
University of Groningen
Cognitive Science and Engineering
prepublications

author C. Lebiere, D. Wallach & N.A. Taatgen
title Implicit and explicit learning in ACT-R
status accepted for the Second European Conference on Cognitive Modelling

(ECCM 98)

prepublication TCW-1998-1

Implicit and explicit learning in A CT-R

Christian Lebiere
Department of Psychology
Carnegie Mellon University

Pittsburgh, USA
cl+@andrew.cmu.edu

Dieter Wallach
Department of Psychology
University of the Saarland

Saarbrücken, Germany
dwallach@cops.uni-sb.de

Niels Taatgen
Department of cognitive
science and engineering
University of Groningen
Groningen, Netherlands
n.a.taatgen@bcn.rug.nl

ABSTRACT
A useful way to explain the notions of implicit and
explicit learning in ACT-R is to define implicit learning
as learning by ACT-R's learning mechanisms, and explicit
learning as the results of learning goals. This idea
complies with the usual notion of implicit learning as
unconscious and always active and explicit learning as
intentional and conscious. Two models will be discussed
to illustrate this point. First a model of a classical
implicit memory task, the SUGARFACTORY scenario by
Berry & Broadbent (1984) will be discussed, to show
how ACT-R can model implicit learning. The second
model is of the so-called Fincham task (Anderson &
Fincham, 1994), and exhibits both implicit and explicit
learning.

Keywords
ACT-R, implicit learning, explicit learning, skill
acquisition, instance theory.

INTRODUCTION TO ACT-R
Knowledge Representation
ACT-R (Anderson, 1993; Anderson & Lebiere, in press) is
a hybrid production system architecture for cognitive
modeling. It is a hybrid architecture because it works at
two interdependent levels: a symbolic level and a
subsymbolic level. Each level is divided into a procedural
and declarative component.

Symbolic Level
Declarative knowledge consists of chunks. Chunk
structures are composed of a number of labeled slots, each
of which can hold a value which can also be another
chunk. Each chunk is an instance of a particular chunk
type, which defines the name and number of slots.
Procedural knowledge consists of productions. A
production is a condition-action pair, which specifies the
action to be taken if a particular condition is satisfied.

ACT-R is a goal-directed architecture. At any time, a goal
is selected as the current focus of attention. Goals are
organized on the goal stack, on which a goal can be stored
(pushed) and later restored (popped). ACT-R operates in
discrete cycles. At the start of each cycle, each production
is matched against the state of the current goal. The
productions that match enter the conflict set. A
production is selected from the conflict set. The rest of the
production condition can specify a number of chunk
retrievals from declarative memory. If the retrievals are
not successful, then the next production in the conflict set
is selected. If the retrievals are successful, then the
production action is executed. The action can modify the
current goal, push it on the stack or pop it and restore a
previous goal.

Subsymbolic Level
At the symbolic level, ACT-R operates in discrete,
deterministic steps, but the subsymbolic level provides a
measure of continuity and randomness. The previous
section left two points unspecified: how are productions
ordered in the conflict set, and if several chunks match a
particular declarative retrieval, which is selected?

The productions are selected in order of decreasing
expected utility. The current goal is assigned a value, or
gain, equal to the worth of successfully achieving it. To
each production is associated the probability and cost of
achieving the goal to which it applies. The expected
utility of a production applied to a goal is equal to the
gain of the goal times the probability of success of the
production, minus its cost. Noise is also added to the
expected utility of a production, making production
selection stochastic.

If several chunks satisfy a declarative retrieval, then the
most active one is retrieved. The activation of a chunk is
the sum of a base-level activation and an associative
activation. The associative activation is spread from the
sources of activation, which are the components of the
current goal, to all related chunks in memory. Noise is
added to each activation, making the retrieval of chunks
stochastic. If no chunk activation reaches a retrieval
threshold, then the retrieval fails. Furthermore, chunks
which only partially match the retrieval pattern can also
be retrieved, but their activation level will be penalized by
an amount proportional to the degree of mismatch
between the retrieval pattern and the actual chunk values.

Finally, the time to retrieve a chunk from memory is an
exponentially decreasing function of its activation level.
Therefore, although ACT-R operates in discrete cycles, the
latency of each cycle, which is equal to the sum of the
time to perform all the chunk retrievals plus the action
time of the successful production, is a continuous
quantity. Whereas the specification of an ACT-R model at
the symbolic level has a precise, algorithmic quality, its
operation at the subsymbolic level matches the
stochasticity and continuity of human performance.

Learning
The previous section describes the performance of ACT-R
assuming a certain state of knowledge. However, to
provide an adequate model of human cognition, it is also
necessary to specify how that knowledge was acquired. In
ACT-R, knowledge is learned to adapt the system to the
structure of the environment (Anderson, 1990; Anderson
& Schooler, 1991).

Symbolic Learning
When a goal is popped, it becomes a chunk in declarative
memory. That (and the encoding of environmental

stimuli) is the only source of declarative knowledge in
ACT-R. The chunk resulting from a goal represents the
statement of the task addressed by the goal and usually its
solution. Therefore, the next time that task arises, its
solution, depending upon the activation of the chunk,
might be directly retrieved from declarative memory
instead of being recomputed anew.

Productions are created from a special type of chunk called
dependency. When a goal is solved through a complex
process, a dependency goal can be created to understand
how it was solved (e.g. which fact was retrieved or which
subgoal was set). When that dependency goal is itself
popped, a production is automatically compiled to
embody the solution process. Thus the next time a
similar goal arises, the production might be available to
solve it in a single step instead of a complex process.

Symbolic knowledge is learned to represent in a single,
discrete structure (chunk or production) the results of a
complex process. Subsymbolic knowledge is adjusted
according to Bayesian formulas to make more available
those structures which prove most useful.

Subsymbolic Learning
When a production is used to solve a goal, its probability
and cost parameters are updated to reflect that experience.
If the goal was successfully solved, then the production
probability is increased. Otherwise, it is decreased.
Similarly, the production cost is updated to reflect the
actual cost of solving that goal. Declarative parameters
are adjusted in the same way. When a chunk is retrieved,
its base-level activation is increased. The strength of
association between the current sources and the chunk is
also increased.

Subsymbolic knowledge does not result in new conscious
knowledge, but instead makes the existing symbolic
knowledge more available. Chunks which are often used
become more active, and thus can be retrieved faster and
more reliably. Productions which are more likely to lead
to a solution and/or at a lower cost will have a higher
expected utility, and thus are more likely to be selected
during conflict resolution.

IMPLICIT LEARNING IN THE SUGARFACTORY
TASK
Introduction
In contrast to rule-based approaches that conceptualize
skill acquisition as learning of abstract rules, theories of
instance-based learning argue that the formation of skills
can be understood in terms of the storage and deployment
of specific episodes or instances (Logan, 1988; 1990).
According to this view, abstraction is not an active
process that results in the acquisition of generalized rules,
but that rule-like behaviour emerges from the way specific
instances are encoded, retrieved and deployed in problem
solving. While ACT-R has traditionally been associated
with a view of learning as the acquisition of abstract
production rules (Anderson, 1983; 1993), we present a
simple ACT-R model that learns to operate a dynamic
system based on the retrieval and deployment of specific
instances (i.e. chunks) which encode episodes experienced
during system control. It is demonstrated that the ACT-R
approach can explain available data as well as an
alternative model that is shown to be based on critical
assumptions.

The Task
Berry & Broadbent (1984) used the computer-simulated
scenario SUGARFACTORY to investigate how subjects
learn to operate complex systems. SUGARFACTORY is a
dynamic system in which participants are supposed to
control the sugar production sp by determining the
number of workers w employed in a ficticious factory.
Unbeknown to the participants, the behavior of
SUGARFACTORY is governed by the following equation:

spt = 2 * wt - spt-1

The number entered for the workers w can be varied in 12
discrete steps 1≤w≤12, while the sugar production
changes discretely between 1≤sp≤12. To allow for a more
realistic interpretation of w as the number of workers and
sp as tons of sugar, these values are multiplied in the
actual computer simulation by 100 and 1000,
respectively. If the result according to the equation is less
than 1000, sp is simply set to 1000. Similarly, a result
greater than 12000 leads to an output of 12000. Finally, a
random component of ± 1000 is added in 2/3 of all trials
to the result that follows from the equation stated above.
Participants are given the goal to produce a target value of
9000 tons of sugar on each of a number of trials.

The models
Based on Logan’s instance theory (1988; 1990) Dienes &
Fahey (1995) developed a computational model to account
for the data they gathered in an experiment using the
SUGARFACTORY scenario. According to instance theory,
encoding and retrieval are intimately linked through
attention: encoding a stimulus is an unavoidable
consequence of attention, and retrieving what is known
about a stimulus is also an obligatory consequence of
attention. Logan’s theory postulates that each encounter
of a stimulus is encoded, stored and retrieved using a
separate memory trace. These separate memory traces
accumulate with experience and lead to a „gradual
transition from algorithmic processing to memory-based
processing“ (Logan, 1988, p. 493). In the following, we
contrast the Dienes & Fahey (1995) model (D&S model)
with an alternative instance-based ACT-R model and
discuss their theoretical and empirical adequacy.

Algorithmic Processing
Both models assume some algorithmic knowledge prior to
the availability of instances that could be retrieved to
solve a problem. Dienes & Fahey (1995, p. 862) observed
that 86% of the first ten input values that subjects enter
into SUGARFACTORY can be explained by the following
rules:

(1) If the sugar production is below (above) target, then
enter a workforce that is different from the previous
input by an amount of 0, +100, +200 (0, -100, -200).

(2) For the very first trial, enter a work force of 700, 800
or 900.

(3) If the sugar production is on target, then respond with
a workforce that is different from the previous one by
an amount of -100, 0, or +100 with equal probability.

While this algorithmic knowledge is encoded in the D&F
model by a constant number of prior instances that could
be retrieved in any situation, ACT-R uses simple
production rules to represent this rule-like knowledge. The
number of prior instances encoded is a free parameter in

the D&S model that was fixed to give a good fit to the
data reported below. There is no equivalent parameter in
the ACT-R model.

Storing Instances
Logan’s instance theory predicts that every encounter of a
stimulus is stored. The D&F model, however, does only
store instances for those situations, in which an action
successfully leads to the target; all other situations are
postulated to be forgotten immediately by the model.
Moreover, the D&S model uses a „loose“ definition of the
target that was unavailable to subjects: While subjects
were supposed to produce 9000 tons of sugar as the target
state in the experiment, a loose scoring scheme was used
to determine the performance of the subjects. Because of
the random component involved in the SUGARFACTORY,
a trial was counted as being on target if it resulted in a
sugar production of 9000 tons with a tolerance of ±1000.
The D&M model stores only instances that are successful
in this loose sense and thus uses information about a
range of target states that subjects were not aware of.
ACT-R, on the other hand, encodes every situation,
irrespective of its result. The following chunk is an
example for an instance acquired by the ACT-R model as a
restored goal.

(transition1239
 ISA transition
 STATE 3000
 WORKER 8
 PRODUCTION 12000)

The chunk encodes a situation in which an input of 8
workers, given a current production of 3000 tons, led to
subsequent sugar production of 12000 tons. While the
model developed by Dienes & Fahey (1995) stores
multiple copies of instances, ACT-R does not dublicate
identical chunks.

Retrieving instances
In the D&F model each stored instance „relevant“ to a
current situation races against others and against prior
instances representing algorithmic knowledge; the first
instance after a finishing post determines the action of the
model. An instance encoding a situation is regarded to be
„relevant“, if it either matches the current situation
exactly, or if it is within the loose range discussed above.
As with the storage of instances, memory retrieval in the
D&F model is again based on specific information not
available to subjects. Retrieval in the ACT-R model, on
the other hand, is governed by similarity matches between

a situation currently present and encodings of others
experienced in the past (see Buchner, Funke & Berry,
1995 for a similar position in explaining the performance
of subjects operating SUGARFACTORY). On each trial, a
memory search is initiated based on the current situation
and the target state ‘9000 tons’ as cues in order to retrieve
an appropriate intervention or an intervention that belongs
to a similar situation. The production rule retrieve-
episode (figure 1) is used to model the memory
retrieval of chunks based on their activation level.
Instances which only partially match the retrieval pattern,
i.e. which do not correspond exactly to the present
situation, will be penalized by lowering their activation
proportional to the degree of mismatch. As a parameter of
the ACT-R model, normally distributed activation noise is
introduced to allow for some stochasticity in memory
retrieval.

As figure 2 shows, the use of instances over the initial
algorithmic knowledge increases over time, resulting in
the gradual transition from algorithmic to memory-based
processing as postulated by Logan (1988, p. 493).

Theoretical Evaluation
While both models of instance-based learning share some

striking similarities, the theoretical comparison has
shown that the D&F-model makes stronger assumptions
with respect to the storage and the retrieval of instances
that can hardly be justified. Dienes & Fahey (1995) found
out that these critical assumptions are essential to the
performance of the D&F model(p. 856f):

 „The importance to the modeling of assuming that only
correct situations were stored was tested by determining
the performance of the model when it stored all instances.
… This model could not perform the task as well as parti-
cipants: The irrelevant workforce situations provided too
much noise by proscribing responses that were in fact
appropriate … If instances entered the race only if they
exactly matched the current situation, then for the same
level of learning as participants, concordances were
significantly greater than those of participants“.

Since the ACT-R model does not need to postulate those
critical assumptions, this model can be regarded as the
more parsimonious one, demonstrating how instance-
based learning can be captured by the mechanisms
provided by a unified theory of cognition.

 (GOALCHUNK
 isa transition
 state 2000

 production 9000
 worker nil)

 (Episode007
 isa transition
 state 1000

 production 8000
 worker 5)

Match

Partial Match

(p retrieve-episode

 =goal>
 isa transistion
 state =state

 production =production

 =episode>
 isa transition
 state =state

 production =production
 worker =worker

==>
 goal>
 worker =worker)
)

Figure 1. Matching process in the Sugar Factory model

806040200
0.0

0.2

0.4

0.6

0.8

1.0

Trials

u
se

 o
f

in
st

a
n

ce
s

(%
)

Figure 2. Relative use of instance retrieval per trial

Empirical Evaluation
While the theoretical analysis of the assumptions
underlying the two models has favoured the ACT-R
approach, we will briefly discuss the empirical success of
the models with respect to empirical data as reported by
Dienes & Fahey (1995). Figure 3 shows the trials on
target when controlling SUGARFACTORY over two
phases, consisting of 40 trials each. ACT-R slightly
overpredicts the performance found in the first phase,
while the D&F model slightly underpredicts the
performance of the subjects in the second phase. Since
both models seem to explain the data equally well, we
cannot favour one over the other.

Figure 4 shows the performance of the models in
predicting the percentage of times („Concordance“) that
the subjects gave the same (correct or wrong) response in
a questionaire as they did when controlling
SUGARFACTORY. Again, both models seem to do a
similar good job in explaining the data, with no model
being clearly superior. Although space limitations do not
allow for a detailed discussion, the picture illustrated by
these two empirical comparisons remains the same after

several additional model comparision tests. We are
currently running an experiment, exploring different
predictions of the models in more details.

Conclusion
We discussed and compared a simple ACT-R model to an
approach based on Logan’s instance theory with respect to
their ability to modeling the control of a dynamic system.
While both models were similar in their empirical
predictions, the ACT-R model was found to require fewer
assumptions and is thus preferred over the model proposed
by Dienes & Fahey (1995). Generally, ACT-R’s
integration of an activation-based retrieval process with a
partial matcher seems to be a very promissing starting
point for the development of an ACT-R theory of
instance-based learning and problem solving.

IMPLICIT AND EXPLICIT LEARNIN G IN THE
FINCHAM TASK
The learning mechanisms in ACT-R are all quite basic,
and can be used in several different ways to achieve
different results. The idea of a learning mechanism as an
integral part of an architecture has properties in common
with the psychological notion of implicit learning. Both
types of learning are considered to be always at work and
not susceptible to change due to development or great
variation due to individual differences. One of the defining
properties of implicit learning, the fact that it is not a
conscious process, is harder to operationalize within the
context of an architecture for cognition. The closest you
can get in an architecture is the notion that implicit
learning is not guided by learning intentions, but is rather
a by-product of normal processing. The SUGARFACTORY
model discussed in the previous section is an example of
implicit learning, since ACT-R uses old goals that are
stored unintentionally to improve its behavior.

Explicit learning, on the other hand, is tied to intentions,
or goals in ACR-R terms. Since there are no learning
mechanisms that operate on goals, explicit learning can
best be explained by a set of learned learning strategies.
An example of a learning strategy to improve
memorization of facts is using rehearsal to improve base-
level learning. Base-level learning increases the activation
of a chunk each time it is retrieved. If this increase of
activation through natural use is not enough for the
current goals, rehearsal can be used to speed up the
process. By repeating a fact a number of times, its base-
level activation can be boosted intentionally.

In this section we wil l discuss a paradigm for skill
learning that involves both an implicit and an explicit
strategy. The implicit strategy corresponds to instance-
based learning, and the explicit strategy to rule-learning.
Figure 5 shows an overview of this paradigm. First we
assume that a participant has some initial method or
algorithm to solve the problem. Generally this method
will be time-consuming or inaccurate. Each time an
example of the problem is solved by this method, an
instance is learned. In ACT-R terms an instance is just a
goal that is popped from the goal stack and is stored in
declarative memory. Since this by-product of performance
is unintentional, it can be considered as implicit learning.

0

5

10

15

20

25

ACT-R D & FFFExperiment

Trial 41-80

Trial 1-4

Trials
on

target

Figure 3. Results of the experiment, ACT-R model and
D&F model

1

C
o

n
co

rd
a

n
ce

baseline correct wrong
0

.5

.25

.75

Problem solving vs. questionaire

 ACT-R

 Experiment

 D & F

Figure 4. Concordances for the experiment and both
models

Other types of learning require a more active attitude from
the participant. If the initial method is too time
consuming, the participant may try to derive an re-
representation of the information needed for the task to
increase efficiency, which we wil l call, using Johnson-
Laird’s (1983) terminology, a mental model. If the initial
method leads to a large number of errors, the participant
may try to deduce or guess new relationships in the task
in order to increase performance. The next step, from
mental model to production rule, can only be made if the
mental model is simple enough to convert to a production
rule. Both the application of mental models and firing
new production rules wil l create new instances. So
regardless of what is going on due to explicit learning,
implicit learning keeps accumulating knowledge.

So, if we have that many ways of learning, what type of
learning will we witness in a particular experiment? To be
able to answer this question we go back to the principle
of rational analysis. According to this principle, we will
principally witness that type of learning that wil l lead to
the largest increase in performance. If we have task in
which it is very hard to discover relationships or mental
models, learning can probably be characterized primarily
by implicit instance learning. Tasks in which there are
too many instances too learn, but in which relationships
are more obvious, wil l probably be better explainable by
rule and abstraction learning. The SUGARFACTORY task
is an example in which it is very hard to discover the
rules that govern the system due to the influence of the
previous sugar production and random factor in the
output.

The Fincham Task
An example of a task in which both rule learning and
instance learning are viable strategies is described by
Anderson & Fincham (1994). In this task, participants
first have to memorize a number of facts. These facts are
in the form of

“Hockey was played on Saturday at 3 and then on Monday
at 1.”

We wil l refer to these facts as “sport-facts” to prevent
confusion with facts and rules in the model. A sport-fact
contains a unique sport and two events, each of which
consists of a day of the week and a time. After having
memorized these facts, participants were told the facts are
really rules about the time relationships between the two
events. So in this case “Hockey” means you have to add
two to the day, and subtract two from the time. In the
subsequent experiment, participants were asked to predict
the second event, given a sport and a first event, or predict
the first event, given the sport and the second event. So
participants had to answer questions like: “I f the first
game of hockey was Wednesday at 8, when was the
second game?” In this paradigm, it is possible to

investigate evidence for both rule-based learning and
instance-based learning. Directional asymmetry, evidence
for rule-based learning, can be tested for by first training a
sport-fact in one direction (by predicting the second event
using the sport and the first event), and then reverse the
direction (by predicting the first event using the sport and
the second event) and look how performance in the reverse
direction relates to performance on the trained direction. If
the performance is worse in the reverse direction, this is
evidence for the use of rules. Evidence for instance
learning can be gained by presenting specific examples
more often than other examples. Better performance on
these specific examples would indicate instance learning.
Anderson & Fincham (1994), and later Anderson,
Fincham & Douglass (1997) performed five variations on
this basic experiment. The basic findings we wil l focus
on are as follows:

• In general, reactions times improve according to the
power law of practice, starting at around 35 seconds for
the first few trials and improving to around 7 seconds
at the third session.

• There is evidence for rule learning as witnessed by
directional asymmetry. However, the effect only starts
at the third or fourth session, and is relatively small.

• There is evidence for instance learning, since problems
that are repeated more often than others are solved
faster.

• Although it can not be inferred directly from the data,
participants report they use abstract versions of the
rules, for example by memorizing “Hockey day +2”
and “Hockey time -2”.

On basis of this evidence, Anderson et al. conclude that
participants use four strategies: analogy, abstraction, rule
and instance. The interesting question is what learning
processes play a role in changing strategies. Each of the
four strategies can be related to one of the learning stages
from figure 5.

The analogy strategy is the initial strategy: first the
memorized example that has the same sport as the new
trial is recalled, the relationship in this example is
determined, and this relationship is mapped on the current
trial. Analogy is not very efficient, since it consists of
many steps.

The abstraction strategy assumes the participant has
created and memorized a mental model of the sport that
corresponds to the current trial, like “Hockey day +2”.
The strategy involves retrieving and applying the
abstraction, which is easier and faster than the analogy
strategy.

The rule strategy assumes a production rule has been
learned that can fill in the answer directly. An example of
this rule is (variables are indicated by italics):

IF the goal is to find the day of the second event
the sport is hockey
and the day of the first event is day1
AND day1 plus two days equals day2

THEN put day2 in the second event slot of the goal

The rule strategy is more efficient than the abstraction
strategy, since it requires only a single step in stead of
two.

Algorithm,
initial method

Mental
model

Production
rule

Instance
Implicit learning

Explicit Learning

Figure 5. Diagram that illustrates the learning scheme
used in the Fincham-task model

The instance strategy assumes the answer can be given
using a previous example. This previous example must
be the same as the current trial. So an instance may
contain the following information:

item1434
isa instance
sport hockey
type day
left sunday
right tuesday

To use the instance strategy, it is sufficient to retrieve the
right instance. This will of course only succeed if this
instance is present in memory and is retrievable.

An ACT-R Model
We will now briefly discuss the ACT-R model of the task
and its results. A more extensive discussion can be found
in Taatgen & Wallach (in preparation). Figure 6 shows a
schematic diagram of the implementation of the four
strategies.

The analogy, abstraction and rule strategies are performed
in a subgoal, that focuses on calculating either the day or
the time. The instance strategy attempts to retrieve one of
these subgoals, and fill in the answer directly in the
topgoal. So learning instances is an implicit process in
ACT-R, since past goals are always stored in declarative
memory, an reoccurrence of the same goal just increases
the activation of that goal. Knowledge for the other two
strategies has to be acquired in an explicit fashion. An
abstract mental model of a sport is no automatic by-
product of the analogy strategy, so an explicit decision
must be made to memorize an abstraction. To learn a new
production rule in ACT-R, a special dependency structure
must be created in declarative memory, which is also an
explicit decision. In the current model, learning a new

production rule is only successful if there is already an
abstraction present in declarative memory, else it is too
difficult to collect the necessary information.

Results of the Model
In this paper we will only discuss results of the model on
the second experiment of Anderson & Fincham (1994). In
this experiment, participants had to learn eight sport-facts.
In the first three days of the experiment, four of these
sport-facts were tested in a single direction: two from left
to right and two from right to left. On each day 40 blocks
of trials were presented, in which each of the four sport-
facts was tested once. On the fourth day all eight sport-
facts were tested in both directions. On this day 10 blocks
of trials were presented, in which each of the eight sport-
facts was tested twice, once for each direction. Figure 7
shows the latencies in the first three days of the
experiment, both the data from the experiment and from
the model. The fit between the model and the data is quite
good (R2=0.94).

top goal

 calculate day
(or time)

 retrieve the
rule

 make the
analogy

 determine
relation

 apply relation

 retrieve all the
words in the
rule and pick

the ones
needed

top goal

 calculate day
(or time)

calculate day
(or time) rule

top goal

retrieve
example

(a) Analogy strategy

(c) Rule strategy

(d) Instance strategy

top goal

 calculate day
(or time)

apply relation

(b) Abstraction strategy

retrieve
abstraction

Figure 6. Overview of the four strategies in the Fincham task as modeled in ACT-R

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

Trial

L
a

te
n

cy

Data
Model

Figure 7. Latencies in experiment 1 for days 1-3

The results on day 4 can be summarized in the following
table:

Data Model

Same direction, practiced 8.9 sec 8.4 sec

Reverse direction, practiced 10.9 sec 9.3 sec

Not practiced 13 sec 16 sec

Both in the data and in the model there is a clear
directional asymmetry, since items in the practiced
direction are solved faster than reversed items. The fact
that unpracticed items are slower than the reversed items
indicates that rule learning can not be a sufficient
explanation for all of the learning in the first three days of
the experiment.

Figure 8 shows how the model uses the four strategies in
the course of the experiment. At the start of the
experiment, analogy is used most of the time, but both
the abstraction and the instance strategy gain in
importance after a few blocks of trials. The rule strategy
only appears later, and only plays a minor role during the
first day. At the start of the second day, there is a large
shift toward using rules at the expense of instances. This
can be explained by the fact that the activation of a large
portion of the instances has decayed between the two days,
so that they can not be retrieved anymore. Since only few
rules are needed for successful performance, they receive
more training on average and are less susceptible to decay.
Note that the abstraction strategy remains relatively stable
between the days since it also less susceptible to decay
than the instance strategy. This pattern is repeated at the
start of the third day, although the instance strategy looses
less ground due to more extended training of the
examples. At the start of the fourth day, the frequency of
use of the analogy strategy goes up again, since there are
no production rules for the new four sport-facts. The
abstraction strategy can take care of the reversed items
though, so in that case the expensive analogy strategy is
not needed. This explains the fact that reversed items are
still faster than completely new items.

Except for a model of this experiment, the model has
successfully modeled two other experiments as well,
using the same parameters. The following additional
phenomena could successfully be explained:

• The reaction time for examples that are repeated more
often is shorten, since instance learning is more
successful and the facts it represents have a higher
activation.

• Directional asymmetry increases between day 2 to 4,
but decreases again on day 5. The model can explain
this by the fact that by day 5 the instance strategy
starts dominating the rule strategy.

• The results of the model concur with participant’s
reports on whether they use a rule or an example to
solve a particular trial.

Conclusions
The ACT-R architecture is an ideal platform to study
implicit and explicit learning. It not only allows insights
in both types of learning separately, but, more
importantly, also in the interaction between them.

REFERENCES
Anderson, J. R. (1990). The adaptive character of

thought. Hillsdale, NJ: Erlbaum.

Anderson, J. R. (1993). Rules of the mind. Hillsdale,
NJ: Erlbaum.

Anderson, J.R. & Fincham, J.M. (1994). Acquisition of
Procedural Skills From Examples. Journal of
experimental psychology: Learning, Memory, and
Cognition, vol. 20, no. 6, 1322-1340.

Anderson, J.R. , Fincham, J.M. & Douglas, S. (1997).
The role of Examples and Rules in the Acquisition of
a Cognitive Skill. Journal of experimental
psychology: Learning, Memory, and Cognition, vol.
23, no. 4, 932-945.

Anderson, J. R. & Lebiere, C.. (in press). The atomic
components of thought. Mahwah, NJ: Erlbaum.

Anderson, J. R., & Schooler, L. J. (1991). Reflections
of the environment in memory. Psychological
Science, 2, 396-408.

Berry, D. & Broadbent, D.A. (1984). On the relationship
between task performance and associated verbalizable
knowledge. The Quarterly Journal of Experimental
Psychology, 36A, 209-231.

Buchner, A., Funke, J. & Berry, D. C. (1995). Negative
correlations between control performance and
verbalizable knowledge: Indicators for implicit
learning in process control tasks? The Quarterly
Journal of Experimental Psychology, 48A, 166-187.

Dienes, Z. & Fahey, R. (1995). Role of specific instances
in controlling a dynamic system. Journal of
Experimental Psychology: Learning, Memory, and
Cognition, 21 (4), 848-862.

Johnson-Laird, P.N. (1983). Mental Models: Towards a
Cognitive Science of Language, Inference, and
Consciousness. Cambridge, MA: Harvard University
Press.

Logan, G.D. (1988). Toward an instance theory of
automatization. Psychological Review, 95, 492-528.

Logan, G.D. (1990). Repetition priming and
automaticity: Common underlying mechanisms?
Cognitive Psychology, 22, 1-35.

Taatgen, N.A. & Wallach, D. (in preparation). Models of
rule and instance-based skill learning.

0%

25%

50%

75%

100%

da
y

1

da
y

2

da
y

3

da
y

4

P
ro

po
rt

io
n

Instance
Rule
Abstraction
Analogy

Figure 8. Strategy use in experiment 1 for days 1-4

University of Groningen
Cognitive Science and Engineering
prepublications

TCW-1997-1 L.C. Verbrugge & B. Dunin-Keplicz
A reconfiguration algorithm for the maintenance of collective commitments

TCW-1997-2 N.A. Taatgen
Explicit learning in ACT-R

TCW-1998-1 C. Lebiere, D. Wallach & N.A. Taatgen
Implicit and explicit learning in ACT-R

University of Groningen
Cognitive Science and Engineering (TCW)
Grote Kruisstraat 2/1
9712 TS Groningen
The Netherlands
+31 50 3635877 fax 3636784
http://tcw2.ppsw.rug.nl/prepublications/

