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INTRODUCTION 

This paper provides an illustration of the 
principled design of an interactive learning en- 
vironment. It provides a view of the early stages 
of this process where design, testing, and redes- 
ign are most critical. The long term goals of 
principled design are twofold: (1) to create a 
system that can be convincingly demonstrated 
as an effective and practical learning aid and (2) 
to provide a replicable account of how and why 
the system is effective. A principled design is one 
that is both theoretically guided and empiri- 
cally supported. A principled design is guided 
by a set of theoretical principles and specific 
pedagogical hypotheses (Anderson, Corbett, 
Koedinger & Pelletier, 1995: Koedinger & An- 
derson, 1993). It  is informed by user testing 
early and often. The design process is iterative: 
theory, design, test, redesign. Tests that fail lead 
first to redesign and then. if principled redesigns 
fail. to changes in the theory. It should be the 

natural expectation of the field that no Interac- 
tive Learning Environment will be fully effective 
in its initial implementations and that early 
demonstrations of limitations have a positive. 
not a negative, bearing on the value of the final 
system. The only systems immune to some 
failure are ones that ure never tested. Unfortu- 
nately, these are all too common. (For example. 
Corbett. Koedinger and Anderson (in press) 
report that only 25% of the papers at recent ITS 
conferences include any kind of empirical evalu- 
ation.) 

We describe the design of a particular kind of 
intelligent tutoring system called a cognitive 
tutor (Anderson, Corbett, Koedinger & Pelletier. 
1995). In addition to employing artificial intel- 
ligence techniques, cognitive tutors have the 
defining feature of containing a psychological 
model of the cognitive processes behind suc- 
cessful and near-successful student perform- 
ance. This cognitive model provides the core 
functionality. The cognitive model is used by a 
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technique called model tracing to provide stu- 
dents with individualized tutoring support as 
needed and in the context of problem solving 
activity. The cognitive model is also used with 
knowledge tracing to monitor students’ evolv- 
ing strengths and weaknesses and to adapt the 
selection of activities to provide maximal learn- 
ing opportunities. These features appear central 
to the demonstrated benefits of cognitive tutors. 
In comparisons with alternative instructional 
approaches, the use of cognitive tutors has been 
shown to accelerate learning by as much as 
three times, increase posttest performance by a 
standard deviation, and lead to documented 
improvement in student motivation (Anderson, 
Corbett, Koedinger, & Pelletier, 1995). 

Early cognitive tutors for mathematics in the 
domains of geometry theorem proving and cate- 
gorical word problems were criticized by mathe- 
matics educators for not addressing issues of 
current emphasis in math education reform (cf. 
NCTM standards, 1989). These systems were 
largely designed as proofsafconcept and for 
learning experiments. A large current effort is 
to apply the lessons learned from these early 
cognitive tutors to new areas of mathematics 
that are consistent with the recent curriculum 
standards of the National Council of Teachers 
of Mathematics (NCTM, 1989). We are taking a 
client-centered approach that combines our 
cognitive tutor technology and principled de- 
sign experience with the subject-matter and 
curriculum experience of local and national 
educators. We have focused on first year algebra 
at the high school level both because algebra is 
fundamental to further mathematics and sci- 
ence and because it is a critical gatekeeper to 
future success (Pelavin, 1990). 

THEORY ACT AND INDUCTIVE 
SUPPORT 

The cognitive model at the core of cognitive 
tutors is based on the ACT theory (Anderson, 
1983; 1993). The ACT theory distinguishes dec- 
larative knowledge from procedural knowledge. 
Declarative knowledge is knowledge that can be 
directly accessed including facts, concepts, pic- 

tures, and stories. It can be acquired in a number 
of ways including by instruction, by example, by 
discovery, or by derivation. Procedural knowl- 
edge is performance knowledge that cannot be 
directly accessed. It can only be acquired by 
doing, that is, by applying declarative knowl- 
edge in the process of problem solving. By itself 
declarative knowledge is “inert” (Whitehead, 
1929 CTC, 1990t i t  doesn’t do anything. Pro- 
cedural knowledge is needed to make use of it. 
A math student may know that the inverse of 
multiplication is division, but without proce- 
dural knowledge of how to apply this fact in 
problem solving, may be unable to solve a prob- 
lem like “If you paid $38 for jeans that were 
reduced to 80% of their original price, what was 
the original price?” Procedural knowledge is 
bound to the problem solving contexts in which 
it is acquired. A student who has “proce- 
duralized” the inversion of multiplication in the 
context of algebra equation solving (e.g., 0.8~ - 
38), may not have the procedural knowledge to 
solve problems like the one above. Similarly, a 
store manager may do fine on a problem like the 
one above, but may not be able to solve a similar 
problem in different context (e.g., “If the sales 
tax rate is 5%, what tax base is necessary to yield 
one million dollars in tax revenues”). 

The ACT theory claims that procedural knowl- 
edge is learned from analogy to examples. The 
theory does not deny the possibility of learning 
by being told, but claims that such learning is 
done indirectly and depends on students’ com- 
petence to interpret instructions to create exam- 
ples for themselves. Such examples can then 
provide the basis for analogy-based learning. 
Cognitive tutors are designed to give students 
opportunities to apply declarative knowledge in 
a variety of problem solving contexts. According 
to ACT, such learning by doing results in the 
acquisition of production rules-units of proce- 
dural knowledge that tie problem solving strate- 
gies and actions to particular problem contexts. 
A key step in the principled design of a cognitive 
tutor is an analysis of the cognitive strategies 
and actions that learners use in the domain of 
interest (cf. Koedinger & Anderson, 1993). 



Mustrating Principled Designed 163 

We set out to build a cognitive tutor for high 
school algebra and, in particular, were focused 
on the algebraic ”symbolization” process, that 
is. the translation of problem situations into 
algebra notation. The first step in an ACT-based 
analysis of this domain is to consider how sym- 
bolization could be learned from analogy to 
examples. One approach is to have students see 
examples of translations of the problems to 
symbols. However. with such examples this isan 
“enigmatic domain” in that these examples do 
little to reveal the cognitive processing steps 
needed to make the translation (Koedinger & 
Anderson. 1993). Students are left to make 
shallow or “superstitious” analogies (c.f. Lewis. 
1988). like “altogether means add.” that often 
lead to knowledge that does not generalize. For 
example, consider the problem: 

Mary and John have eight marbles altogether. Mary 
has two marbles. How many marbles does John 
have? 

A common student error is to put 8 and 2 
“altogether” and answer 10 (cf. Cummins. 
Kintsch. Reusser & Weimer, 1988). 

We decided to explore an alternative ap- 
proach that both draws on what students al- 
ready know and makes visible some of the 
intermediate processing steps in the symboliza- 
tion process. A critical step in this alternative 
approach is to view algebra asgenerukedurith- 
metic. Algebra provides a way to generalize a 
series of arithmetic procedures (e.g.. 0.8 * 40, 
0.8 * 45. 0.8 50) in a single, concise statement 
(e.g., O.&r). Viewing algebra this way suggests 
an alternative to direct translation examples as 
a source for analogical learning. Concrete arith- 
metic procedures can be used as a intermediate 
step in translation. Arithmetic examples provide 
a source for more meaningful examples that 
draw on students’ prior experience with arith- 
metic. Further. because of this prior experience. 
students can create these examples for them- 
selves. The next section describes our cognitive 
analysis in more detail and, in particular, how 
we arrived at this approach. 

The Domain: Algebra Problem Solving 

We began our client-centered approach work. 
ing with a Pittsburgh math teacher and with the 
textbook that was being used by the Pittsburgh 
public schools for their Algebra 1 course (For- 
ester, 1984). The Forester textbook was publish- 
ed prior to the new standards of the National 
Council of Teachers of Mathematics (NCTM. 
1989). but contained new approaches consistent 
with these reforms. In particular, the text makes 
a serious attempt to elaborate the instruction 
of word problem solving. In traditional algebra 
textbooks. word problems are common. but in- 
struction on how to solve them is rare and quite 
limited. 

Table l a  shows an algebra word problem that 
could be seen in the beginning of a traditional 
algebra textbook. The normative strategy for 
solving such problems has two stages. First, 
define a variable (e.g.,x - the hours worked) and 
write an equation (e.g.. 423 + 35 = 140). Second, 
solve this equation for the variable (e.g..x = 2.5). 
Table l b  shows Forester’s variation of this prob- 
lem. In his “Foreword to Teachers” Forester 
describes his motivatiOn for such problems: 

The word problems involve variables that really vary. 
rather than standing for unknown constants. Some 
problems have multiple parts in which students are 
forced to write an expression representing a variable 
quantity. Then they evaluate the expression for 
several values of the variable, and write and solve 
equations involving the expression. By so doing. 
even students who can do the problem in their heads 
get practice in proper algebraic techniques su that 
they can work the harder. less structured problems 
later on. 

The Forester problem ( l b )  represents a 
change from the traditional problem ( l a )  in the 
insertion of questions 1-3 between the problem 
statement (first sentence in both problems) and 
the question posed (last sentence in both prob- 
lems). Question one explicitly asks students to 
symbolize, that is. to translate the problem 
statement into symbols. Although the intent of 
a traditional problem ( l a )  is for students to 
begin by symbolizing, the Forester problem is 
different in making this step explicit to students 
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in question one. Questions two and three in the 
Forester problem ( I b )  give the number of hours 
worked (the x or start uariable) and ask for the 
pay the company receives (the y or result vari- 
ublel. Question four turns this around and, like 
the traditional problem. now gives the pay re- 
ceived (the result variable) and asks for the 
hours worked (the start variable). We refer to 
questions like two and three as  result-unknown 
problems because the unknown. the pay re- 
ceived, is the result of the process or events 
described in the problem. Questions like four 
are start-unknown problems because the un- 
known. the hours worked, is the start of the 
process or events described in the problem. The 
use of result-unknown and start-unknown is 
present in the elementary arithmetic literature 
(Carpenter, Corbitt. Kepner, Lindquist & Reys, 
1980; Riley & Greeno. 1988; Briars & Larkin. 
1984) to describe problems where there is a 
single arithmetic operator, but we extend its use 
here to include problems, like those in Table 1, 
that involve two operators. 

1. The normativedeductive view, which i s  
implicit in traditional algebra textbooks. is thiit 
people solve verbally-presented problems hy 
first translating to symbols and then manipulctt- 
ing the symbols to find answers. 

2 .  An alternative conceptual-inductive view. 
which derives from the cognitive analysis and 
empirical work of ourselves and others. is that 
people can solve many verbally-presented prob- 
lems without recourse to normative symbolic 
strategies either by using internal verbal repre 
sentations or by using simpler arithmetic sym- 
bols 

Figure 1 illustrates the student strategies 
consistent with these two views. Figure la 
shows the normative-deductive strategies en. 
couraged by Forester textbook problems like 
the one shown in Table Ib. The left of Figure la 
illustrates the question parts of a Forester proh- 
lem and on the right is an example solution. The 
three strategies are shown in boxes with arrows 
indicating their inputs and outputs. According 
to the normative-deductive view. a student an- 
swers the symbolization question (1) by algebra 
translation. a strategy that draws on knowledge Cognitive Analysis of Symbolization 

In previous work (Koedinger & Anderson. 
1990: 1991). we showed that even for mathe- 
matical experts in a decidedly deductive do- 
main, geometry theorem proving, problem 
solving knowledge has a fundamental inductive 
character. While much of mathematical reason- 
ing in it’s externalized written form is the de- 
duc t ive  man ipu la t ion  of symbols.  t h e  
underlying cognitive processes that support ef- 
fective reasoning draw on induction from prior 
perceptual experience (cf. Cheng & Holyoak. 
1985). I f  expert mathematical knowledge is fun- 
damentally organized as inductive abstractions, 
not deductive rules, then perhaps instruction 
that supports and encourages such inductive 
reasoning would more effectively lead to exper- 
tise. We will refer to this conjecture as the 
inductive support hypothesis. 

To illustrate how this hypothesis applies to 
algebra, we contrast two views about algebra 
development and, in particular, about how prob- 
lems like those in Table 1 are solved: 

of how certain phrases in problem statements 
translate into algebraic symbols (e.g.. i f  the 
problem says “42 dollars per hour” and h is the 
variable for hours, then translate to 42h). Alge- 
bra translation produces an expression for the 
cost of the bill, “42h + 35.” The result-unknown 
questions ( 2  & 3) can then be answered by 
evaluate expression. This strategy is the famil- 
iar plugand-chug where the student substitutes 
the given number of hours for h and then does 
the arithmetic (e.g., plug h = 3 into 42h + 35 
and solve to get 161). The start-unknown ques- 
tion (4) is answered by solve algebra. that is. by 
setting the expression equal to the given value 
of the bill (42h + 35 = 140) and solving the 
equation for h. 

Table l c  shows a modification of the Forester 
problem guided by the inductive support hy- 
pothesis. The change is simply to move the 
result-unknown questions prior to the symboli- 
zation question. This change encourages an 
alternative strategy for symbolizing whereby 
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Table 1. 

a. Traditional textbook problem: 

Oifferent versions of the same algebra problem 

Drane 6 Route Plumbing Co. charges $42 per hour plus $35 for the service call. Find the number of 
hours worked when you know the bill came out to $140. 

Drane 6 Route Plumbing Co. charges $42 per hour plus $35 for the service call. 
1. Create a variable for the number of hours the company works. Then, write an expression for the 

number of dollars you must pay them. 
2. How much would you pay for a 3 hour service call? 
3. What will the bill be for 4.5 hours? 
4. Find the number of hours worked when you know the bill came out to $140. 

Drane b Route Plumbing Co. charges $42 per hour plus $35 for the service call. 
1 .  
2. 
3. 

4. Find the number of hours worked when you know the bill came out to $140. 

b. Forester textbook problem: 

c. Inductive support problem: 

How much would you pay for a 3 hour service call? 
What will the bill be for 4.5 hours? 
Create a variable for the number of hours the company works. Then, write an expression for the 
number of dollars you must pay them. 

the answers to the result-unknown questions 
can be used to induce the symbolic expression. 

Figure lb  illustrates this alternative strategy 
and other alternatives to the normative-deduc- 
tive strategies described above as they apply to 
questions in an inductive-support problem. For 
these problems, the result-unknown questions 
( 1  & 2) come first. Figure Ib shows an alterna- 
tive strategy (not evaluate expression as in Fig- 
ure l a )  for solving result-unknowns. This 
arithmetic translation strategy draws on stu- 
dents’ pre-algebraic knowledge of how phrases 
in problem statements translate into arithmetic 
steps (e.g., if the problem says “42 dollars per 
hour” and the hours is “3,” then multiply 42 and 
3). In performing arithmetic translation on 
questions one and two, the student twice per- 
forms the process of multiplying the hours by 
42 and then adding 35. This process provides 
the basis for an alternative strategy for answer- 
ing the symbolization question. In the Indirce 
puffern strategy the student generalizes from 
the pattern of the arithmetic steps (”42 3 + 

35” and “42 * 4.5 + 35”). replacing the specific 
values for the hours by the variable h, to pro- 
duce the algebraic expression “42 * h + 35”. 
Using the expression. the student can now an- 

swer the start-unknown question (4). as in the 
normative-deductive view, via the solve algebru 
strategy. The conceptual-inductive view. how. 
ever, recognizes alternative strategies for solv- 
ing start-unknown problems that work directly 
from the problem statement. The unwind sfruf- 
egy is illustrated in Figure lb .  In this strategy. 
the student works backward from the result- 
value (the cost of the bill, 140 dollars) inverting 
the operations and applying them in reverse 
(e.g., subtract off the service charge, 140 - 35 
+ 105, and then divide by the hourly rate. 
105 / 42 + 2.5). A second strategy . not illus- 
trated in Figure lb,  is toguess-and-check: guess 
at the start value, do the arithmetic, and check 
if it yields the result. If not, guess again. Such 
strategies have been observed in elementary 
students on one operator start-unknown prob- 
lems (Briars & Larkin, 1984). Koedinger 61 
Tabachneck ( 1995) have also observed students 
performing these strategies on two-operator 
start-unknowns. 

The key focus of the experiment described 
here is on the alternative strategies for symboli- 
zation. The Forester problem encourages the 
algebra translation strategy as the only ap- 
proach to symbolization. In contrast, the induc- 
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tive support problem encourages a second 
strategy. The student is first encouraged to 
answer the result-unknown questions via the 
arithmetic translation strategy that draws on 
students' pre-algebraic knowledge. The answers 
to the result-unknown questions then provide data 
for the induce pattern strategy to produce the 
symbolic expression. In this way, algebraic sym- 
bolization can occur as a generalization of arith- 
metic rather than as a new translation process. 

A second potential benefit of the inductive 
support problems is to make more clear how 

creating an algebra expression can aid the solu- 
tion of the start-unknown questions (e.g., find- 
ing hours worked given the total bill). In 
contrast to the Forester problems where the 
result-unknown questions interrupt the connec- 
tion between the symbolization and the start- 
unknown questions (see the right of Figure la),  
in the inductive support problems the symboli- 
zation step directly precedes the start-unknown 
question (see the right of Figure lb). In thisway. 
the student may better appreciate the value of 
creating the expression as it serves to help solve 

I Nonative-deduct1 'Ve strateaies on a Forester textbook Dro bleq 

("Drane & Route Plumbing...". see Table I b) 

I. Symbolization question 

Answers : 

1. h = hours worked 
bill = 42h + 35 

Description of problem situation 

2. Result-unknown question (hours = 3) 
3. Result-unknown question (hours = 4.5) 

4. Start-unknown question (bill = $140) 

2. 42(3) + 35 = 161 I 
I 3. 42(4.5) + 35 = 224 

Solve 
4. 42h + 35 = 140 5 A1 ebra 

42h = 105 
h = 2.5 

B. Conc-ctive s m a i e s  on an i b t i v e  support Draw 

("Drane & Route Plumbing...". see Table 
Description of problem situation Answers : 

1. 42 * 3 + 35 = 161 
I .  Result-unknown question (hours = 3) 
2. Result-unknown question (hours = 4.5) 

3. Symbolization question 

4. 42 * h + 35 = 140 4. Start-unknown question (bill = S140) 
42 h = 105 \ h = 2.5 

140 - 35 = 105 I 4 2  = 2.5 

Figure 1. Strategies (in boxes) for Different Problem and Question Types: 
(a) a Forester Problem is Solved by Algebra Translation, Evaluating an Ex- 
pression, and Solving the Algebra, (b) An Inductive Support Problem Pro- 
vides a Second Way to Answer the Symbolization Question by Inducing 

the Pattern from the Result-Unknown Solutions. (Note: For simplicity sake, 
we have left off lines that would represent the information flow from the 

questions to the strategies.) 
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the presumably more difficult start-unknown 
question. This line of reasoning presumes that 
result-unknown problems are easier than both 
symbolization and start-unknown problems-hy- 
potheses we test in the experiment described 
below. 

DESIGN: A COGNITIVE TUTOR 
FOR ALGEBRAIC 
SY M BOLlZATlO N 

For any significant education or training do- 
main, a fully adequate cognitive analysis cannot 
be achieved a priori. Fast prototype develop 
ment and early testing with students is a critical 
complement to cognitive analysis methodolo- 
gies like task analysis, protocol analysis, and 
cognitive modeling. The creation of a prototype 
allows experimentation to test high level hy- 
potheses and help refine the cognitive analysis. 

The Prototype Tutor 

In the initial prototype we developed, stu- 
dents worked through problems like those pre- 
sented in chapters one and two of the Forester 
textbook. All problems had four questions like 
those in Table lbhc. Students answered the 
questions in these problems by filling in the 
rows of a table. 

Tutor curriculum. The tutor curriculum 
was in two lessons. The problems in lesson 1 
involved one arithmetic operator and were of 
the form “y - x + (I” or “y - ax” where (I was an 
integer or fraction. Lesson two problems in- 
volved two operators and were of the form “y - 
ax + 6” aad “y - b - ar“ where a and b where 
integers or fractions. Students worked on a 
lesson until they reached mastery of the skills 
in it. Skill mastery was determined by the knowl- 
edge tracing algorithm (Corbett, Anderson, & 
O’Brien, 1995). 

NatUf8 of interaction. Figure 2 shows 
the prototype tutor screen on the first problem 
from lesson one. The student has already labeled 
the columns of the Worksheet with the relevant 
quantities, “width” and “length”, and she 

hasansweredquestionsone and two by filling 
in rows one and two of the Worksheet. To finish, 
she must answer the second result-unknown 
question (3) and the start-unknown question 
(4). As part of answering the start-unknown 
question, she will use the Equations window to 
find the width by setting the given length of 43 
cm to the symbolic expression for length. By 
entering the equation “w + 7 - 43” into the 
Equations window, she can use it’s symbolic 
calculation capabilities to automatically find the 
value of w. This first problem requires simple 
calculations, but later problems increase in dif- 
ficulty. 

Cognitive tutors support learning by doing 
(Anderson, 1983; Anzai & Simon, 1979). Like a 
good personal human tutor, cognitive tutors try 
to minimize the support they provide. Ideally 
the tutor does nothing and just watches as the 
student works through a problem. The underly- 
ing cognitive model characterizes the cognitive 
objectives of the instruction, that is, the range 
of solution approaches that curriculum advisors 
tell us they would like to see students achieve. 
As long as students’ actions are within this 
range of good solutions, the tutor is silent. 
However, when students make clear logical er- 
rors, perform actions characteristic of miscon- 
ceptions or otherwise go outside the range of 
reasonable solutions, the tutor indicates the 
error. Following the principle of maximizing 
students’ participation, errorful actions are in- 
dicated without comments that might otherwise 
distract them or discourage them from correct- 
ing the error themselves. When a student’s 
action matches a buggy rule, a comment is made 
that indicates the action is an error. Buggy rules 
characterize common student slips or miscon- 
ceptions which are often difficult for students 
to recognize and thus, they merit particular 
comment. 

At any point a student can request a hint. 
Students’ requests for hints can come at any 
time, but they often follow an error. To maxi- 
mize the cognitive engagement of students, the 
first hint given is vague. Sometimes this hint is 
enough for a student to develop and pursue an 
approach on their own. If not, they can ask for 
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Problem Slalcmenl E q U d t l O M  

The length or a rectangle i s  7 crn more than I t  s wld:h . w . 7 = 4 3  

o w = 3 6  I Create a variable t o  stand l o r  the w i d t h  o f  the rectangle 
and 1111 In  an expression l o r  l t s  length 

2 I r  the w i d t h  or the rectangle i s  I 2  cm what I S  i t s  length? 

3 I f  the rectangle I S  55 cm wide now long I S  117 

4 Suppose the length 01 the rectangle i s  43 crn Find the w l d t h  

Wormsheel I I 

u Enterng a gven 
Enterng an answer 

U D # i n i q  a variable - W t l n g  an expression 
Enterlng equations - Marupulatlq eqmtiors 
K n w i r g  when youtetinsned 

U PuPlng libels on columns 

F igure  2. A S c r e e n  from t h e  P r o t o t y p e  Tutor  S h o w i n g  t h e  T e x t b o o k  Tutor  Variant  

further hints. Hints get successively more spe- 
cific, culminating in a suggestion to take a 
specific action. 

Tutor Variants 

Three variations of a basic algebra tutor were 
created that were identical except for the order 
of the  questions within each problem. The Text- 
book variant had the questions ordered as in 
Table l b  with the result-unknown questions 
coming aoer the  symbolization question, but 
before the start-unknown question. The Induc- 
tive-Support variant had the questions ordered 
a s  in Table l c  with the result-unknown problems 
coming first before the symbolization question. 
The third Truditional-Plus variant was imple- 
mented to be more like the traditional problem 
presentation (Table l a )  where the main focus is 
on  translating to an algebraic expression in 
order to solve start-unknown problems. How- 
ever. the TradittonaCPlus variant was different 
from the problem in Table l a  in that the sym- 

bolization is explicitly requested prior to asking 
the start-unknown question. Further. the  result- 
unknown questions were appended at  the end 
of each problem so that  all three types of ques- 
tions appeared in each tutor  variant. To summa- 
rize, the tutor variants differed only in how the 
result-unknown questions were positioned be- 
tween, before or  after the  symbolization and 
start-unknown questions a s  shown in Table 2. 
Figure 2 shows the  Textbook tutor variant-the 
result-unknown questions (2  & 3) come betweeii 
the  symbolization question ( 1 )  and the start-un- 
known question (4). 

TEST A PARAMETRIC 
EVALUATION STUDY 

Hypotheses 

The first hypothesis of this study is simply 
that  this early cognitive tutor prototype would 
aid student learning. In particuldr, we expected 
to see students performing significantly better 
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I 

Table 2 

Tutor Variant Position of Result-unknown Ouestions 

Textbook Between symbolize, find result, find start 
Inductive-Support Before find result, symbolize, find start 
Traditional-Plus After symbolize, find start. find result 

Difference between the 3 tutor variants 

on the post-test than on the pretest. particularly 
on the targeted skill of symbolization: translat- 
ing problem statements into algebraic symbols. 
This hypothesis is predicted as a consequence 
of the individualized learning support facili- 
tated by cognitive tutors: model-tracing tacili. 
tated feedback and hints and knowledge-tracing 
facilitated problem selection and lesson promo- 
tion. 

In contrast, the central hypothesis of this 
study. inductive suppor't hypothesis, is pre- 
dicted as a consequence of the alternative cog- 
nitive analyses underlying the tutor variants. In 
particular, the hypothesis is that the inductive- 
support tutor will lead to greater student learn- 
ing (bigger gains from pre to post-test) than the 
other tutor variants. This hypothesis depends 
on the following assumption. For inductive sup 
port to be effective, it must be the case that the 
two strategies involved in performing it, arith. 
metic translation and induce pattern (see Fig- 
ure lb). are easier to perform than the direct 
algebra translation strategy. Thus. the study 
was designed to also test this non-normative 
strategy hypothesis. Putting it in terms of the 
question types the hypothesis is that prior to 
instruction students will perform better on re- 
sult-unknown questions (using arithmetic trans- 
lation) than on symbolization questions (using 
algebra translation). The normative strategy 
hypothesis predicts the opposite. that result-un- 
known questions should be harder, because 
according to this view (see Figure la) the stu- 
dent must first do algebra translation to pro- 
duce a symbolic expression and then evaluate 
this expression to get an answer. 

To summarize. the study tests the following 
three hypotheses: 

H 1: Non-normative strategy hypothesis: tk. 
sult-unknown problems are easier than symhoii- 
zation problems because they can solved 
without translation to algebraic symbols. 

H2:Tutor effectiveness hypothesis: The t u t o r  
will lead to significant learning from pre-test to 
post-test particularly on symbolizatioii ques- 
tions. 

H3:lnductive support hypothesis: Students 
encouraged to use the inductive-support strat- 
egy will learn more than students encouraged 
to use normative strategies. 

Method 

Thirty high school students participated dur- 
ing the summer after having completed an alge- 
bra course in the Pittsburgh Public Schools. 
Students were randomly assigned into one of 
the three tutor-variant conditions. Students at- 
tended 1.5 to 2 hour sessions over 3-4 days. 
Figure 3 illustrates the experimental procedure. 
On the first day, students were given a 30 
minute pre-test and then started working on the  
tutor. In subsequent sessions they worked on 
the tutor until they graduated from both of the 
tutor lessons. After graduating from lesson 2. 
students took a 30 minute post-test. 

Test Items 

There were two forms of the test, A and R. 
which were counter-balanced across pre- and 
post-testing. That is. half the subjects received 
form A as a pre-test and then form B as a 
pnst-test while the other half received form H ;IS 
a pre-test and form A as a post-test. This guar- 
antees that any pre to post-test improvements 
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Figure 3. T h e  Exper imenta l  P r o c e d u r e  

are due to learning and not a consequence of 
the post-test being easier than the pre-test. 

Each test form had eight problems. four cor- 
responding to tutor lesson one and four to tutor 
lesson two. One of each set of four problems was 
a traditional word problem as  illustrated by the 
problem in Table la. The other three problems 
corresponded to the three tutor variants: that 
is. one had the result-unknown questions be- 
tween the symbolization ' and start-unknown 
questions, another had result-unknowns first, 
and the third had result-unknowns last. The 
scoring metric used for the analysis yielded a 
total of 26 points for the eight problems on each 
test. The two traditional problems were scored 
one point for each correct answer. The other six 
problems accounted for 24 points as  the four 
questions in each problem were scored one 
point each. 

Results and Discussion 

The Non-normative Strategy 
Hypothesis. To test whether students find 
result-unknown questions easier to solve than 
symbolization questions, we looked at  their 
performance on the pre-test. Looking at  48 
questions on the two forms used (2 forms x 6 
problems x 4 questions), we performed a two 
factor ANOVA with number of operators, one or 

two, as  one factor and question type, symboliza- 
tion, result-unknown or start-unknown, as the 
other factor. Table 3 shows the average percent 
correct on the six question categories. There 
were significant main effects of both number of 
operators (F( 1 ,42)  = 39. p < .001) and question 
type (F(2, 42) = 4.9. p = .01). Two operator 
problems were only 30% correct while one op- 
erator problems were 68%. As predicted, result- 
unknown questions (55%) were easier than 
symbolization questions (35%). A Scheffe's S 
post-hoc test shows this difference is statistically 
significant ( p  = .01). The difference is much 
larger on the one operator problems (79% vs. 
42%) than on the two operator problems (31% 
vs. 28%), a significant interaction (fl2.42) = 3.7. 
p < .05). The smaller difference on the two 
operator problems may be a consequence of a 
floor effect, that is. the experienced difficulty of 
two operator problems on the pre-test left little 
room for the students to do  worse on the 
symbolization questions. 

Students' success on the  result-unknown 
questions even when the symbolization ques- 
tion is answered incorrectly indicates they tend 
not to use the normative strategies illustrated 
in Figure la,  that is. translating to algebra and 
then evaluating the algebra to get the result. 
Instead, it appears they can solve result-un- 
knowns directly as illustrated in Figure lb. 

Table 3. Percent correct (and standard deviations) o n  the  six 
question categories 

Question Types 

Number of ops Symbolization Result-unknown Start-unknown 
~~ 

one operator 42% (19%) 79% (19%) 73% (19%) 
two operators 28% (12%) 31% (16%) 30% (26%) 
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Figure 4. The Mean Learning Gains of Students  in t h e  Three Tutor Variant 
Conditions (error bars a r e  95% confidence intervals). Learning Was Great- 

e s t  with t h e  Inductive-Support Tutor Variant 

The Tutor Effectiveness Hypothesis 

Taken together, all three tutor variants re- 
sulted in significant learning over a relatively 
short period of time demonstrating the general 
positive effect of cognitive tutors. Students 
graduated the two lessons of the tutor in 3 
hours on average, ranging from 0.8 to 5.0 hours. 
On average students scored 12.8 (out of 26) on 
the pre-test and 14.9 on the post-test, a large 
16% improvement that is statistically significant 
(41. 29) - 9.7, p < .005). 

Consistent with the focus of the tutor, the 
biggest gains were on the symbolization ques- 
tion in the test problems, while there was little 
gain on the result-unknown and start-unknown 
questions (the test-time by question-type inter- 
action was statistically significant f13.87) - 7.9, 
p < .0001). The improvement in symbolization 
was large, increasing 71% from 2.1 (of 6) on 
the pretest to 3.6 on the post-test. The start- 
unknown and particularly the result-un- 
known problems exercise arithmetic skills that 
students learn in earlier grades and that can be 

performed by a calculator. Since students did 
not practice these skills during tutoring and did 
not use calculators during the paper-and-pencil 
testing, it is no surprise that there were not 
large increases on the start-unknown and result- 
unknown problems. 

The Inductive Support Hypothesis. 
Because time-on-task is such a critical vari- 
able in learning, it is important to first establish 
that students using the three tutor variants 
spent an equivalent amount of time on their 
tutor. Indeed, there was no significant difference 
in the total amount of time spent on three tutor 
variants (42, 22) - .21, p - A). Students using 
the three tutor variants, textbook, inductive- 
support, and traditional-plus, averaged 2.8. 2.9, 
and 3.3 hours respectively. 

Figure 4 shows the learning gains of students 
in the three tutor variants. The learning gain 
was computed by subtracting the pre-test score 
from the post-test score. As hypothesized, stu- 
dents that used the inductive-support tutor 
showed the greatest learning gains. In particu- 
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h r .  they petlormed much better thiin the text- 
h o o k  group showing ;I 26% improvement over 
their pretest scores compared to the 5% improve 

post-test score as the dependent measure. pre.test 
as the covariate. and textbook versus inductive- 
support tutors as a between-subjects iactor. 
showed significant difference (I.1 I .  17) = 1.4. p = 

.05). The learning gains of the traditional-plus 
group fall ambiguously between the other two. 
neither significantly greater than the textbook 
group nor significantly less than the inductive-sup- 
port group. 

The data collected on student periormance 
during tutoring provide corroborating evidence 
for the inductive-support hypothesis. We first 
describe how these data were collected. Each of 
the possible solutions to any problem involves 
some set of individual actions the student per- 
forms in the tutor interface. The tutor can 
provide feedback or hints on any action along 
the solution path that the student is pursuing. 
In addition to recording the particular solution 
path that a student takes, the tutor records the 
following information for each action: 1) the 
time taken to perform the action. 2) what errors. 
i f  any. are made, and 3) what hints, if any. are 
requested. Each action is categorized according 
to the cognitive model so that actions that 
reflect the same hypothesized sklll can be inves- 
tigated in aggregate. Thus, we can examine 
whether students appear to be getting better at 
a particular skill or whether the tutor variants 
are having different effects on students' learning 
of an aggregate skill. 

The inductive-support hypothesis predicts 
that students should do better at the symboliza- 
tion action as a result of working out the arith- 
metic (result-unknown) problems first. The data 
are consistent with this hypothesis. As illus- 
trated in Figure 5A. students using the induc- 
tive-support tutor are faster at symbolization on 
the harder problems in Lesson 2 than students 
using the other tutor variants. A 2 way ANOVA 
with tutor variant as a between-subjects factor 
and lesson number as a within-subjects factor 
shows an overall interaction of marginal statis. 
tical significance ( F ( 2 . 2 7 )  = 2.6. p = .09). On the 

Iiient o i  tilt. textbook group. A I )  ANCOVA wltil 

harder problems in lesson 2. students using tlie 
iiiductive-support t u t o r  complete the symholizii- 
tion step in about 28 seconds on average. while 
students using the textbook tutor take about 48 
seconds on average to symbolize. 

By itself. the symbolization speed-up is con. 
sistent with a competing hypothesis. I t  was 
shown in  two previous cognitive tutors that 
wlien all other factors are equal, actions tend to 
get faster as a student gets further into a prob- 
leni (Anderson. 1993. pp. 152 & 1 7 7 h  later- 
h t e r  effect. This alternative hypothesis would 
suggest that symbolization is faster in inductive- 
support simply because it is second in the se- 
quence of major actions in that condition while 
it is first in the textbook and traditional-plus 
conditions. The trouble with this later-faster 
account. however, is that it makes similar 
predictions regarding the ordering of the 
other major actions (result-unknown and start- 
unknown) that are not consistent with the data. 
According to the later-faster account. result-un- 
known actions should be slowest in inductive- 
support, where they are performed first. and 
fastest in traditional-plus. where they are per- 
formed last. Similarly, start-unknown actions 
should be slowest in traditionaCplus where they 
are second and faster in inductive-support and 
textbook where they are last. As shown in Fig- 
ures 5H and 5C there are no significant differ- 
ences between tutor variants on result-unknown 
latencies nor on start-unknown latencies. Thus. 
the later-faster hypothesis can be rejected and 
the inductive-support hypothesis appears to be 
the only consistent explanation of faster sym- 
holization of students in the inductive-support 
condition. 

As shown in Figure 5B. students in all condi- 
tions had more difficulty with the resul t -un-  
known problems in lesson 2 than those in 
lesson 1. This difference is not surprising given 
that lesson 2 problems involved two arithmetic 
operations (multiplication and either addition 
or subtraction) and lesson 1 problems involved 
just one operation (either multiplication or ad- 
dition). 

We would expect a similar difference on start- 
unknown problems (Figure 5C) if students were 
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Each Tutor Variant. The  Only Difference is S h o w n  in Panel A, Where Induc- 

tive-Support Resulted in Faster Symbolization in Lesson 2 

solving these problems on their own, however, 
the tutor provided students with a symbolic 
calculator that they used to solve start-unknown 
problems. The times in Figure 5C reflect the 
time it takes students to select the “solve“ menu 
item in the symbolic calculator. (The process of 
writing the equation, recall, is captured in the 
symbolization time shown in Figure 5A.) Al- 
though lesson 2 problems are otherwise more 
difficult than lesson 1 problems, it is not any 
more difficult in lesson 2 to select the “solve” 
menu item. Thus, we see no difference in Figure 
5C between lesson 1 and lesson 2 times to solve 
the result-unknown problems. 

There were also no significant differences 
between the tutor variants in students’ accuracy 
within any question type. The only significant 

on-line difference between tutor variants, that 
symbolization is easier after doing analogous 
arithmetic, appears uniquely consistent with 
the inductive-support hypothesis. 

REDESIGN: TOWARDS PAT 

The results from this parametric study pro- 
vide support for the inductive-support hypothe- 
sis that students are best taught to build 
mathematical abstractions on a foundation of 
common sense achieved through concrete rea- 
soning. Nevertheless, it appeared that some 
students occasionally had difficulty in making 
the transition from concrete reasoning (e.g., 55 
+ (1/4) * 20) to the abstract formula (e.g., 55 + 

(1/4)x). This difficulty seemed to stem from the 
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fact that the arithmetic steps were performed in 
students' heads. Inforinally we have observed 
that students are often capable of coming up 
with answers to concrete questions and yet have 
significant difficulty in articulating how they 
did so. 

In redesigning the system, we hypothesized 
that if we have students write down the arith- 
metic steps that lead to answers. these concrete 
expressions could be the source for visually-sup- 
ported induction of the abstract expression. 
Figure 6 shows the Problem Statement and 
Worksheet windows at the beginning of a prob- 
lem in the current system. called PAT (Koedin- 
ger, Anderson. Mark & Hadley. 1995). This 
mobile phone problem illustrates an effort to 
create problems with real world currency from 
which students can better learn how to apply 
algebra and appreciate its relevance. 

Figure 7 shows the student having difficulty 
in coming up with an expression. The student 
requests a hint and PAT's response is shown in 
the Messages window. The suggestion is to use 
the Equation Support window and try to articu- 
late how to get the resulting cost for a 2 minute 
phone call. 

As shown in Figure 8, the Equation Support 
window scaffolds the inductive support strat- 
egy. Here, students work out the arithmetic 
recipe for a sequence of small integer values (2, 
3, 4). For example, they show how to find the 
cost for a 2 minute call. then for a 3 minute call 

and finally for a 4 minute call. Seeing the resd ts  
of these steps, the abstraction to algebraic s y t i i -  

bols is fairly straight-forward. The studeni sitii- 
ply needs to notice what is varying and replace 
it with the single letter variable. 

In addition to the results of this parametric 
study. we were further encouraged to implement 
the Equation Support window when we oh- 
served that, without any prior discussion with 
us. classroom teachers were using this same 
strategy when they helped students to symbol- 
ize. 

In apparent contrast with our results. PAT's 
Worksheet window has the Formula row above 
the rows for the specific questions (labeled 1-5 
in Figure 8)-appearing more like the Forester 
textbook than the inductive support tutor vari- 
ant. The reason for this is that we wanted the 
Worksheet to have the functionality and look of 
a spreadsheet. In later lessons, the Worksheet 
window operates like a spreadsheet whereby as 
soon as the student enters the expression. re- 
sult-values (e.g.. 15 in row 1) are automatically 
computed as  soon as  the corresponding start- 
value (e.g.. 10) is entered. We made this compro- 
mise with respect to the inductive-support 
hypothesis, but in all other ways the presenta- 
tion and tutoring advice are consistent with the 
inductive support hypothesis. First, as  in the 
inductive support condition in this experiment. 
the problem statement has the concrete ques- 
tions first and the request to symbolize comes 

Figure 6. W i n d o w s  from PAT. T h e  S t u d e n t  Reads t h e  P rob lem Situation 
from t h e  Problem S t a t e m e n t  W i n d o w  and Begins  by Labeling the Columns 

in t h e  Workshee t  
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afterwards. Second, when a student asks for a 
hint, the system will recommend answering the 
concrete questions before writing the expres- 
sion. Third, when students first use the system, 
a printed handout walks them through the first 
problem in the recommended order, that is. 
concrete instances before abstraction. Finally. 
we recommend that teachers reinforce this or- 
der when they are helping students. 

This example is a nice illustration of the 
conflicts that can arise in the process of princi- 
pled design of interactive learning environ- 
ments. Two principles were in conflict: 

1. Design the interface to support student 
learning. 

2. Design the interface for external validity. 
that is, so that transfer to working with 

coicuiate resuits uslng 2.3, end 4: 

2.5.2.i.25-5. 

2.5*3*1.25-6.25 

2.5.4*1.25-?.5 

Write an owproision. using o uariablo: 

uerropcr 
You houo snlarad mn aqualion f o r  

I 511 ~ c o l c u i m l i n o  lhm ems1 o f  m moblle I 
i n  
on 

I hs mqual ions 
arprassion for I ha I - Y I. I cost o f  m moblls Imlmphonm coli i n  

I D.l,",ng. *,&I. lhm mortshaal. 

Figure 8. T h e  Complet ion of t h e  Equation Support and t h e  Copying Over  
of t h e  Resulting Expression in t h e  Worksheet  
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tools in the target environment (e.g., 
workplace) is most natural. 

The evidence for the effectiveness of induc- 
tive support suggested putting expression entry 
at the bottom of the Worksheet, while the desire 
to have the look and feel of a spreadsheet 
suggested putting it at the top. In our resolution 
of this conflict, principle 2 took primacy-the 
interface was made to be more externally valid. 
However, to achieve principle 1 all aspects of the 
surrounding instructional context, the tutoring 
approach being just one of them, are consistent 
with the inductive support hypothesis. This may 
prove to be a reasonable strategy for addressing 
conflicts of this kind in general. 

Further laboratory experiments with PAT are 
in progress. In addition, PAT is now being used 
by ovef 500 students in classrooms in three 
Pittsburgh Public schools. Our early in vivo 
evaluation has shown dramatic learning gains 
by students in classes using PAT compared with 
traditional algebra classes (Koedinger, Ander- 
son, Mark, & Hadley, 1995). 

CONCLUSION 

We have presented the early stages of a prin- 
cipled design of a cognitive tutor for algebra. 
Initial design was driven by a cognitive analysis 
of the kinds of algebra problems presented in 
the first chapters of the popular Forester text- 
book. Our first pass cognitive analysis at- 
tempted to identify the highest level processing 
elements that lead to student answers. We fo- 
cused at the strategic level in this first pass. We 
identified the normative strategies implied by 
the textbook, wrote ACT theory production 
rules to perform these normative strategies, and 
implemented a prototype cognitive tutor to sup- 
port students in learning them. 

The cognitive analysis and tutor development 
was particularly focused on the symbolization 
process, that is, producing symbolic expressions 
given verbal descriptions of quantitative rela- 
tionships, because we felt this step was the most 
important and most difficult. This symbolization 
process has always been a critical part of mathe- 
matical competence but is gaining an increasing 

role as technology takes over more and more of 
the tasks of symbol manipulation. Learning how 
to model or “mathematize” situations is appro- 
priately a major emphasis of mathematics re. 
forms in the US, Symbolization is a critical part 
of mathematizing that deserves special atten- 
tion as an end in itself, and not just as a means 
to finding numeric solutions as is its traditional 
role. 

In the process of tutor development and 
through interaction with teachers and informal 
observation of students, it appeared that stu- 
dents might have alternative, non-normative 
strategies for symbolization. The normative 
strategy for symbolization, the algebra trunslu- 
tion strategy, involves the student learning to 
directly translate from words to algebraic sym- 
bols. In contrast we proposed an alternative 
inductive-support strategy that introduces an 
intermediate step in the symbolization process 
which may aid student performance and learn- 
ing. Instead of going directly from words to 
symbols, we hypothesized students could first 
perform arithmetic translation, as they do 
when they answer simple numeric questions 
(result-unknowns), and then induce from the 
pattern of arithmetic operations they performed 
the analogous symbolic expression. 

This inductivesupport strategy led to a cou- 
ple of predictions in contrast with the normative 
strategy, first, that students should initially be 
better at answering numeric result-unknown 
questions than at symbolizing and, second, that 
a cognitive tutor that encouraged inductive- 
support strategies would lead to better student 
learning than the initial tutor designed to en- 
courage the normative strategies. A study was 
designed as both a formative evaluation of our 
early prototype (would students learn from it) 
and as a parametric test of the inductive-support 
versus normative predictions. The pre-tests re- 
sults of this study showed that indeed symboli- 
zation is a difficult step for students and that 
students are initially able to correctly answer 
numeric questions without first symbolizing. 
The overall pre-test to post-test gains by all 
students indicated that the core cognitive tutor 
was an effective learning aid. The gains were 
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largest on the symbolization questions, the real 
focus of the tutor. 

In comparing the tutor variants, we found 
that students learned significantly more from 
the inductive-support tutor than the textbook 
tutor. The advantage appeared both in aiding 
student performance during tutoring-inductive 
support students were faster to symbolize-and 
in leading to increased student learning-induc- 
tive support students showed greater test score 
gains from the pre-test to the post-test These 
results indicate that inductive support may pro- 
vide an instructional approach that is more 
effective than alternatives in helping students 
acquire the difficult and important skill of sym- 
bolizing. 

The inductive support approach has been 
incorporated in the more complete PAT system 
that evolved from the tutor prototype tested in 
this study and which has been shown to be an 
effective part of improved algebra instruction at 
the high school (Koedinger, Anderson, Hadley, 
& Mark, 1995) and college (Koedinger & 
Sueker, 1996) level. This study served a critical 
formative evaluation step and, in particular, 
provided guidance in system redesign that re- 
sulted in a new “Equation Support” window and 
the corresponding tutor knowledge that guides 
students in using and learning the inductive 
support strategy. 

Pervasive Situatedness or Induction of 
Abstract Knowledge from Concrete 
Experience 

There has been much emphasis in recent 
cognitive science and learning environment re- 
search on the role of authentic problem solving 
situations in student performance and learning 
(e.g., Cognition and Technology Croup, 1990). 
The extreme view is that all instruction should 
be situated in authentic or real world experi- 
ence. Although there appear to be advantages 
of situated or anchored instruction, the risks 
and limitations of situatedness need to be iden- 
tified. 

Situating or anchoring mathematics in real 
world experience is clearly important for help 

ing young adults both to appreciate the rele- 
vance of mathematics to everyday experience 
and to develop the cognitive skills for applying 
mathematics to real problems. A focus on con- 
necting mathematics to real world problem situ- 
ations is a critical feature of PAT as well as of 
the surrounding curriculum and student assess- 
ments (see Koedinger, Anderson, Mark, & 
Hadley, 1995). Such a focus is not only helpful 
to students, but is also critical to communicate 
and reinforce to teachers, administrators and 
parents the importance and relevance of mathe- 
matics to out-of-school concerns. The wide- 
spread distribution and popularity of the Jasper 
Woodbury series (Cognition and Technology 
Croup, 1993) is indicative of the strong desire 
in some schools and communities to find com- 
pelling justification for mathematics instruc- 
tion. 

In addition to these benefits in situating 
mathematics, there also some real risks and 
limitations. Requiring all instruction to be in the 
context of real world or authentic project situ- 
ations, as some advocate, has the potential 
dangerous consequence of slowing learning to 
a snail’s pace of case-bycase concrete investiga- 
tions. Exclusive use of large, authentic projects 
can waste precision learning time on non-prob- 
lematic aspects of student performance and 
provide few opportunities for growth on the 
more sophisticated and problematic aspects. 
Such an approach is like learning to play tennis 
by always playing games and never practicing 
one’s serve. A second risk is that overemphasis 
on situated problems can lead students to ac- 
quire overly-situated skills that can only be 
applied in limited situations (e.g., Williams, 
Bransford, Vye, Coldman, & Carlson, 1992). The 
categorical word problem approach that NCTM 
has cautioned against (coin, work, mixture, etc.) 
could appear again butwith different, more real, 
categories (profit margin, population decline, 
school fund raising). What is needed in addition 
to situated problems is instruction in cognitive 
strategies that generalize across problem cate- 
gories and encourage students to develop ab- 
stract skills that will make them more flexible 
in the face of novelty. 
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The inductive-support condition appeared to 
help s tudents  to develop a more general strategy 
for aiding the  symbolization process. This strat- 
egy is not  tied to the  wording of any particular 
problem situation or  problem type. Reminiscent 
of one of Polya's ( 1957. p. xvii) classic heuristics 
for effective problem solving: "Could you imag- 
ine a more accessible related problem?", the  
inductive support  strategy can yield more flex. 
ible and adaptive problem solving in the  face of 
novelty. 

More cognitive research is needed to better 
understand the  relative merits of two alternative 
approaches to  instruction: concrete project- 
based instruction within authentic situations 
versus  abstract ,  principle-based instruction 
within small targeted exercises. The focus 
should be on  identifying the  conditions that  
best achieve the benefits and avoid the  limita 
tions of both approaches.'Such conditions must 
be specified a t  a level of detail sufficient to guide 
t h e  principled design of effective learning envi- 
ronments. 
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