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practice resulted from favoring a faster method in the course of the learning.
He posited a stochastic selection mechanism in which the probability of se-
lecting a speedier method from a set of methods increased with practice. He
showed that one consequence of such a learning mechanism was a negatively
accelerated learning function. However, there were two issues that caused
some reservations with Crossman’s theory. First, it was unclear what he
meant by a method, and second, it was unclear precisely how the method-
selection mechanism worked. Logan (1988) clarified these issues within his
instance theory of learning by positing two classes of methods, memory re-
trievals and algorithms, and detailing a selection mechanism in which mem-
ory retrievals of the past solutions raced in parallel with an algorithmic solu-
tion process. He argued that the power function speed-up reflected the fastest
of an increasing number of memory traces. Rickard (1997), however, while
accepting Logan’s basic distinction between the two classes of methods
(memory retrieval versus algorithmic process), was nonetheless critical of
Logan’s assumption that these two types of methods raced in parallel. In-
stead, he argued that while algorithmic solutions and retrievals of those solu-
tion traces both occurred, they could only occur serially, and the power-law
learning at the global level reflected the separate power-law learning of the
algorithmic and the retrieval components. Delaney, Reder, Staszewski, and
Ritter (1998) forwarded a similar argument. They argued that the systematic
deviations from power-function fits that one sometimes saw in the reported
literature resulted from a strategy change. They posited that one could
achieve a much better fit to the data by fitting separate learning functions
for each strategy.

THE REDUCIBILITY HYPOTHESIS

Although the individual theories of skill acquisition have not all explicitly
addressed the issue of how to conceive of the learning of complex tasks, the
implicit hypothesis that many of them share, which we call the reducibility
hypothesis, is that complex tasks simply consist of a lot of little parts that
are learned according to basic learning principles. Surprisingly, there has
been rather sparse empirical testing of this hypothesis. In much of the litera-
ture on learning, a single, global measure of performance is typically mea-
sured, analyzed, and reported, regardless of the complexity of the target task.
An exception to this is Anderson, Conrad, and Corbett’s (1989) analysis of
students learning to program in Lisp, in which they decomposed the learning
of Lisp programming skills into about 500 production rules. They found that
the time to execute these productions speeded up as a function of practice.

While Anderson et al. (1989) provided evidence for the reducibility hy-
pothesis, two aspects of their analysis are causes for reservations. First, there
is the worry that Anderson et al.’s reduction of Lisp programming skills to
production rules was dependent on the details of their production system
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theory, which has been subsequently modified (cf. Anderson & Lebiere,
1998). Second, there is also the worry that Anderson et al. did not go far
enough in their decomposition. They decomposed learning into units that
took from 5 to 50 s to perform. Since learning in many simple tasks is ana-
lyzed at the perceptual-motor level, if the reducibility hypothesis truly holds,
then one should be able to reduce a complex task down to the perceptual-
motor level.

With these concerns in mind, we propose to test the reducibility hypothesis
in the KA-ATC task. Recall that the reducibility hypothesis states that com-
plex tasks simply consist of a lot of little parts that are learned according to
basic learning principles. To frame it another way, if the reducibility hypoth-
esis is true, then the learning in a complex task can be decomposed into the
learning of the smaller components. Therefore, our test of the reducibility
hypothesis will consist of (1) hierarchically decomposing the KA-ATC task
from the global task level to the elementary keystroke level and (2) examin-
ing the data to see if the learning at the lower level is consistent with the
learning at the higher level. By consistent learning, we mean that the im-
provement at the higher level results from the improvement in learning the
lower level components. Therefore, learning would not be consistent if there
is improvement at the higher level, but some or all of the learning of the
lower level components were not improved.

One would not expect to find consistent learning if the main factor that was
promoting the learning was conceptual reorganizations reflecting progressive
insights into the problem. For instance, consider a person learning how to
use Microsoft’s Excel program and discovering that one does not have to
copy and paste formulas but can simply fill down. At such points, one ought
to see new low-level actions entering the person’s action sequence and find
them taking longer, reflecting their novelty. At the global level, the learning
might appear continuous, but at the level of individual actions, there would
be discontinuities in the learning. A hypothetical example is provided in
Fig. 2. In Fig. 2, an example is provided of learning that is consistent (Alter-
native 1) and learning that is not consistent (Alternative 2). In Alternative
1, the learning is consistent between the two levels because the learning that
we observe at the higher level is reflected in all the lower level components.
However, in Alternative 2, the learning is not consistent between the two
levels because the learning at the higher level is not reflected in all the lower
level components. In particular, one of the low-level components takes
longer at the transition point, but the total performance time still speeds up
because there are fewer steps after a conceptual reorganization. There is no
a priori reason why learning should be consistent between the different lev-
els. It is our hypothesis that learning in a complex task is consistent, i.e.,
learning at the higher level is reflected in learning at the lower level compo-
nents.

In this article, we decompose and analyze learning in the KA-ATC task
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FIG. 2. A hypothetical example of learning that is consistent (Alternative 1) and learning
that is not consistent (Alternative 2).

at multiple levels, from the level of overall performance all the way down
to the level of keystroke response times. Our method of task decomposition
does not depend on any particular theory of skill acquisition. Rather, it solely
relies on a pretheoretical task analysis of the KA-ATC task. From our decom-
positional analysis, we show that the learning at the lower level components
is consistent with the learning at the higher levels, thereby providing evi-
dence for the reducibility hypothesis in this task. We show that learning at
the lower level involves speed-up of motor actions and changes in where
people look.

THE KANFER–ACKERMAN AIR-TRAFFIC CONTROLLER TASK1

A typical display of the KA-ATC task is presented in Fig. 3. The KA-
ATC task is composed of the following elements displayed on the screen:
(a) 12 hold-pattern positions divided into three levels; (b) four runways, num-
bered 1 through 4; (c) feedback information on participant’s current score,
landing points, and penalty points; (d) current conditions of the runways,
wind direction, and wind speed; (e) a queue of planes waiting to enter the
hold pattern; and (f) three message windows, one for notifying of weather

1 Our description of the KA-ATC task is an amalgamation of the task description provided
in Ackerman (1988) and Ackerman and Kanfer (1994). Please refer to those two sources for
a more complete account of the task.
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changes, one for providing feedback on errors, and one for displaying the
rules of the task in response to the requests made by the participants. The
12 hold-pattern positions are divided into three levels corresponding to alti-
tude, with hold-level 3 being the highest and hold-level 1 being the lowest.

Participants must observe the following set of rules while performing this
task.

Rule 1: They must land planes into the wind. For instance, if the wind is
from the north, they must land the plane on a north/south runway.

Rule 2: They can only land a plane from the first hold-level.
Rule 3: They must only move a plane one hold-level at a time, and they

must only move a plane into an open hold-position.
Rule 4: While they can always land a plane on a long runway, they can

only use a short runway when the conditions of the weather and the runways
permit. In particular, they can only land a DC10 on a short runway when
the runways are not ICY and the wind speed is less than 40 knots. In addition,
they can only land a 727 on a short runway when the runways are DRY or
the wind speed is 0–20 knots. And, regardless of the conditions of the run-
ways and the weather, they can never land a 747 on a short runway, while
PROP’s, on the other hand, can always be landed on a short runway.

Rule 5: They can only land one plane at a time on a runway.
Rule 6: They are penalized for each minute that a plane dips below 4 min

of fuel.
Participants can execute three actions in this task as follows: (a) they can

accept a plane from the queue into an open hold-position, (b) they can move
a plane between the three hold-levels, and (c) they can land a plane on a
runway. They can accomplish these actions by using four keys: the Up-arrow
and the Down-arrow keys, (↑ and ↓), the F1 function key (F1), and the Enter
key (↵). They can move the cursor up and down the hold-positions and the
runways using the Up- and Down-arrow keys. They can accept a plane from
the queue into an open hold-position using the F1 key. And, they can select
a plane in the hold, place a selected plane in an open hold-position (either
from the queue or from another hold-position), or land a plane on a runway
using the Enter key. In addition, participants can press the number keys 1–6
to examine Rules 1–6 any time during the task. They are given 50 points for
landing a plane, penalized 100 points for crashing a plane, and penalized 10
points for violating one of the six rules. A plane crashes when the fuel level
of a plane falls to 0 min.

Critical features of KA-ATC task are that planes are added to the queue
approximately every 7 s and that it takes 15 s for a plane to clear a runway.
Since only two runways can be used at a time (depending on wind direction)
people can never exhaust the planes in the queue over the course of the
experiment. However, planes in the queue also do not use up fuel so there
is no real pressure or incentive to empty out the queue. But, once planes are
entered from the queue into the hold-levels, they have between 4 and 6 min
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of fuel and begin to lose fuel in real time. Hence, they need to be attended
to quickly to avoid a low-fuel penalty (i.e., Rule 6) or even crashing them
when the fuel level goes to 0.

We should note that KA-ATC task is typically run under two conditions:
full-weather and fair-weather conditions. In the full-weather condition, the
task is run under the conditions as described previously. In the fair-weather
condition, the wind speed is permanently set to 0–20 knots and the runway
condition is permanently set to DRY. The main difference between the two
conditions is that, in the full-weather condition, the cognitively complex part
of this task concerns keeping track of what type of planes can be landed on
the short runway under the different weather conditions (i.e., Rule 4). How-
ever, in the fair-weather condition, Rule 4 is logically reduced to the simple
rule that all planes, except 747s, can land on the short runway.

In the next section, we describe our hierarchical decomposition of the KA-
ATC task in detail. Our method of task analysis is based on Card, Moran,
and Newell’s (1983) unit-task analysis. We therefore begin by briefly de-
scribing their method of task analysis before continuing with our decomposi-
tion of the learning in the KA-ATC task.

THE TASK ANALYSIS

Card, Moran, and Newell (1983) proposed a method of task analysis in
which a task is decomposed and analyzed at three, increasingly specific,
levels.2 The three levels are (a) the unit-task level, (b) the functional level,
and (c) the keystroke level. The unit-task level is the most general level of
analysis. At this level, the main task is decomposed into a set of independent
unit-task goals that are repeatedly executed to achieve the main-task goal.
The functional level is the level below the unit-task level in which the unit-
task goals are further decomposed into even smaller, functional-level goals.
The keystroke level is the most detailed level of analysis and consists of
elementary motor and cognitive goals. The keystroke-level goals include
goals to press keys, to find and encode information from the environment,
and to retrieve information from long-term memory.

The central premise of Card et al.’s methodology for unit-task analysis is
that a task can be decomposed into increasingly specific goals, all the way
down to the keystroke level of elementary cognitive and perceptual-motor
goals. Of course, they recognized that not all tasks can be easily decomposed
this way, but they argued that for those tasks that can be decomposed, one
could then analyze human performance at these different levels. While Card

2 Card, Moran, and Newell (1983) also defined the argument level, which lies between the
functional level and the keystroke level. The argument level consists of instantiations of the
functional-level goals. For the purpose of our analysis and our argument, decomposition at
the argument level was not needed and was therefore left out.
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et al. focused primarily on skilled performance, the unit-task methodology
can be readily extended to the analysis of learning at these different levels.

Figure 4 illustrates our decomposition of the KA-ATC task. The overall
task can be decomposed into performing a sequence of three unit-tasks. The
three unit-tasks are (a) moving a plane between the hold-levels, (b) landing
a plane on a runway, and (c) getting a plane from the queue into a hold-
position. Optimal performance in this task depends on the appropriate selec-
tion and parameterization of these unit-tasks. For instance, Reder and Schunn
(1999) have shown that in the full-weather condition, better performance is
obtained by people who use short runways whenever possible to maximize
the availability of long runways for 747s and other planes that require them
because of the unfavorable weather conditions. In the fair-weather condition,
Lee, Anderson, and Matessa (1995) demonstrated that better performance is
obtained by people who bring planes directly into hold-level 1 from the
queue, thereby minimizing the number of keystrokes required to land a plane.

As Fig. 4 further illustrates, each unit-task can be decomposed into a num-
ber of functional-level goals. For instance, the unit-task of landing a plane
involves (1) finding a plane to land, (2) moving to the plane, (3) selecting
the plane, (4) finding a runway to land, (5) moving to the desired runway,
and (6) landing the plane. Each of these functional-level goals involves a
number of keystroke-level goals, including a sequence of shifts of attention
across the screen, encoding of information on the screen, and a keystroke
to effect the desired action. These functional-level goals fall into one of three
categories: (1) finding an object, (2) moving to that object, and (3) selecting
that object. To help identify these categories, we label the finding-an-object
category with the Find prefix, the moving-to-an-object category with the
Move to prefix, and the selecting-an-object category with the Select prefix.
Tables 1a–1c define and classify the keystrokes for the land, move, and
queue unit-tasks, respectively, according to the functions they serve.

Figure 5 illustrates the mapping between the functional-level goals and
their associated latencies. As can be seen in Fig. 5, the total time to complete
a unit-task is the sum of the total time to perform its functional-level goals.
With the exception of the two Move to goals, the latency to complete a func-
tional-level goal corresponds to a single keystroke time. As for the two Move
to goals, to standardize our analysis of the functional-level goals to a single
keystroke time, we aggregated the multiple arrow-key presses in the Move
to goals into a single keystroke time by calculating and using their mean.
While we associate the time to complete a functional-level goal with the
time to complete a keystroke, this does not mean that these goals only contain
the keystroke time. They also include the time for the required cognitive
processing and visual information encoding that preceded the keypress. This
will become clear when we discuss the data from our decompositional analy-
sis of the latencies in the next section.

From our task analysis of the KA-ATC task, we develop two hypotheses.
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TABLE 1a
Decomposition of the Land Unit-Task into Functional-Level Goals

Keystrokes Definitions

Find Plane Getting to the desired plane involves hitting a sequence of arrow keys
until the cursor (which is at the left side of the hold) points to it.
The time to press the first keystroke in this sequence is associated
with finding the plane to land.

Move to Plane The remaining arrow keys required to get to the desired plane are
aggregated into this second catetory.

Select Plane Selecting a plane involves hitting the Enter key, at which point the
cursor switches to the right side of the hold-pattern. The time to
press the Enter key is associated with the completion of this goal.

Find Runway Getting to the desired runway involves hitting a sequence of arrow
keys until the cursor (which is currently on the right side of the
hold) points to it. The time to press the first keystroke in this
sequence is associated with finding the runway on which to land.

Move to Runway The remaining arrow keys required to get to the desired runway are
aggregated into this category.

Select Runway Selecting a runway involves hitting the Enter key, at which point the
cursor returns to the hold-level and the plane will begin to taxi
across the runway, taking 15 s to land. However, participants are
free to begin the next unit-task while the plane is taxiing across the
runway. The time to press the Enter key is associated with the com-
pletion of this goal.

TABLE 1b
Decomposition of the Move Unit-Task into Functional-Level Goals

Keystrokes Definitions

Find Plane Getting to the desired plane involves hitting a sequence of arrow keys
until the cursor (which is at the left side of the hold) points to it. The
time to press the first keystroke in this sequence is associated with
finding the plane to move.

Move to Plane The remaining arrow keys required to get to the desired plane are aggre-
gated into this catetory.

Select Plane Selecting a plane involves hitting the Enter key, at which point the cur-
sor switches to the right of the hold-level. The time to press the Enter
key is associated with the completion of this goal.

Find Hold Getting to the desired hold-position involves hitting a sequence of arrow
keys until the cursor (which is currently on the right side of the hold)
points to it. The time to press the first keystroke in this sequence is
associated with finding the desired hold-position.

Move to Hold The remaining arrow keys required to get to the desired hold position
are aggregated into this category.

Select Hold Selecting a hold involves hitting the Enter key, at which point the plane
will move to the new hold-level. The time to press the Enter key is
associated with the completion of this goal.



280 LEE AND ANDERSON

TABLE 1c
Decomposition of the Queue Unit-Task into Functional-Level Goals

Keystrokes Definitions

Find Hold Selecting a hold into which to enter a queued plane involves hitting a
sequence of arrow keys until the cursor (which is at the left of the
hold) points to an empty hold-position. The time to press the first key-
stroke in this sequence is associated with finding the empty hold.

Move to Hold The remaining arrow keystrokes required to move to the empty hold are
aggregated into this category.

Select Queue Getting a plane from the Queue involves hitting the F1 key to select the
Queue. The time to press the F1 key is associated with the completion
of this goal.

Select Hold Selecting a hold involves pressing the Enter key to complete the queue
unit-task. After the Enter key is pressed, a new plane appears in the
selected hold position. The time to press the Enter key is associated
with the completion of this goal.

FIG. 5. The mapping between unit-tasks and their functional-level goals to keystrokes.
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First, at the unit-task level, we hypothesize a rank order among the latencies
of the unit-task goals. That is, on average a land unit-task will take longer
than a move unit-task and a move unit-task will take longer than a queue
unit-task. While it may be obvious that a queue unit-task should take the
shortest amount of time, since it consists of fewer number of keystrokes, it
is less obvious why a move unit-task should take less time than a land unit-
task, since they are nearly identical in their keystrokes. However, the cogni-
tive requirements of the two unit-tasks are quite different. A land unit-task
requires making more complex decisions, i.e., whether a plane can be landed
on a runway given the current weather condition, and accessing additional
screen information, e.g., the current wind direction, than is required for a
move unit-task. Second, at the functional level, we hypothesize a rank order
among the latencies of the functional-level goals. That is, on average a goal
for choosing an object (i.e., Find ) and for selecting an object (i.e., Select)
will take longer than a goal to move to an object (i.e., Move to). This is
because both the Find and the Select goal require much more cognition than
a Move to goal. That is, during a Find goal, people must decide which object
they want to work on next. After finding an object, a Move to goal involves
simply moving to that object. After moving to the object, they then must
decide whether they want to select it (i.e., commit to it). These additional
decisions required for the Find and Select functional-level goals will reflect
in their longer latencies compared to a Move to goal. With these two hypothe-
ses in mind, we now apply our decompositional analysis to the data from
Study 2 in Ackerman and Kanfer (1994).

DATA FROM STUDY 2 OF ACKERMAN AND KANFER (1994)

Performance in the ATC task

The data from Study 2 in the ONR data set (Ackerman & Kanfer, 1994)
come from Ackerman (1988). It is typical of the data in this set, and we
present an analysis of only this one data set to be brief. It is also the data
set that has been designated as the target modeling data set for the ONR
Hybrid Architectures Project. The data from Study 2 were from 65 college
undergraduates who completed 27 trials of the KA-ATC task with each trial
lasting 10 min. The first 18 trials were in the fair-weather condition and the
last 9 were in the full-weather condition. In our reanalysis of Ackerman
(1988), we only examine the data from the fair-weather trials (i.e., the first
18 trials) of the 50 of the 65 participants who successfully completed all 27
trials.

Figure 6 presents an analysis of aggregate performance in terms of the
mean time to land a plane and the mean number of keystrokes issued per
landing. As can be seen, there is a dramatic improvement in performance
over the course of 18 trials. Part of the overall improvement can be explained
by selection of better strategies for landing planes and eliminating errors.
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FIG. 6. The mean time to land one plane and the mean keystrokes used per landing from
Ackerman (1988).

This part of the improvement is reflected in the decrease in the number of
keystrokes per landing, which decreases from 42.7 keystrokes per landing
on Trial 1 to 21.6 keystrokes per landing by Trial 18. However, people re-
quire 64.2 s to land a plane on Trial 1 but only 8.9 s to land a plane by Trial
18. Clearly, the improved performance in terms of strategy efficiency, as
measured by the reduction in the number of keystrokes per landing, is not
sufficient to account for the dramatic improvement in the overall task perfor-
mance, as measured by the time to land a plane. People are improving by
a factor of more than 7 in the time to land a plane but only decreasing in
the number of keystrokes by a factor of less than 2.

Unit-Tasks

Figure 7 displays the critical factor underlying the improvement in the
KA-ATC task, and this is the mean time to complete the three unit-tasks (note
that for our analysis, we only include those unit-tasks that were successfully
completed). As described previously in Fig. 5, the time to perform a unit-
task is defined as the time from the last keystroke of the previous unit-task
that caused a plane to land, move, or be accepted from the queue to the last
keystroke that completed the current unit-task. As can be seen in Fig. 7,
the latencies of the unit-tasks are speeding up by a factor of about 3 over
the course of the experiment, and these improved unit-task performances
are the major sources of the improvement in the overall task performance.

Figure 7 also plots the results of fitting power functions to the three unit-
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FIG. 7. The mean time to complete land, move, and queue unit-tasks and their power-
function fits.

tasks. While we estimated different asymptotes and scale factors for the three
unit-tasks, we constrained them to have a common exponent, 0.733, which
was estimated. As can be seen, the fits are quite good even with this con-
straint. One can measure the consequences of the constraint by a chi-square
measure of fit. We calculated the chi-square measure of fit by first obtaining
a measure of the variance in the data by calculating for each curve the partici-
pant-by-trial interaction and then deriving the standard errors of measure-
ment. The chi-square is the ratio of the sum of squared deviations and the
square of these standard errors. Throughout this article we report power func-
tion fits obtained by minimizing the chi-square measures. The asymptotes
3582, 2590, and 768 ms in Fig. 7, can be interpreted as the minimal times
to perform each of these unit-tasks, and the scale factors 8091, 6144, and
6215 ms, can be interpreted as the amount of time that can be compressed
with practice.

Our decision to constrain the model to a single exponent was based on
the goodness-of-fit provided by the model relative to its degrees of freedom
(cf. Anderson, 1989). That is, if we estimate three separate exponents for
the three curves, the total χ2 is 42.759, whereas if we constrain the exponents



284 LEE AND ANDERSON

to be the same, the total χ2 is 44.645. The number of degrees of freedom
for the chi-square of the constrained exponent model is the number of obser-
vations (3 3 18 5 54) minus the 7 estimated parameters (3 asymptotes 1
3 scale factors 1 1 exponent) for a total of 47 degrees of freedom. As can
be seen, the observed chi-square is approximately equal to its degrees of
freedom, which is one sign of the goodness of the fit. Also, the difference
between the two χ2 is less than 2, and this difference corresponds to a χ2 of
2. Thus, the improvement in the fit of the unconstrained model with the three
separate exponents is not significantly better than the fit of the constrained
model with a single exponent.

Note from Fig. 7 that the mean time to complete a land unit-task is longer
than the mean time to complete a move unit-task, which in turn is longer
than the mean time to complete a queue unit-task across the 18 trials. The
greater scale factor for a land unit-task indicates that there are more cognitive
components to be learned for this unit-task, and its larger asymptote indicates
that even at a skilled level of performance, it requires more information pro-
cessing. The rank order of the latencies of the data are consistent with our
hypotheses from our task analysis.

In this article, we plot the learning data as a function of time (i.e., trials)
rather than as a function of the number of times practiced. This raises the
issue of whether the data or the power functions would have been very differ-
ent had we plotted the data as a function of practice. To address this issue,
we replotted the unit-task data from Fig. 7 as a function of practice in Fig. 8,
with each block representing the mean of 40 unit-tasks. Figure 8 also plots
the best fitting power functions to the replotted data with a common exponent
of 0.844, which was estimated. As can be seen in Fig. 8, the power functions
provide excellent fits to the replotted data. Newell and Rosenbloom (1981)
showed that a power function in terms of time (Fig. 7) implied a power
function in terms of opportunities (Fig. 8) or vice versa. In addition, the
replotted data are completely consistent with the data from Fig. 7, namely
the rank order of the unit-task execution times between the two plots are
identical. Since our only concern is that the unit-tasks are being learned ac-
cording to a well-defined learning function, and since a power function of
one form implies the other, we do not plot further the functions both ways.
We plot the data as a function of time (Fig. 7), since this is the more conve-
nient aggregation.

Functional-Level Goals

We next consider the latencies for the individual keystrokes that corre-
spond to the different functional-level goals (see Figs. 4 and 5). The data
are plotted in Fig. 9a for the functional-level goals making up the land unit-
task, Fig. 9b for the functional-level goals making up the move unit-task,
and Fig. 9c for the functional-level goals making up the queue unit-task.
These data give the appearance of relatively continuous learning curves. To
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FIG. 8. The mean time to complete land, move, and queue unit-tasks as a function of the
number of unit-tasks performed. Each block represents the mean of 40 unit-tasks performed.

explore the issue of the shape of these learning curves, we tried fitting a
variety of power functions. In fitting the power functions, we considered the
possibility of constraining the various parameters to be the same for all the
learning curves. We examined constraining all possible combinations of
the three power-function parameters (A—Asymptote, S—Scale Factor, and
E—Exponent), which gave us eight possible models (letters indicating the
parameters that were constrained): {}, {A}, {S}, {E}, {AS}, {AE}, {SE},
and {ASE}, from the completely unconstrained model, {}, to the completely
constrained model, {ASE}. Our decision in choosing a power-function
model was based on our analysis of this space of the constrained power-
function models as given in Fig. 10. The numbers in each cell of Fig. 10
represent the R2 goodness-of-fit and the chi-square measure of deviation for
that model. Most critical result from this analysis is that the unconstrained
model, {}, with a total χ2 of 241 (df 5 240) does not significantly deviate
from the data. This implies that all components correspond to continuous
learning functions. In addition, we lose relatively little in terms of R2 between
the unconstrained model, {}, and the two single-parameter constrained mod-
els, {A} and {E}, or the double-constrained, {AE}, model. This implies that
these functions have approximately the same asymptotes and exponents. The
double-constrained {AE} model had a best fitting asymptote of 198 ms and
a best fitting exponent of 0.531. Note the value of the common asymptote
is about the average time to type a character. While the {A} model provides
a slightly better fit than the {E} model for this data, the {E} model provides
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(a)

FIG. 9. (a) The mean time to complete the keystrokes associated with the functional-level
goals of the land unit-task, (b) the mean time to complete the keystrokes associated with the
functional-level goals of the move unit-task, and (c) the mean time to complete the keystrokes
associated with the functional-level goals of the queue unit-task.

a superior fit for all the other data that we examine in this article. Also,
constraining the exponent means that all the curves have all the same shape
and allows us to compare the other two parameters across curves, with S
reflecting the amount to be learned and A reflecting minimum time. Hence,
we chose to present the {E} model in Fig. 10 with the exponent constrained
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(b)

FIG. 9—Continued

and estimated to 0.561. As an additional note, when we estimate the power
functions for the functional-level goals, we constrain the asymptote to be no
less than 50 ms, based on the view that minimal motor actions have a fixed
cost associated with them (Card, Moran, & Newell, 1983). In the following
subsections, we analyze the functional-level goals for each unit-task in detail.
These goals are fit with a common exponent to facilitate the comparison of
other parameters. However, where there are significant deviations, we also
report the unconstrained fits. We have chosen a chi-square of 30 as the
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(c)

FIG. 9—Continued

threshold for significance in these analyses. This corresponds approximately
to a significance level of α 5 0.01. With so many curves, we selected a
relatively high threshold for significance to avoid Type I error.

Functional-level goals of the land unit-task. One can examine the latencies
for the functional-level goals of the land unit-task by examining their associ-
ated keystroke completion times. Figure 9a plots the keystroke completion
times associated with the six functional-level goals of the land unit-task and
their fitted power functions. As we have indicated previously, in fitting the
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FIG. 10. A lattice representing the total combination of power-function models.

power functions to these six individual curves, we constrained their exponent
to be 0.561. It is clear from Fig. 9a that the times for finding and selecting
planes and finding and selecting runways are much longer than moving to
those planes and runways. That is, the large latency and the scale-factor
differences between the Find and Select goals relative to a Move to goal
show that not all keystrokes speed up uniformly. This is consistent with
our expectations from our task analysis that the long keystrokes are those
associated with the goal of identifying targets (i.e., the Find goal) and recog-
nizing when the goal has been achieved (i.e., the Select goal). We see this
same pattern of latencies in the functional-level goals of other unit-tasks as
well.

Except for Select Runway, the functional-level goals of the land unit-task
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are well fit by power functions with the common exponent of 0.561. There-
fore we estimated a separate exponent for Select Runway, which turned out
to be 0.457, and the χ2 dropped to 29.546. The χ2 measure of fit for the rest
of the functional-level goals is 74.440 with 80 degrees of freedom, which
is not significant. The asymptotes for all the power functions suggest that
the minimum time is coming close to the minimum keystroke time.3

Select Runway is particularly complicated by the fact that on some land-
ings people will get a plane to the runway only to have to wait for it to clear.
To eliminate this waiting time from the measurement of the Select Runway,
we took the lesser of (1) the time to press the Enter key from the previous
arrow key and (2) the time to press the Enter key from the time that the
chosen runway clears. The quality of the fit is much worse if we do not do
this. The fact that the fit for the Select Runway is still significantly deviant
suggests that we have not quite derived the right measure of processing time
for it. Currently, we slightly overpredict its latency in the final trials.

Functional-level goals of the move unit-task. One can examine the times
for finding, moving to, and selecting planes and hold-positions by examining
their keystroke completion times. Figure 9b plots these times plus their best
fitting power functions. In fitting the power functions, the exponent was con-
strained to be 0.561. As can be seen, all the power functions provide good
fits with the exception of Move to Plane. Therefore, we estimated a separated
exponent for Move to Plane, 0.821, which lowered the χ2 from 30.663 to
25.785. The overall χ2 measure of fit is 118.329, with 96 degrees of freedom,
which is not significant. Again all of the asymptotes are close to a single-
keystroke time. As can be seen in Fig. 9b the latencies for finding and select-
ing planes and finding and selecting hold-positions are much longer than the
latencies to move to the planes and the hold-positions. The differences in
the latencies for the Find and the Select goals versus the Move to goals are
consistent with our expectations from the task analysis.

Functional-level goals of the queue unit-task. The queue unit-task involves
one less Find and Move to to goals compared to the land and the move unit-
tasks. In addition, the queue unit-task has a function-level goal, Select Queue,
which is unique to it and involves hitting the F1 key. Figure 9c plots the
latencies associated with the functional-level goals of the queue unit-task,
and their best-fitting power functions. As can be seen in Figure 9c, the laten-
cies for the Find Hold, Select Queue, and Select Hold are all approximately
the same and speed up at approximately the same rate. The overall χ2 mea-
sure of fit for the power functions is 142.763 with 64 degrees of freedom,

3 Card, Moran, and Newell (1983) estimated the minimal keystroke time to be about 70 6
30 ms for a keystroke that only contained a simple downstroke to press the key and twice
that time, i.e., 140 6 60 ms, for a keystroke that contained both the downstroke to press the
key and upstroke to return the finger to its original position. We therefore take the minimal
keystroke time to range anywhere from 40 to 200 ms.
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which is significant. None of the power functions, with the exception of the
one for Find Hold, provide a good chi-square fit to the data. We therefore
estimated separate exponents for the Move to Hold, Select Queue, and Select
Hold. The estimated exponents were 0.169, 1.461, and 1.300, respectively.
Of these, only Move to Hold remained significantly deviant from the data.
The most likely reason for the poor fit of the Move to Hold is that people
are already at the asymptote from Trial 1 for this keystroke, and the small
variations from trial to trial for Move to Hold are mostly due to noise. Regard-
less, it is clear that the latencies for the Find and Select goals are much
longer than the latencies for the Move to goal, reflecting the higher cognitive
costs associated with them. Additionally, the asymptotes of the power func-
tions are in the range of a single keystroke time.

Summary

The overall improvement in the KA-ATC task reflects an improvement
in the strategies for landing planes, as indexed by the reduction in number
of keystrokes per landing (Fig. 6), and an improvement in the execution of
unit-tasks and their functional-level goals, as reflected in a reduction in the
time per keystroke (Fig. 9). Both factors show power-law speed-up, but we
have focused on the time per keystroke, as it was the more important factor.
As can be seen in Fig. 9, with few exceptions, the constrained power function
fits are quite good. The fact that some of the chi-squares are significant says
more about the small standard errors than the fits themselves. The good fits
overall support our argument that underlying a complex power function are
many lower-level power functions. The fact that we were able to fit a single
exponent to all the functional-level goals of the unit tasks, with reasonable
success, suggests that they are speeding up at the same rate. In addition, the
fact that their asymptotes are all in the range of a single-keystroke time indi-
cates that people are speeding up to the minimum keying time. The differ-
ences among the learning curves largely reside in the scale factors that reflect
their varying cognitive complexity. The clear implication of these learning
curves is that the cognitive components are being squeezed down to zero.
It still remains for us to identify more clearly what exactly is involved in
these cognitive components. We address this issue in the following eye-
tracking experiment. As an interim summary, we conclude that our reducibil-
ity thesis is supported by the fact that the learning at the different levels of
decomposition is well fit by a power function. This is the consistent learning
that we identified as the critical test of the reducibility hypothesis.

THE ATTENTIONAL SOURCE FOR SPEED UP IN PERFORMANCE

Implicit or explicit in many theories of skill acquisition is the view that
the speed-up results from optimization of mental processes. For example,
the prototypical view of the speed-up in learning the multiplication table is
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that it results from a strategy shift, i.e., shift from a calculate strategy to a
memory retrieval strategy (Ashcraft, 1992; Lemaire & Siegler, 1995; Logan;
1988; Reder & Ritter, 1992; Rickard & Bourne, 1996; Siegler, 1988). Re-
cently, however, Haider and Frensch (1996, 1999) have proposed another
potential source of speed-up in learning. They hypothesized that some por-
tion of the observed speed-up may actually result from the reduction of the
processing of task-irrelevant information.

Haider and Frensch supported their hypothesis with results from an alpha-
bet verification task in which people verified the correctness of an alpha-
numeric string that contained a varying number of task-irrelevant characters.
In this task, as people became skilled, they increasingly became insensitive
to the varying amount of task-irrelevant characters. Therefore Haider and
Frensch argued that people learned to focus their information processing on
the task-relevant subset of the string and increasingly reduced the informa-
tion processing of the task-irrelevant subset of the string (Haider & Frensch,
1996). In a follow up eye-tracking experiment, they obtained direct evidence
of the changes in people’s attentional strategies (Haider & Frensch, 1999).

Epelboim et al. (Epelboim, Kowler, Edwards, Collewijn, Erkelens, &
Steinman, 1994, as reported in Kowler, 1995) also found qualitative changes
in attentional strategies with practice. In their task, people were exposed to
a large breadboard, with 2, 4, or 6 vertical rods placed randomly, for 10
consecutive trials. In one condition, people were instructed to simply foveate
on the pegs in a fixed color sequence, and in the other condition, they were
instructed to foveate and tap with their finger on the pegs in a fixed color
sequence. In both conditions, there was a gradual reduction of foveations to
the irrelevant pegs in the sequence. As Epelboim et al. reported, ‘‘Gaze hops
about all over the place during the first two or three repetitions while partici-
pant is searching for and learning the location of each rod. Things settle
down by the fourth repetition.’’

With the exception of Haider and Frensch (1999) and Epelboim et al.
(1994), there are relatively few other examples of experiments where re-
searchers have looked at changes in eye movements of people learning to
do a task. However, there are many examples of experiments where research-
ers have looked at the eye movements of experts versus novices in per-
forming a task. Findings from these cross-sectional studies generally support
the view that experts and novices attend to visual information differently.
These tasks span a wide spectrum in complexity, and they include reading
topological maps (Antes, Chan, Lenzen, & Mullis, 1985), putting in golf
(Vickers, 1992), performing a dynamic videogame-like task (Shapiro & Ray-
mond, 1989), managing a simulated electric bulb factory (Krappman, 1995),
and analyzing X-ray films (Myles-Worsley, Johnston, & Simons, 1988).

Haider and Frensch (1996, 1999) used a relatively simple task. We were
intrigued by the issue of how much of the improvement in the more complex
KA-ATC task might also be due to decreased perceptual processing of task-
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irrelevant information. The screen of the KA-ATC task (Fig. 3) is clearly
quite complex and offers a lot of visual information to distract people from
their assigned task. It is possible that the time that was being eliminated in
the functional-level goals in Fig. 9 was the time to search for relevant infor-
mation, leaving only the keystroke time. Therefore, we ran an experiment
in which we monitored the eye movements of people performing the KA-
ATC task to see whether the learning in this task could also be explained
by the attentional learning hypothesis forwarded by Haider and Frensch.

Method

Participants

Ten people from the Carnegie Mellon University community were recruited to participate
in the eye-tracking experiment with the KA-ATC task. They were recruited from a database
that we maintain internally of those who have previously participated in eye-tracking experi-
ments. Each person performed 6 trials per day for 3 days, with each trial lasting 10 min, for
a total of 18 trials in the fair-weather condition. While the time-on-task was 1 h for each day,
we set aside an additional hour for such activities as equipment calibrations, task instruction,
debriefing on the first and last days of the experiment, and for breaks between trials. People
were paid $10.00/h, at the completion of their participation in the experiment.

Materials

The KA-ATC task, which was originally written for the PC/DOS platform, was ported over
to the Macintosh platform using the Macintosh Common Lisp programming language. This
was done in order for the task to work with our eye-tracking equipment and software. The
eye-tracking equipment consisted of an ETL-500 video-based, head-mounted eye-tracking sys-
tem with a magnetic-based head tracker from ISCAN, Inc. The software for collecting and
analyzing the eye data consisted of the EPAL (Douglass, 1998) software suite that was inter-
nally developed in our lab to facilitate the development of eye-tracking experiments and the
analysis of their data. The KA-ATC task was presented on an Apple 20-in. multisync monitor
with its display resolution set to 1024 3 768 pixels. The monitor was placed approximately
3 ft from the participants, level with their eyes. The KA-ATC task window on the display
monitor was set to 900 3 700 pixels, approximately 23° 3 18° of visual angle.

Procedure

On the 1st day of the experiment, people worked through the interactive computer-based
instructions for the KA-ATC task. The instructions consisted of a declarative component, in
which they were introduced to the visual elements of the task, e.g., hold, runways, and queue,
and the six rules that govern the task; and a procedural component, in which they were led
through an example of the three unit-tasks, i.e., how to land a plane, how to move a plane
between the hold-levels, and how to get a plane from the queue. The reading of the instructions
was self-paced, and it typically lasted about 20 min. Eye movements were not recorded while
participants read the instructions. After the instructions were read, participants were fitted with
the eye-tracker and calibrated, a process that usually took about 5–10 min. Once they were
calibrated, they began the first of six trials for that day. After each trial, their calibration was
checked and recalibrated as needed. After each trial, they were given a choice to take a short
two-min break. The same procedure was followed for the remaining days, as outlined for the
1st day, with the exception of the task instructions.
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FIG. 11. The mean time to land one plane and the mean keystrokes used per landing.

Results

Before reporting the eye movement data, we report the more gross behav-
ioral measures to establish the comparability of our data to those of Study
2 from Ackerman and Kanfer (1994). Figure 11 plots the mean time to land
one plane per trial and the mean number of keystrokes per plane landed. It
can be compared to Fig. 6. As can be seen in Fig. 11, participants require 18.6
s to land a plane at Trial 1 but only 8.2 s at Trial 18. However, keystrokes per
plane landed change only slightly from 30.5 keystrokes at Trial 1 to 26.6
keystrokes at Trial 18. The improvement in the time to land a plane is not as
dramatic as the improvement in the Ackerman data because our eye-tracking
participants are a great deal faster from the start. However, they did improve
by a factor of more than 2, and clearly, this improvement is not due to the
reduction of the number of keystrokes per landing, which was negligible
across the 18 trials.

Unit-Tasks

Fig. 12 plots the mean time to execute the three unit-tasks and their best
fitting power functions. It can be compared to Fig. 7. As can be seen in Fig.
12, the latencies of the unit-tasks are speeding up by a factor of about 2 over
the course of the experiment. If we estimate three separate exponents for the
three curves, the total χ2 is 29.630, and if we constrain the exponent to be
the same, the total χ2 is 36.283, not significant with 47 degrees of freedom.
Thus, we estimated a single best fitting exponent for all three unit-tasks,
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FIG. 12. The mean time to complete land, move, and queue unit-tasks and their power-
function fits.

which turned out to be 1.329, and estimated separate asymptotes and scale
factors for the three curves. The asymptotes (3035, 2627, and 1433 ms) can
be interpreted as the minimal times to perform each of these unit-tasks, and
the scale factors (3085, 2423, and 1911 ms) can be interpreted as the amount
of time that can be compressed with practice. The mean time to complete a
land unit-task is longer than the mean time to complete a move unit-task,
which in turn is longer than the mean time to complete a queue unit-task,
across the 18 trials. This is consistent with the expectations from our task
analysis. While our participants are much faster than Ackerman’s, the rank-
order of the unit-task latencies of our data are identical to those of the Acker-
man data.

Functional-Level Goals

Fig. 13 displays the latencies for the keystrokes corresponding to the func-
tional-level goals of the land, move, and the queue unit-tasks. As we did for
Ackerman’s data, we examined the total space of the constrained power-
function models in selecting a power function model for our data. Our analy-
sis of the model space is given in Fig. 14 (the numbers in each cell represent
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(a)

FIG. 13. (a) The mean time to complete the keystrokes associated with the functional-
level goals of the land unit-task, (b) the mean time to complete the keystrokes associated with
the functional-level goals of the move unit-task, and (c) the mean time to complete the key-
strokes associated with the functional-level goals of the queue unit-task.

the R2 goodness-of-fit and the chi-square measure of deviation for that
model). As can be seen, we lose relatively little in terms of R2 between the
unconstrained model, {}, and the single-parameter constrained model {E}.
Again, the most important to note here is that the unconstrained model, {},
with a total χ2 of 126 (df 5 240), does not significantly deviate from the
data. In addition, the model with a constrained exponent does not signifi-
cantly deviate from the data, total χ2 of 180, df 5 255. When we constrained
both the asymptote and the exponent, {AE}, it resulted in a best fitting as-
ymptote of 180 ms and a best fitting exponent of 0.413. Note that the best
fitting asymptote for this model is close to the minimal keystroke time.

The best fitting exponent for the exponent-constrained {E} model was
1.531. We decided to explore the possibility of constraining the exponent
further by setting the best fitting exponent for the functional-level goals to
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(b)

FIG. 13—Continued

be the same as the best fitting exponent from the unit-tasks, 1.329. When
we did, we found a minimal change in the total χ2 from 179.774 with {E 5
1.531} and 186.117 with {E 5 1.329}. Hence, we decided to constrain the
exponent to the one estimated for the unit-tasks. Hence, the exponents of
the power function fits to the functional-level goals have been constrained
to 1.329.4 Note, as before, when we estimate the power functions for the

4 The reason why we used a common exponent for both the unit-tasks and the functional-
level goals for our data, but not for the Ackerman data, was because the number of keystrokes
per plane landed for our participants (Fig. 11) did not change very much across the 18 trials,
whereas for Ackerman’s participants, there was a dramatic drop. While the speed-up in the
unit-tasks for our data was mostly due to the speed-up in the keystrokes, for the Ackerman
data, the speed-up in the unit-tasks was also due to people using less keys to complete unit-
tasks. Hence, we believed that it made sense to use a common exponent for both the unit-
tasks and the functional-level goals for our data, since the speed-up in the unit-tasks mostly
resulted from the speed-up of the individual keystrokes, whereas for the Ackerman data, it
did not.
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(c)

FIG. 13—Continued

functional-level goals, we constrain the asymptotes to be no less than 50 ms.
In the following subsections, we analyze the functional-level goals for each
unit-task in detail.

Functional-level goals of the land unit-task. Fig. 13a plots the mean laten-
cies of the functional-level goals of the land unit-task and their best fitting
power functions. They can be compared to those in Fig. 9a. The overall χ2

measure of fit is 93.18, which is not significant with 96 degrees of freedom.
As can be seen, the scale factors estimated for our data are much smaller
compared to those estimated for Ackerman’s data, indicating that our partici-
pants start out much faster at executing these goals. However, the relative
differences in the latencies among the goals, i.e., that finding and selecting
planes and runways takes longer than moving to those planes and runways,
are identical to the Ackerman data and are consistent with our hypothesis
from the task analysis.

Functional-level goals of the move unit-task. Fig. 13b plots the mean laten-
cies of the functional-level goals of the move unit-task and their best fitting
power functions. They can be compared to those in Fig. 9b. The overall χ2
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FIG. 14. A lattice representing the total combination of power-function models.

measure of fit is 87.41, which is not significant with 96 degrees of freedom.
Again, the scale factors estimated for our data are much smaller compared
to those estimated for the Ackerman data, indicating that our participants
start out much faster at executing the functional-level goals of the move
unit-task. However, as with the land unit-task, the relative differences in the
latencies among the functional-level goals, i.e., that finding and selecting
planes and hold-positions takes longer than moving to those planes and hold-
positions, are identical to the Ackerman data and are consistent with our
hypothesis from the task analysis.

Functional-level goals of the queue unit-task. Figure 13c plots the mean
latencies of the functional-level goals of the queue unit-task and their best
fitting power functions. They can be compared to those in Fig. 9c. The overall
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χ2 measure of fit is 55.84 with 64 degrees of freedom, which is not significant.
Similar to the functional-level goals of both land and move unit-tasks, the
scale factors estimated for our data are much smaller than for those estimated
for the Ackerman data, indicating that our participants start out much faster
at executing the functional-level goals of the queue unit-task. However, the
relative differences in the latencies among the functional-level goals are iden-
tical to those in the Ackerman data, with the exception of Select Hold. For
our participants, the Select Hold becomes faster than the Move to Hold after
Trial 3.

Conclusions. Overall, the mean scale-factor for the functional-level goals
in our study was 411 ms compared to 1379 ms in the Ackerman data. In
contrast, the mean asymptote in our study was 346 ms compared to 186 ms
in the Ackerman data. We think the asymptotes are artificially high in our
study because the people in our study were reaching the point where they
were waiting for the runways to clear and had nothing else to do. One piece
of evidence for this is that there is basically no correlation between the
asymptote parameters of the two studies (r 5 0.140), whereas the scale
parameters of the two studies are strongly correlated (r 5 0.927).

While our participants are faster, we feel that we have generally replicated
the learning patterns of the Ackerman data. We have speculated about why
our participants are so much faster than Ackerman’s participants. Our current
hypothesis is that our experiment was run more than a decade later with
students who have grown up with computers and computer interfaces, and
hence our participants are more sophisticated with computer interfaces. As
is shown, much of the learning that is taking place, even for our participants,
reflects learning about the particular interface of the KA-ATC task.

Our analysis of the latencies of the unit-tasks and the functional-level
keystrokes of the eye-tracking participants clearly mirror our conclusion
from the reanalysis of the Ackerman data that we provided previously.
Namely our reducibility thesis is supported by the fact that the learning at
the different levels of the decomposition is well fit by power functions.
Again, this is the consistent learning that we identified as the critical test of
the Reducibility Hypothesis.

Analysis of the Eye Movement Data

Fig. 15 displays the decomposition of the KA-ATC task screen for the
purpose of analyzing where people were gazing. We initially divided the
screen into 21 regions of interest. These included 12 regions in the hold,
divided into 3 sets of 4 regions for each hold-level. Within a hold-level the
regions were divided into the left-arrow column, the plane-type column, the
plane-fuel column, and the right-arrow column. The fixations in the left- and
the right-arrow columns were due primarily to tracking of the cursor as peo-
ple pressed the arrow keys to move it up and down. The fixations to the
plane-type column were critical because this information was required for
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FIG. 15. A decomposition of the Kanfer–Ackerman ATC task into regions for gaze anal-
ysis.

knowing which runway the plane could land on (i.e., Rule 4). The fixations
to the plane-fuel column were important because this information was re-
quired for avoiding plane crashes and penalties for low fuel levels. The run-
way was divided into 2 regions, one for the runways and the other for the
arrows. The right half of the screen was divided into 7 regions correspond-
ing to where different information was presented. In addition to these 21
regions, we separately tracked two additional categories of fixations: (1) fix-
ations to the periphery of the task window, but on the monitor, and (2) fixa-
tions off the monitor (e.g., fixations to the keyboard). For on-screen fixations
we identified each fixation on the basis of a high-velocity saccade to a region.
We attributed both the saccade time and the fixation time to that region. For
off-screen fixations, we simply logged the total time spent off the monitor.
Thus, we can take the latencies displayed in Fig. 13 and decompose them
into the time spent looking at the 23 regions (21 task-regions 1 2 additional
categories that we described above). However, in some analyses, we col-
lapsed the 23 regions into a smaller set of aggregated regions for tractability.
The main reason for collapsing the 23 regions was because many of the
regions simply did not have a sufficient number of fixations for our analysis.
For each unit-task, we used different aggregations to highlight the regions
of relevance and irrelevance specific to that unit-task. We now present the
eye-movement analysis for each unit-task.
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Land unit-task. For the land unit-task, we aggregated all fixations in hold-
levels 2 and 3 into a single category, Levels 2&3, to measure how much
attention was being spent on the irrelevant hold-levels. Within hold-level 1,
we aggregated the left- and right-arrow columns into a single category, Level
1 Arrow, to measure how much time people spent monitoring the arrow
movements. We separately measured the time spent fixating in the plane-
fuel column and the plane-type column in hold-level 1 as Level 1 Fuel and
Level 1 Type. We aggregated fixations on the runways and the runway arrows
into one category, Runways, and we also aggregated all the remaining on-
screen and off-screen fixations into a single category, Remaining. Hence,
our analysis consisted of six aggregated categories as follows: Level 1 Type,
Level 1 Fuel, Runways, Levels 2&3, Level 1 Arrow, and Remaining.

Of these six categories, we hypothesized that fixations to Level 1 Type,
Level 1 Fuel, and Runways were task-relevant and fixations to Levels 2&3,
Level 1 Arrow, and Remaining were task-irrelevant. Level 1 Type is important
in the land unit-task because it is required in deciding which runway to land
on. Level 1 Fuel is important for prioritizing which plane to land, especially
early in the experiment when people are slow enough to be assessed low-
fuel penalties. Similarly, Runways is important because one must monitor
the runway to see when it is free. Therefore, we expected to see relatively
little decrease in the total fixation time to the Level 1 Type, Level 1 Fuel,
and Runways categories, whereas for the remaining three categories, Levels
2&3, Level 1 Arrow, and Remaining, we expected to see relatively large
decreases in the total fixation time across 18 trials.

Fig. 16a plots the mean of the total time spent fixating in the six aggregated
regions and their best fitting power function with the exponent constrained
to 1.329. The overall χ2 measure of fit is 92.879, which is not significant
with 96 degrees of freedom. Consistent with our hypothesis, much of the
speed-up came from the reduction in the time spent fixating on task-irrelevant
regions (i.e., Level 1 Arrow, Levels 2&3, and Remaining), whereas the time
spent fixating on task-relevant regions (i.e., Level 1 Fuel, Level 1 Type, and
Runways) remained relatively unchanged across the trials. In addition, the
asymptotes of the power-function fits for the task-relevant regions were
higher and their scale factors much lower compared to those for the task-
irrelevant regions. It is clear that some regions show greater reductions in
fixations than do others.

To get a sense for the significance of the different amounts of learning
displayed in Fig. 16a, we fitted power functions to each participant to get a
separate scale factor for each person, again holding the exponent at 1.329.
We then performed t tests to determine which scale factors were significantly
greater than 0, since this is the component that gets reduced with practice.
The scale factors were significantly greater than 0 for Level 1 Arrows,
t(9) 5 4.727, p , .001, Levels 2&3, t (9) 5 5.329, p , .001; Remaining,
t(9) 5 2.703, p , .05; and Level 1 Fuel, t(9) 5 2.461, p , .05. However,
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it was not significant for Level 1 Type, t (9) 5 0.977, p . .1; or Runways,
t(9) 5 1.196, p . .1. Thus, people appear to be reducing their fixations on all
task-irrelevant regions when landing a plane while maintaining the amount of
time spent on task-relevant regions, with the exception of the Level 1 Fuel.
The t-test for the Level 1 Fuel indicates that the total fixation time to this
region is being reduced with practice. While this was not initially expected,
we believe this results from the fact that one must monitor fuel levels only
if one is slow in landing planes and is in danger of getting low-fuel penalties.
But, if one is landing planes rapidly, the fuel level can be more or less ig-
nored. Since our participants are especially fast to begin with, the importance
of the fuel level for them is diminished.

Figure 16a captures the change in the amount of fixations in the regions.
Figure 16b is an attempt to illustrate the concentration of fixations in particu-
lar regions at the end of the experiment for the land unit-task. The numbers
in the regions represent the mean amount of time people fixate in those re-
gions per square of visual angle during the last three trials (i.e., Trials 16–
18). The grayscales represent visually the amount of time spent in a region
relative to the maximum time spent in a region. Hence for Fig. 16b, the
grayscales were scaled relative to the 51 ms per square of visual angle spent
in Plane Type 1 region. As can be seen, people spend most of their time in
the regions associated with Hold Level 1 and the Runways.

Move unit-task. For the move unit-task we aggregated all the fixations to
the left-arrow, plane-type, plane-fuel, and right-arrow columns in the two
levels over which the plane was being moved (i.e., hold-levels 2 and 1 for
moves from hold-level 2 to 1 and hold-levels 3 and 2 for moves from hold-
level 3 to 2) into Left Arrow, Plane Type, Plane Fuel, and Right Arrow,
respectively. We aggregated all the fixations in the hold-level that was not
involved in the movement (i.e., hold-level 3 for moves from hold-level 2 to
1 and hold-level 1 for moves from hold-level 3 to 2) into a single category,
Other Levels. We aggregated the remaining fixations into a single category,
Remaining. Hence, our analysis consisted of six aggregated categories: Plane
Type, Plane Fuel, Left Arrow, Right Arrow, Other Levels, and Remaining.
For the move unit-task, we expected that the two categories, Plane Fuel and
Plane Type, were relevant, while the other four categories, Left Arrow, Right
Arrow, Other Levels, and Remaining, were not.

Figure 17a plots the mean of the total time spent fixating in the six aggre-
gated regions and their best fitting power function fits with the exponent
constrained to 1.329. The overall χ2 measure of fit is 95.029, which is not
significant with 96 degrees of freedom. Consistent with our hypothesis, much
of the speed-up came from the reduction in the time spent fixating on task-
irrelevant regions (i.e., Left Arrow, Right Arrow, Other Levels, and Re-
maining). But for the two task-relevant regions, only the time spent fixating
on the Plane Type region remains relatively unchanging, while the time spent
on the Plane Fuel seems to be reduced with practice.
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(a)

FIG. 16. (a) The mean fixation duration per unit-task in task-relevant and task-irrelevant
regions during land unit-task and (b) a graphical representation of the distribution of attention
over the screen during a land unit-task at the end of the experiment.

To get a sense for the significance of the reductions, we fitted power func-
tions to each participant to get a separate scale parameter for each person,
again holding the exponent at 1.329. We then performed t-tests to determine
which scale factors were significantly greater than 0. As we expected, they
were all significant for the task-irrelevant regions: Left Arrow, t(9) 5 5.062,
p , .001; Right Arrow, t (9) 5 4.776, p , .001; Other Levels, t(9) 5 2.891,
p , .01; and Remaining, t (9) 5 2.396, p , .05. And, as expected, the Plane
Type region was not significant, t(9) 5 0.416, p . .1. Again, contrary to
our initial expectation, the Plane Fuel region was significant: Plane Fuel,
t(9) 5 3.726, p , .01, indicating a significant reduction in total fixations
in the Plane Fuel region. However, as we have explained previously, the
monitoring of the fuel levels is important only if one is slow and is in danger
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(b)

FIG. 16—Continued

of crashing planes or getting low fuel-level penalties. Since our participants are
fast to begin with, the fuel level is much less important for their performance.

Figure 17b graphically illustrates the distribution of attention across the
screen after participants have become skilled. In Fig. 17b, we examine the
distribution of attention across the task screen while performing a move unit-
task from hold-level 2 to hold-level 1 after they have become skilled in the
KA-ATC task. As before, the numbers in the regions represent the mean
amount of time people fixate in those regions per square degree of visual
angle during the last three trials (i.e., Trials 16–18). The grayscales represent
visually the amount of time spent in a region relative to the maximum time
spent in a region. Hence for Fig. 17b, the grayscales were scaled relative to
the 68 ms per square degree of visual angle spent in right-arrow column in
hold-level 1. As can be seen, people spend most of their time in the regions
associated with hold-level 2 and hold-level 1, the source and the destination
levels for the move unit-task that is being plotted.

Overall, as people become more skilled, they appear to be reducing the
time they fixate on all the task-irrelevant regions while maintaining the
amount of time spent on the task-relevant regions in the move unit-task.
Curiously, while the reduction in the time spent on the Right Arrow region
is significant, the asymptote is still quite high, at over 800 ms and as Fig.
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(a)

FIG. 17. (a) The mean fixation duration per unit-task in task-relevant and task-irrelevant
regions during move unit-task and (b) a graphical representation of the distribution of attention
over the screen during a move unit-task at the end of the experiment.

17b illustrates, it receives the most concentrated visual attention. Clearly,
people still feel the need to track the arrow as they move it down to the
location of the hold-position for the plane to be moved into, even as they
become skilled in the task.

Queue unit-task. For the queue unit-task, we first distinguish between task-
relevant and task-irrelevant hold-levels. Specifically, we assume that the tar-
get hold-level for the queue unit-task is relevant and the other two remaining
hold-levels are irrelevant. We aggregated all the fixations on the left- and
the right-arrow columns in the target hold-level into the category Arrows
and aggregated all fixations on the plane-type and the plane-fuel columns in
the target hold-level into the category Type&Fuel. All the fixations in nontar-
get hold levels were aggregated into the category Other Levels. In addition,
we aggregated fixations to the queue into the category Queue. We aggregated
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(b)

FIG. 17—Continued

the remaining on-screen fixations into the category Other Regions and the
remaining off-screen fixations into the category Off Screen. Hence we were
left with six categories as follows: Type&Fuel, Arrows, Other Levels, Queue,
Other Regions, and Off Screen. Of these six categories, we hypothesized that
only the Type&Fuel region would be task-relevant.

Figure 18a plots the mean of the total time spent fixating in the six aggre-
gated regions (Type&Fuel, Arrows, Other Levels, Queue, Other Regions,
and Off Screen) and their best fitting power functions with the exponent
constrained to 1.329. The overall χ2 measure of fit is 106.321, with 96 de-
grees of freedom, which is not significant. Consistent with our hypothesis,
much of the speed-up comes from the reduction in the time spent fixating
on task-irrelevant regions (i.e., Arrows, Other Levels, Queue, Other Regions,
and Off Screen), whereas the time spent fixating on the task-relevant region
(i.e., Type&Fuel) remains relatively unchanged. The Queue region provides
a remarkably clear example of a reduction of fixations on a task-irrelevant
region. As can be seen, people discover rather quickly that the Queue region
is irrelevant and basically do not look there after Trial 1.

To get a sense for the significance of the reductions of fixations, we fitted
power functions to each participant to get a separate scale parameter for each
person, again holding the exponent at 1.329. We then performed t-tests to
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(a)

FIG. 18. (a) The mean fixation duration per unit-task in task-relevant and task-irrelevant
regions during queue unit-task and (b) a graphical representation of the distribution of attention
over the screen during a queue unit-task at the end of the experiment.

determine which scale factors were significantly greater than 0. As we ex-
pected, they were all significant for the task-irrelevant regions: Arrows, t(9) 5
3.760, p , .01; Other Levels, t (9) 5 2.643, p , .05; Queue, t (9) 5 4.826,
p , .001; Other Regions, t (9) 5 3.954, p , .01; and Off Screen, t (9) 5
3.505, p , .01. And, as expected, the task-relevant region, Type&Fuel, was
not significant, t (9) 5 1.466, p . .05. Again, as people become more skilled,
it appears they reduce the amount of time spent on the task-irrelevant regions
while maintaining the amount of the time spent on the task-relevant region.

Figure 18b graphically illustrates the distribution of attention over the
screen after participants have become skilled. As before, the numbers in the
regions represent the mean amount of time people fixate in those regions
per square of visual angle during the last three trials (i.e., Trials 16–18). The
grayscales represent visually the amount of time spent in a region relative
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(b)

FIG. 18—Continued

to the maximum time spent in a region. Hence for Fig. 18b, the grayscales
were scaled relative to the 17 ms per square of visual angle spent in the right-
arrow column in hold-level 1. As can be seen, people spend the majority of
their time in hold-level 1, the target hold-level for the queue unit-task. How-
ever, they still spend a significant amount of time in hold-level 2. There may
be several reasons why people do this. First, the queue unit-task may have
been chosen after considering planes in hold-level 2. That is, after consider-
ing planes in hold-level 1 and hold-level 2, they ultimately chose to bring
a plane from the queue into hold-level 1. Second, as they perform the queue
unit-task, they may be planning for future unit-tasks that involve hold-level
2. And third, some fixations that were attributed to hold-level 2 may actually
be fixations to the upper hold-position in hold-level 1. This is because hold-
level 1 and hold-level 2 are right next to each other. Regardless, the point
here is that the majority of fixations during a queue unit-task to hold-level
1 are to the regions associated with hold-level 1.

Summary

Clearly, people attend more and more to the task-relevant regions while
learning to ignore the task-irrelevant regions. Figure 19 provides a summary
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FIG. 19. The mean fixation times in task-relevant and task-irrelevant regions per plane
landed in a trial.

of this. In Figure 19, we have classified the fixations to the plane-fuel and
plane-type in the hold-level(s) relevant to the three unit-tasks and the fixa-
tions on the runways during the land unit-task as Task-Relevant. We classi-
fied all the remaining fixations as Task-Irrelevant. That is, we have aggre-
gated all the fixations classified as task-relevant for the three unit-tasks into
a single category, Task-Relevant, while aggregating all the fixations classi-
fied as task-irrelevant for the three unit-tasks into a single category, Task-
Irrelevant. We then calculated the amount of time spent in these two catego-
ries per plane landed.

As can be seen in Fig. 19, people clearly show a much larger reduction
in the time spent fixating on the Task-Irrelevant regions relative to the Task-
Relevant regions. Note that there is still some reduction of time spent in the
Task-Relevant region. This is expected since there is no guarantee that all
fixations in these regions are to task-relevant information. In addition, the
fitted power function for the Task-Irrelevant category is going down to a
nonzero asymptote of 3453 ms. One possible reason for the nonzero asymp-
tote is that some information in the regions that we have aggregated into
the Task-Irrelevant category is actually task-relevant, such as the need to
occasionally monitor the weather information. Also, it is possible that people
may be seeking information to plan for the next unit-task while performing
the current one. On the other hand, the non-zero asymptote may also be a
consequence of the structure of the task. Specifically, since planes take 15 s
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to taxi down a runway and since there are only two runways available, it is
difficult to land planes faster than one every 7.5 s. The time for successful
landings on Trial 18 (summing up the Task-Relevant and the Task-Irrelevant
latencies from Figs. 16a–18a) is approximately 6.26 s. The reasons why this
time can be below 7.5 s are that (a) there are some unsuccessful unit-tasks
that we have not entered into our analysis and (b) people can occasionally
have planes on more than two runways when the wind direction changes.
Regardless, the important observation here is that people reach the point
where it is no longer possible for them to perform faster because of the
limitation on performance imposed by the task environment, i.e., when both
runways are occupied. During these idle times, they have time on their hands
and their eyes may wander to irrelevant portions of the screen.

While idle time may explain why people are looking at irrelevant regions
at the end of the experiment, it does not explain why they are spending 10 s
looking at these regions at Trial 1. There are at least two possible reasons.
First, at the beginning, people may not necessarily know where the relevant
information is, and they may be searching the screen for the relevant informa-
tion. Second, they may be trying to decide what to do next, e.g., considering
the possibility of moving a plane between hold-levels or getting a plane from
the queue before finally deciding to land a plane. With practice, however,
they learn a policy for what to do next without extensively assessing various
possibilities.

Other learning trends reflect things more specific than just learning where
the information is on the screen and what to do next. We note four as follows:

1. In all three unit-tasks, people showed marked reduction in monitoring
the arrow movements. This reflects a switch from monitoring the individual
arrow movements to a process of issuing multiple key presses and only moni-
toring their effect. However, participants still do substantial monitoring of
the arrow movements at the end of the experiment.

2. Even though we did not predict it on the basis of task analysis, all three
unit-tasks show some reduction of fixations on the fuel level. The fuel level
is important early on, e.g., as a method for prioritizing which plane to land
next, when people are performing slowly and are in danger of suffering pen-
alties for low fuel or crashing the plane. However, as they become more
proficient, a vigilant monitoring of the fuel level of the planes becomes much
less critical, since the danger of low fuel penalties are minimal.

3. Initially, when people are learning to bring a plane from the queue,
they fixate on the queue to check that there is a plane available. However,
they quickly learn that there are always planes in the queue and that checking
the queue is unnecessary (Fig. 18a).

4. Figure 18a also illustrates a dramatic reduction in off-screen fixations
for entering planes from the queues. We assume that people are learning the
location of the F1 key with practice and do not have to visually guide the
pressing of this key.
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CONCLUSIONS

The analyses we have reported generally support the view that underlying
the improvement in the performance of the Kanfer–Ackerman Air Traffic
Controller Task is a power-law speed-up of performance of the unit-tasks
and that the improvement on these unit-tasks can be decomposed into im-
provements on simple actions. In this article we showed that, for both the
original Ackerman data and our data, people could conceivably be eliminat-
ing all cognitive time and simply spending the time necessary to execute the
keystrokes. In our experiment, we showed that much of this cognitive time
consisted of fixation time and that the reduction in the cognitive time in-
volved the reduction in fixations to task-irrelevant information on the screen.
Participants apparently move to a point where their speed at doing the task
is largely determined by the time needed to encode the information, although
they appeared to have time to spare to engage in some irrelevant fixations.

These two keystroke and eye-movement characterizations might at first
seem to be at odds. What is the nature of the residual time on the task—to
execute keystrokes or attend to needed information? These two characteriza-
tions can be reconciled by realizing that the task poses perceptual, motor,
and cognitive demands on people. It is possible to engage in cognitive, per-
ceptual, and motor activities in parallel but have each of these streams be
serial within itself. That is, at any point in time we can visually attend to
only one thing, such as performing a single action or engaging in a single
line of thought. The notion that these three streams are serial within them-
selves but run in parallel was introduced by the CPM GOMS model (Gray,
John, & Atwood, 1993) and has been adopted by ACT-R/PM (Byrne &
Anderson, 1998). It is also found in EPIC (Meyer & Kieras, 1997), except
that EPIC does not have the constraint of serial cognitive processing. At any
point in time, one of these three processes, perceptual-attentional, motor, or
cognitive, can be on the critical path with other processes waiting for its
outcome. It is also possible for the task environment to come to be on the
critical path, as when a person is waiting for a runway to clear. There is
relatively little learning of the motor component but we postulate consider-
able learning of the perceptual and the cognitive components. With practice,
the perceptual encoding time reduces to a nonzero minimum even as the
motor execution has a nonzero minimum. We speculate that with enough
practice non perceptual cognitive activities would almost totally disappear
from the critical path.

Our eye-movement analysis raised the question concerning the degree to
which the cognitive component is on the critical path at the beginning of
the task. The speed-up in this task can be conceived of as entirely eliminating
unnecessary encoding time. The fact that 85% of the speed-up involves re-
duction of fixations in irrelevant regions is consistent with this view. While
we think the changes in the fixation pattern causes the speed-up, it is worth
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considering an alternative possibility, which is that the speed-up causes the
changes in the fixation pattern. According to this argument, the cognitive
system is typically on the critical path, and while people are engaged in
thinking about the task, their eyes are free to wander about the screen and
elsewhere. As the irrelevant regions of the screen are the larger fraction of
the screen, a larger portion of the speed-up would be attributed to those
regions. This does not indicate that people are learning not to look at these
regions.

While there may be some truth in this alternative explanation, it cannot
be the entire story, nor do we think that it is even the majority of the story.
First, it is incapable of explaining some of the specific changes in fixations,
such as the large reduction in fixations to the queue region. Moreover, if it
were the majority of the explanation, it would predict that comparably sized
regions would show comparable speed-up, since they would be just as likely
to be fixated in the eye’s random wanderings. However, as we have demon-
strated, there were almost no reduction in fixations to the plane-type regions
in the relevant levels, while there were larger reductions in the fuel area and
even larger reductions in the regions of the arrows despite the fact that these
regions were of comparable physical size. Thus, people disproportionately
reduce their fixations to regions that are less task-relevant.

If the majority of the improvement in this task is due to more efficient
attention, then there remains the issue of the underlying mechanism that
drives this attentional learning process. When asked what they learned, peo-
ple reported their general strategy for doing the task, such as entering planes
only into hold-level 1. Additionally, they reported some things that seem
related to their improvement, such as not having to worry about planes in
the queue and not having to worry about the fuel level of the planes. On the
other hand, they did not report that they monitored the arrow movement less
or that they learned where the F1 key was, although they might have admitted
to this if queried. They might even not be aware of the fact that they spent
less time looking at irrelevant regions of the screen. Thus, much of the learn-
ing that leads to expertise at this task is not something about which people
are particularly aware. It occurs at a lower level than the one that people
think about when trying to understand or explain their performance in the
task. In this sense, we think the task is representative of many skills in which
people gradually acquire fluency. That is, the learning involves attentional
shifts of which the participants are not even aware.

To return to the different types of skill-acquisition theories described in
the introduction, we suspect that different parts of the improvement in the
task are due to different mechanisms. People change their strategy for per-
forming the task, such as by not checking the queue or the weather condi-
tions. This would be an instance of a procedure selection model. They also
strengthen their memories for the location of critical information and task
procedures. This would be an instance of a strengthening model. Addition-
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ally, they also appear to form macro operators, such as by hitting four down
arrow keys, which means that individual keystrokes no longer have to be
selected. This would be an instance of a procedure transformation model.
Thus, this research does not select among the types of theories of skill acqui-
sition, and we are inclined to believe that multiple learning mechanisms are
at work. Rather, this research indicates that skill acquisition mechanisms
work; they achieve their effect by reducing the time needed to perform the
individual steps of the task.

At the beginning of this article we defined ‘‘consistent learning’’ as the
criterion for accepting the reducibility hypothesis. We think our analysis of
the data in this task certainly satisfies the criterion of consistent learning.
Not only did we show that all the individual keystrokes speed up without
discontinuities, we also showed that to a very good approximation they speed
up with a common exponent and common asymptote. Both of these parame-
ter constraints tells us something important. The exponent basically captures
the shape of the learning curve. Thus, to the extent that these curves shared
the same exponent we have evidence that learning is happening at the same
rate for each step. We should point out that a theory like ACT-R (Anderson &
Lebiere, 1998), which attributes such speed-ups to basic strengthening pro-
cesses in the architecture, would predict such a common exponent. Second,
to a good approximation the learning curves appear to share a common
asymptote and this asymptote takes on the value of the minimum keying
time. This suggests that the learning is taking subjects to a point where the
motor component is the rate-limiting aspect of their performance. All of the
cognitive and attentional time, represented by the scale factors, is eliminated.
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