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ABSTRACT

We present a new model of skilled performance in geometry proof problem solving called
the Diagram Configuration model (DC). While previous models plan proofs in a step-by-
step fashion, we observed that experts pian at a more abstract level — they focus on the key
steps and skip the less important ones. DC models this abstract planning behavior by
parsing geometry probiem diagrams into perceptual chunks, called diagram configurations,
which cue relevant schematic knowledge. We provide verbal protocol evidence that DC's
schemas correspond with the step-skipping inferences experts make in their initiai
planning. We compare DC with other models of geometry expertise and then, in the final
section, we discuss more general implications of our research. DC's reasoning has
important similarities with Larkin's display-based reasoning approach and Johnson-Laird's
mental mode! approach. DC's perceptually-based schemas are a step towards a unified
explanation of 1) experts’ superior problem solving effectiveness, 2) experts' superior
problem-state memory, and 3) experts' ability, in certain domains, to solve relatively simple
problems by pure forward inferencing. We also argue that the particular and efficient
knowledge organization of DC challenges current theories of skill acquisition as it presents
an end-state of learning that is difficult to explain within such theories. Finally, we discuss
the implications of DC for geometry instruction.
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Detailed study of successful performance in difficult task domains can provide a strong
basis for understanding the processes of problem solving and the nature of thought in
general. To become an expert in a difficult field calis upon the full adaptive and fiexible
nature of human intelligence. Characterizing the adaptive processes that bring about the
acquisition of expertise is an important goal of cognitive science and much progress has
been made in creating general mechanisms of skill acquisition and learning {Anderson,
1983; Newsell, in press; Holland, et. al., 1986). Howsver, progress in these areas is limited
by the depth and accuracy of theories of expertise. Some of our efforts towards developing
a general mechanism that models human learning may be wasted if we do not have an
accurate and detailed understanding of the end-state such mechanisms are designed to
reach.

Newell and Simon (1972) pioneered the use of verbal protocol analysis and computer
simulation as complementary tools for the study of successful performance in difficult task
domains and the identification of the mechanisms behind such performance. The analysis
of verbal reports given by subjects as they solve problems can provide both initial ideas for
proposing a workable mechanism and empirical evidence to support one. In a
complementary way, computer simuiation provides a test of both the coherence and
sufficiency of a proposed mechanism.

In this paper we present verbal report data and a computer simulation of geometry proof
problem solving. This domain is a difficult one for human problem solvers and has been
studied by a number of cognitive science researchers (Gelernter, 1963; Nevins, 1975;
Greeno, 1978; Anderson, et. al., 1981). We were motivated to take another look at this
domain by the observation that skilled problem solvers are able to focus on key problem
solving steps and skip minor ones in the process of generating a solution plan. We found a
surprising regularity in the kinds of steps expert subjects skipped and built a computer
model, called DC, to account for this regularity.

1. THE EXECUTION SPACE OF GEOMETRY

Geometry proof problem solving is hard. For a typical geometry proof , the search space of
possible geometry rule applications (i.e., theorems, definitions, and postulates) is quite
large. Problem 7 in Figure 1 is a typical high school geometry proof problem. At the point
in the high school curriculum where this problem is infroduced there are 45 possible
inferences that can be made from the givens of this problem, from these inferences another
563 inference can be made, from these greater than 100,000 can be made.

While it is true, as Newell and Simon (1972) pointed out, that there are multiple possible
problem spaces for any problem, there is one problem space for geometry which is perhaps
the most natural extension of the way geometry is typically taught. This problem space is
the one analyzed above and has the definitions, postulates, and theorems of geometry as
operators. We call it the execution space of geometry because the operators correspond
with the steps that a problem solver writes down in the solution of a problem.

As illustrated above, the geometry execution space is enormous. In the DC model
described below, we achieve search control by initially planning a solution sketch in a
problem space that is more abstract, i.e., more compact, than the execution space. In
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contrast, the traditional approach has been to look for better search strategies and
heuristics to use within the execution space. Gelernter's (1963) geometry theorem proving
machine used a backward search strategy in the execution space and used the diagram as
a pruning heuristic. More recently, the second author and colleagues (Anderson, Boyle &
Yost, 1985) built a geometry expert system as a cognitive model of students and a
component of an intelligent tutoring system. The Geometry Tutor expert (GTE) used an
opportunistic or best-first bidirectional search strategy in the execution space and used
various contextual features as heuristics for predicting the relevance of an operator. (We
raview these systems and a couple others in section 5.) While GTE provided a reasonably
good model of students, as evidenced by the success of the Geometry Tutor (Anderson,
Boyle, Corbett & Lewis, in press), we found that the mode of attack of human experts was
distinctly different from that of GTE. It seemed important to be able to characterize this
expertise both as a goal in and of itself and for pedagogical purposes.

2. EXPERT HUMAN PROBLEM SOLVING

2.1. Step Skipping and Abstract Planning

One feature that distinguishes geometry experts is that they do not make all the steps of
inference that students do while developing a solution plan. Consider the protocol in Table
1 of an expert (subject R} solving problem 3 shown in Figure 1. The left side of the table
contains the protocol and the right side indicates our coding of the subject's actions.

This expert had a reliable solution sketch for this problem in 13 seconds at the point
where he said “we're done” (emphasis ours). He plans this solution sketch without looking
at the goal statement (more on this curious behavior in section 4.3) and in the remainder of
the protocol he elaborates the solution sketch, reads the goal statement, and explains how
it is proven. His words "we're done" indicate his realization that the two triangles ABD and
CBD are congruent and that therefore he knows everything about the whole problem — as
he explains later: "we can determine anything from there in terms of corresponding parts”.

Figure 2 shows the solution to the problem in the proof tree notation of the Geometry
tutor. Apart from the givens and goal, the statements which the expert mentioned while
solving this problem are numbered in Figure 2 while the skipped steps are circled.
Assuming this expert's verbalizations accurately reflect his working memory states
(Ericsson and Simon, 1984), we conclude that the expert only makes certain key inferences
in his search for a solution while skipping other, apparently minor inferences.

2.1.1. Abstraction. In the terminology of the problem solving literature, it seemed clear that
experts were initially planning their proof in an abstract problem solving space (Newell &
Simon, 1972; Sacerdoti, 1974; Unruh, et. al., 1987). They were ignoring certain distinctions
such as the distinction between congruence and equality and they were skipping over
certain kinds of inferences, particularly the algebraic inferences. It turns out that ignoring
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the algebraic inferences considerably reduces the size of the search space. We establish
this fact in the analysis of the model below by comparing the size of the execution space for
problem 7 with and without the algebraic inferences (see section 4.1),

We distinguish two types of abstract planning, risky and safe. Risky abstraction is a type
of abstraction where details can be ignored that are sometimes critical to arriving at a
correct solution. Newell and Simon (1972) showed that during planning, subjects solving
logic problems would often ignore certain aspects of the expressions they were working
with. This abstraction was often very effective in guiding their problem solving search.
However, sometimes subjects failed to successfully refine an abstract plan because one of
the details ignored in the abstraction process turned out to be critical.

A safe abstraction only ignores irrelevant details, i.e., details which only discriminate
between objects that are functionally equivalent with respect to the problem solving task.
For example, in ignoring the details that distinguish between congruence statements, e.g.,
AB= CD, and measure equality statements, e.9., mAB = mCD, geometry problem solvers are
performing a safe abstraction since these statements are equivalent with respect to making
proof inferences. Any inference that can be made from one can be made from the other.

2.1.2. Macro-operators, In addition to performing useful abstractions, expert problem
solvers have been characterized by the fact that they often collapse multiple problem
solving steps into a single step (Anderson, 1983; Larkin, et. al., 1980b). In the field of
problem solving this is known as the formation of macro-operators (Nilsson, 1972; Korf,
1985). Macro-operators are the chunking together of a sequence of operators which are
often used consecutively to achieve a particular goal. Although geometry experts appear to
have certain macro-operators, these operators are not just arbitrary compositions of
geometry rules which can be used in sequence. Rather, there is a regularity in the kinds of
macro-operators experts have. Not only does the same expert skip the same kinds of steps
on different occasions, but different experts appear to skip the same kinds of steps in similar
situations.

in summary, we found that experts were not planning solutions in the execution space
as previous models have. In addition, it appeared that expert's planning space could not
be accounted for by a straight-forward application of standard learning mechanisms to the
execution space. Typical abstraction methods lead to risky abstractions, while experts’
abstractions were safe. Typical macro-operator learning methods do not predict the kind of
regularity in step-skipping that we found of the experts. Thus, we were led to search for a
new problem space for geometry theorem proving — one that was a safe abstraction of the
execution space and that left out the same kind of steps as the experts did.

2.2. Use of the Diagram

Besides not working in the execution space, experts’ inference making was largely tied to
the diagram. Woe found that the regularity in experts’ step-skipping can be captured by
knowledge structures that are cued by images in the problem diagram. [n contrast,
execution space inferences are cued off the known and desired statements in the problem.
Larkin and Simon (1987) suggest two reasons why diagrammatic representations might be
critical to problem solving in domains like geometry. First, one can use Jocality of objects in
the diagram to direct inference and second, perceptual inferences can be made more
easily than symbolic inferences.

Let us consider their point about locality first. A familiar strategy of high school geometry
students is to record proof steps by marking the problem diagram as an alternative to
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writing them down in statement notation. Such an annotated diagram aids students in
holding together information that they need to make further inferences. (This is even true if
they do not explicitly mark the diagram as long as they think in terms of it.) In contrast,
information within a list of written statements may be visually separated and require search
to identify. For instance, to use the side-angle-side rule for inferring triangle congruence a
problem solver must locate three congruence relationships — two between corresponding
sides of the triangles and one between corresponding angles. In searching a list of
statements for these three relationships, one might need to consider numerous possible
combinations of three statements that exist in the list. However, if these relationships are
marked on a diagram, one can quickly identify them since the side-angle-side configuration
comes together in each triangle at a single vertex. In other words, related information is
often easier to find in a diagram because it is typically in the same locality whereas the
same information may be separated in a list of statements. This is the locality feature of
diagrams.

The example above illustrates the role of the diagram in aiding knowledge search — i.e.,
the search for applicable knowledge. The geometry diagram can also be used to aid
problem search — i.e., the search for a problem solution!. The idea is that images in the
diagram can be used to cue chunks of knowledge which serve as operators in an abstract
planning space. The notion that external representations can play a major role in guiding
problem solving is the central notion of Larkin's display-based reasoning approach (Larkin,
1988). Our approach elaborates on this one by showing how the organization of an
external representation can be used to cue abstract planning operators. These abstract
operators reduce problem search by packing many execution steps into a single inference.

Larkin and Simon's second point, that diagrams allow easy perceptual inferences to
replace hard symbolic ones, is based on an assumption that perceptual inferences are
generally easier than symbolic inferences. While we agree with this assumption, we feel it
is uniikely that perceptual inferences are somehow inherently easier (except in terms of the
locality feature noted above). Rather, it is possible that perceptual inferences appear easier
because, in general, they have been much more highly practiced than symbolic inferences.
Nevertheless, since it is likely that students of geometry have had more prior experience
with geometric images than with formal notations and since diagrams typically have the
locality feature, students are likely to find perceptual inferences in this domain easier.

3. THE DIAGRAM CONFIGURATION MODEL

Based on our observations of experts, we tried to design a system for geometry theorem
proving that would be both more powerful and more like human experts than previous
systems. The model we came up with, the Diagram Configuration model (DC), has one
major knowledge structure, diagram configuration schemas, and three major processes:
diagram parsing, statement encoding, and schema search. Section 3.1 describes DC's
diagram configuration schemnas, while section 3.2 describes DC's pracessing components.
Section 3.3 describes how DC uses a special class of diagram configuration schemas to
avoid difficult algebra sub-proofs.

See chapter 2 in Newell (in press) for more discussion on the distinction between knowledge search and
problem search.
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3.1. Diagram Configuration Schemas

The core idea of the DC model is that experts have their knowledge organized according to
diagrammatic schemas which we call diagram configuration schemas. These are clusters
of geometry facts that are associated with a single prototypical geometric image. Figure 3
shows two diagram configuration schemas.

----- Figure 3 goes about here. ----

The whole-statement and part-statements attributes of a schema store the facts which
are associated with the geometric image stored in the configuration attribute. The
configuration is a prototypical configuration of points and lines which is commonly a part of
geomsetry diagrams. In Figure 3, the configuration on the left is a prototype for any set of
lines that form two triangles with a side in common. The whole-statement is the geometry
statement which refers to the configuration as a whole. The part-statements refer to
relationships among the parts of the configuration. The whole-statement of the CONGRUENT-
TRIANGLES-SHARED-SIDE schema refers to the two triangles involved while the part-
statements refer to the corresponding sides and angles of these triangles. The ways-to-
prove are used to determine whether inferences can be made about a configuration. They
indicate subsets of the part-statements which are sufficient to prove the whole-statement
and all of the part-statements. For example, the first way-to-prove of the CONGRUENT-
TRIANGLES-SHARED-SIDE schema, {1 2}, indicates that if the part-statements AB = AC and
BD=CD have been proven, the schema can be proven -- i.e., all the other statements of the
schema can be proven.

Our basis proposal is that planning is done in terms of these schemas rather than the
statements of geometry, The problem solver tries to establish that various schemas are true
of the diagram. Establishing one schema may enabie establishing another, Because there
are a small number of schemas possible for any particular problem diagram, the search
space of schemas is much smaller than the execution space.

Consider problem 3 and the expert protocol in Table 1. In the planning phase, the
subject made four verbalizations. Of these four verbalizations, two indicate his reading and
encoding of the given statements and two indicate inferences. Essentially, the subject
solved the problem in two steps. In contrast, the complete execution space solution (see
Figure 2) requires seven geometry rule applications. In other words, a problem solver who
was planning in the execution space would take at least seven steps to solve this problem.
DC's solution to this problem, like the subject's, is much shorter — it involves only two
schemas. An instance of the PERPENDICULAR-ADJACENT-ANGLES schema can be
established from the givens of the problem, while an instance of the TRIANGLE-CONGRUENCE-
SHARED-SIDE schema can be established as a result. We now describe the processes DC
uses to recognize and establish schemas.

3.2. DC's Processing Components

DC has three major processing stages: 1) diagram parsing in which it identifies familiar
configurations in the problem diagram and instantiates the corresponding schemas, 2)
statement encoding in which it comprehends given and goal statements by canonically
representing them as part-statements and 3) schema search in which it iteratively applies
schemas in forward or backward inferences until a fink between the given and goal
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statements is found. Human experts integrate these processes so that they do not occur in
any fixed order except to the extend that some statement encoding and diagram parsing
has to be done before any schema search can begin. However, in the computer simulation
each process is done to completion before the next begins. We implemented these
processes as separate stages so that we couid independently evaluate the role each has in
reducing search relative to planning in the execution space. In turns out the diagram
parsing process plays a major role as we describe below.

3.2.1. Diagram Parsing and Schema Instantiation. Diagram parsing is the process of
recognizing configurations in geometry diagrams and instantiating the corresponding
schemas. Diagram parsing consists of both a low-level component which recognizes
simple geometric objects and a higher level inductive component which hypothesizes
plausible diagram configurations.

The DC simulation starts with a very simple point and line representation of a problem
diagram. From this representation it must recognize line segments, angles, and triangles
and construct an internal representation of each. In addition, the algorithm records
approximate size measures of the segments and angies it identifies.

Using the information created by this low-level object recognition process, DC looks for
instances of abstract configurations. Figures 4a and 4b illustrate the diagram
configurations for proof problems in a typical course up to and including the topic of triangle
congruence. In some cases an image in a problem diagram may appear to be an instance
of a known diagram configuration, but not actually be an instance because it is not properly
constrained by the givens of a problem. On the other hand, some configurations do not
need to be constrained by the problem givens to be a diagram configuration instance.
Thjese are called basic configurations and appear in the square cornered boxes in Figure
d4al.

DC uses the low-level object information to recognize instances of the basic
configurations. The other configurations are either specializations of the basic ones (and
thus are attached below them in Figure 4a} or specializations of pairs of basic
configurations (see Figure 4b). To recognize possible specializations, DC uses the
segment and angle size approximations to check whether any of the basic configurations
have the necessary properties to be specialized. For example, to recognize the ISOSCELES-
TRIANGLE configuration, DC checks the triangles it has identified to see if any have two
equal sides.

1As you might notice from looking at some of the basic configurations, DC assumes that points which appear
callinear {on the same line) in a problem diagram actually are coflinear. This assumption is commonly made in
high school classrooms and we told our subjects they could make it in the problems we gave them.
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DC's diagram parsing algorithm corresponds with a very powerful visual process in
humans. We make no claims that the internals of this algorithm match the internals of the
corresponding human process. For instance, while it is quite likely that human perceptual
processes make extensive use of symmetry in recognizing geometric images, DC makes no
use of symmetry. We do claim that human experts are capable of recognizing these
configurations and make extensive use of this ability in solving proof problems.

The final result of diagram parsing is a network of instantiated schemas and part-
statements. Figure 5 illustrates this network for problem 3. It is interesting to note that
although no problem solving search is done in this first stage, in effect, most of the problem
solving work is done here. The resulting network is finite and usually quite small.
Searching it is fairly trivial.

----- Figure 5 goes about here. -----

3.2.2. Statement Encoding. After parsing the diagram in terms of diagram configurations,
DC reads the problem given and goal statements. Statement encoding corresponds to
problem solvers' comprehension of the meaning of given/goal statements. We claim that
problem solvers comprehend given/goal statements in terms of part-statements. When a
given/goal statement is already a part-statement, DC encodes it directly by appropriately
tagging the part-statement as either "known" or “desired”. However, there are two other
possibilities.

First, if the given/goal statement is one of a number of alternative ways of expressing the
same part-statement, it is encoded in terms of a single abstract or canonical form. For
example, measure equality and congruence, as in mAB = mBC and AB s BC, are encoded as
the same part-statement. Using this abstract representation, DC avoids inferences,
required in the execution space, that establish the logical equivalence of two alternative
expression of the same fact.

Second, if the given/goal statement is the whole-statement of a schema, it is encoded by
appropriately tagging all of the part-statements of that schema as "known” in the case of a
given or "desired” in the case of a goal. For example, the second given of problem 3, BD
bisects £ABC, is the whole-statement of a BISECTED-ANGLE schema. DC encodes it by
establishing its only part-statement 248D = «CBD as known {see Figure 5). Similarly, DC
encodes the goal statement of problem 3 by tagging the part-statement 4D = CD as desired.

3.2.3. Schema Search. Based on its parsing of the diagram, DC identifies a set of diagram
configuration schemas which are possibly true of the problem. Iis agenda then becomes to
establish enough of these schemas as true so that the goal statement is established in the
process. Typically, one of the ways-to-prove of a schema can be established directly from
the encoded givens. So for instance, in probiem 3 the PERPENDICULAR-ADJACENT-ANGLES
schema can be concluded immediately. Other schemas require that additional statements
be established about the diagram in order that they may be concluded. Thus, it was only
after the PERPENDICULAR-ADJAGENT-ANGLES schema is established in the example problem
that the TRIANGLE-CONGRUENCE-SHARED-SIDE schema can be established. At this level, DC
is performing a search through the space defined by its diagram schemas much like the
search GTE and other previous models perform through the execution space as defined by
the rules of inference of geometry. We will refer to the space DC works in as the diagram
configuration space.
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As in the execution space, a search strategy and heuristics can be employed to guide
search in the diagram configuration space. At any point DC has a number of schemas
which it might apply. The system has a selection heuristic to chose among these schemas.
Although a more powerful heuristic could be used, we have found that because the
diagram configuration space is so small, a simple heuristic is sufficient. In addition, this
heuristic is consistent with our subjects who do not seem to spend much time evaluating
alternatives, but rather forge ahead with the first reasonable inference that occurs to them.

Essentially, DC's selection heuristic implements a bidirectional depth first search. A
schema is applicable if there are proven part-statements which satisfy one of the schema's
ways-to-prove. It is desired if its whole-statement or one its part-statements are goals of
backward reasoning. [f a schema is both applicable and desired, then DC selects it.
Otherwise, DC either makes a forward inference by selecting any applicablie schema or
makes a backward inference by selecting any desired schema which is one statement
away from satisfying ones of its ways-to-prove.

The selection heuristic is made more efficient by only considering schemas which a
quick estimate determines are potentially applicable. A schema is potentially applicable
when the number of its part-statements which are proven is equal or greater than the size of
the smallest way-to-prove. This estimate of applicability is much quicker to compute than
checking all the ways-to-prove and it eliminates from consideration schemas which are
clearly not applicable at the current moment. It also leads to an interesting prediction.
Since the heuristic only estimates whether a schema is applicable, it is possible that a
schema will be selected even though it is not applicable (and not desired). For example, a
TRIANGLE-CONGRUENCE-SHARED-SIDE schema may be selected when two of its part-
statements are known even though these part-statements do not make up a way-to-prove
{e.g., because they form the insufficient angle-side-side combination). More than once we
observed subjects doing just this, considering whether two triangles are congruent because
they had the right number of statements but failing because they did not have the right
combination of statements. In section 5.4.2, we relate this phenomenon to an “indefinite
subgoaling” phenomenon identified by Greeno (1976).

3.3. Avoiding Algebra in the Diagram Configuration Space

One of the places where the Geometry tutor expert (GTE) gets bogged down while
attempting difficult problems is in the fruitless application of algebra inferences. Algebra
expressions can be combined and manipulated in infinite variety and as a result, algebra
inferences often lead problem solvers into black holes in the search space from which they
may never return (see the analysis in section 4.1). Thus, it is worth discussing how DC
avoids the black hole of algebra.

DC avoids the algebra sub-space by having schemas which abstract away from algebra
-- in other words, these schemas are essentially macro-operators that make the same
conclusions in one step that would require many steps to do by algebra.! These schemas
are not ad hoc additions to remedy the difficulty with algebra sub-proofs. They correspond

1 While geometry textbooks have lots of theorems to skip cormmonly occurring steps, they do not have any
theorems equivalent to the algebra schemas we are proposing (at least none of the textbooks we've seen do).
We can think of two possible reasons for why they are absent. First, the utility of such theorems has been
overlooked by textbook writers. We doubt that this first reason is right. Second, since these theorems are
dependent on information which is implicit in the diagram but is not explicit in formal statements, they are lefi out
because It is difficult to express them in geometry formalisrn.
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with particular geometric images and are formally no different than other diagram
configuration schemas. They are instantiated as a resuit of diagram parsing and can be
used when needed in place of difficult algebra sub-proofs. Essentially, these schemas
provide a way to recognize when algebra is needed and when it is not needed. GTE does
not have such a capability.

A single type of algebra schema handles most of the algebraic inferences. We call
these schemas WHOLE-PART congruence schemas and they correspond with the
configurations in Figure 4b that begin with WP. Our WHOLE-PART schemas are essentially
the same as the WHOLE/PART schemas discussed in Anderson, Greeno, Kline and Neves
(1981) and Greeno (1983).

A great variety of WHOLE-PART schemas can be formed by pairing any two component
configurations which have corresponding parts (see Figure 4b). However, it would be
misleading to suggest that all algebra sub-proofs can be solved using some WHOLE-PART
schema. For example, the geometric proof of the Pythagorean theorem requires an algebra
sub-proof involving multiplication and squaring which are outside the scope of WHOLE-PART
schemas. Nevertheless, the vast majority of problems in a high school curriculum that
require algebra sub-proofs fall within the scope of WHOLE-PART schemas.

4. EVALUATION OF THE DC MODEL

The purpose of this section is to discuss the strengths and limitations of the DC model.
First, we describe a formal analysis of relative size of the execution space and the diagram
configuration space to argue for the computational efficiency of DC. Second, we show how
the DC model captures the regularity in expert step-skipping that is contrary to straight-
forward abstraction and macro-operator learning approaches. Third, we provide protocol
evidence for a forward reasoning preference displayed by experts on easier problems.
Finally, we discuss some of the limitations of the DC model, in particular, we try to identify
the task situations which stretch or break the model.

4.1. A Comblnatoric Analysis

Comparing the problem solving effectiveness of DC with other models of geometry theorem
proving is complicated by the fact that there are are multiple sources of intelligence in these
models. In particular, the most important factors are 1) the problem space representation
and 2) the search heuristics used. In addition to GTE, many previous models (e.g.,
Gelernter, 1963; Goldstein, 1973} search in the execution space. Variations in the problem
solving effectiveness of these models can be characterized by differences in search
heuristics . Since DC uses a different problem space as well as different heuristics, the task
of comparison is complicated. A more tractable task is to compare the problem space
representations independent of heuristics. Since search performance could be improved in
both spaces by adding heuristics, an analysis of the size of the two spaces should
approximate the relative effectiveness of models based on these spaces.

4.1.1. Method of Analysis. The relative size of the execution and diagram configuration
spaces was measured by comparing the "bushiness” of a brute force forward search in
each space on problem 7 in Figure 1. The bushiness is measured by counting the number
of operators that apply at each successive “ply” of operators. The first ply is all the
operators that can apply to the initial state (the givens). The second ply is all the operators
that can apply to the collection of known statements created in the first ply. And so forth.
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The operators we consider as part of the execution space are a collection of 27
definitions, postulates, and theorems that represent a significant share of the rules in a
standard geometry curriculum up to and including rules for proving triangles congruent. To
simplify this analysis somewhat some rules concerning complementary and supplementary
angles were left out. The operators of the diagram configuration space are diagram
configuration schemas that correspond with the same slice of the curriculum (as shown in
Figures 4a and 4b).

In addition to performing this analysis on the execution space and diagram configuration
space, we also analyzed the size of the execution space when all the algebra and algebra-
related operators are eliminated from it. The three algebra rules are the ADDITION-
POSTULATE, SUBTRACTION-POSTULATE, SUBSTITUTION. In addition to these, any rules whose
conclusions relate angle or segment measures need not be considered since these
refationships can only be acted on by algebra rules. This eliminates six more rules: DEF-
MIDPOINT, DEF-BETWEENNESS, ANGLE-ADDITION, DEF-RIGHT-ANGLE, DEF-CONGRUENCE, and
SUM-TRI-ANGS. We did the same analysis with this reduced rule set.

4.1.2. Results and Discussion. Table 2 indicates the results for the analysis.

The general results can be summarized as follows. In the execution space, 6 plies of

breadth first search are required and more than 108 operator applications are investigated.
In the execution space without algebra 6 plies are required but only 27 operator
applications are investigated. Interestingly, the size of the search space is dramatically
decreased if algebra-related rules are not considered. Although this result is revealing, it
doesn't suggest that we can just throw out algebra. Many problems require algebra sub-
proofs in their solutions and thus, the execution space without algebra is not a workable
alternative. However, the analysis indicates that algebra-related inferences can be a major
source of combinatoric explosion.

Because of the larger grained operators of the diagram configuration space, only 3 plies
of breadth first search and 8 operator applications are required. This space is so much
smaller than the execution space that a brute force search of this space can be effective
whereas domain specific heuristics are necessary to effectively search the execution space.
The diagram configuration space is also significantly smaller than the execution space
without algebra indicating its power is not derived solely by the algebra-avoiding WHOLE-
PART schemas. In addition, whereas the execution space without algebra cannot solve
problems, like problem 5 in Figure 1, where algebra is required, DC can solve the majority
of these problems.

4.2. Accounting for Experts’ Step-Skipping Behavior

In the process of planning a solution, our expert subjects made inferences that skipped
more than 50 percent of the steps necessary for a complete solution in the execution space.
In addition, we found that out subjects were skipping the same kinds of steps. In this
section, we show how the diagram configuration space accounts for this reguiarity in step-
skipping behavior.

4.2.1, Experimental Procedure. The data used for this analysis comes from four subjects'
(B, K, J and F) verbal reports on one problem and one subject's (R) verbal reports on eight
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problems. Two of the single-problem subjects (B and K) were mathematics graduate
students while the other two (J and F) were researchers on the Geometry tutor project.
Subject R is a high school geometry teacher. All protocols were collected using the
concurrent protocol methodology of Ericsson and Simon (1984) where subjects are asked
to report what they are thinking as they problem solve. The four single-problem subjects
were audio-taped as they entered their solutions using the interface of the Geometry tutor,
while subject R was video-taped as he made pencil markings on a paper diagram and
reported his solution verbally. The record of computer interactions on one hand and the
video record of diagram marking and pointing on the other hand helped to resolve
ambiguous verbal references like "this segment is equal to this segment”.

4.2.2. Msthod of Protocol Analysis. The protocols were segmented into 1) planning
episodes where subjects made inferences for the first time in the process of developing a
proof sketch, 2) refinement episodes where subjects refined their proof sketch by filling in
skipped steps, and 3) execution episodes where subjects indicated steps in their final
solution. The execution episodes of the single-problem subjects correspond with the
verbalizations they made while entering steps into the Geometry tutor interface. The
execution episodes of subject R, on the other hand, correspond with the verbalizations he
made while reporting his final proof to the experimenter.

This particular analysis is focussed on the planning episodes. The goal of the data
analysis was to identify the steps in a complete execution space solution that were
mentioned by the subject during planning?. The execution space solution for each subject-
problem pair was recorded in a proof tree diagram and each statement that the subject
mentioned during planning (except the given and goal statements) was circled on this
diagram. Figure 2 illustrates the result of this analysis for the protocol of subject R in Table

4.2.3. Model Predictions. We derive predictions from DC by assuming that a statement will
be mentioned for each schema application. lf the schema has a whole-statement, we
predict that this statement will tend to be mentioned. If it does not contain a whole-
statement, e.g., like the WHOLE-PART schemas, we predict the concluding part-statement will
tend to be mentioned. We predict that all other statements will tend to be skipped. This
prediction entails a quite simple assumption about the verbalization of problem states, i.e.,
one verbalization per schema application, however, it provides a good fit to the data. Below
we discuss how the the major difference between the predictions and the data might be
accounted for by a slightly more complex assumption about verbalization.

4.2.4. Resulis and Discussion. In the twelve subject-problem pairs, less than half of the
intermediate steps were mentioned (37/98) and more were skipped (61/98). The model
predicted that 29 steps would be mentioned and 69 skipped. Tables 3 and 4 show the data
for each subject-problem pair and will be discussed below (note that subject R, problem 7 is
in both tables). Of the 29 steps that DC predicts will be mentioned, 23 were actually
mentioned and only 6 were not. Of the 69 that DC predicts will be skipped, 55 were
skipped and only 14 mentioned. A Chi square test was used to determine whether this
distribution could have occurred by chance. The Chi square value (X2(1) = 30.3) indicates

1 The complete execution space solution for the single-problem subjects is the one they entered into the
Geomelry tutor interface. The multiple-problem subject R was not forced ta indicate all the details of a complete
execution space solution and thus, to decide what execution steps he skipped, we filled in the gaps with the
shortest execution space path possible.
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it is unlikely that the model's fit to the data is a chance occurrence (p < .001). We can take a
closer look at the data to see how well the result generalizes across subjects and problems,
particularly since the subjects are over represented by subject R and the problems by
problem 7.

Table 3 shows the data for all five subjects on problem 7 and indicates the model to data
fit is not pecuiiar to subject R. A Chi square test on the column totals yields X2(1) = 14.1,
p<.001. Table 4 shows the data for subject R on eight problems and indicates that the
results are not peculiar to problem 7. A Chi square test on the column totals yields X2 (1) =
22.0, p<.001.

if the model fit perfectly, the totals for columns two and three in the Tables would be
zero. The predictions are most deviant from the data in column three — the subjects
mentioned fourteen! steps that were predicted to be skipped. Eleven of these cases are
situations where the subject must use more than one part-statement in order to prove a
schema. In such situations, subjects often mention one or more of these part-statements.
For example, in planning a solution to problem 3, part-statements £ADB = 2¢DB and/or
£ABD=2CBD might be mentioned because both are needed to prove the TRIANGLE-
CONGRUENCE-SHARED-SIDE schema. To account for such situations our simple model of
verbalization, namely, “one step mentioned per schema”, could be elaborated to predict
that extra verbalizations will tend to occur for schemas which require more than one part-
statement to be proven. This more complicated model of verbalization would only provide a
slightly better match to the data. While the number of misses (column 3) would be reduced
by eleven, the number of false alarms (column 2) would be increased by six. The increase
in false alarms results from the fact that subjects occasionally skipped part-statements the
alternative model of verbalization predicts they should mention.

Other reasons why the predictions do not exacitly fit the data include: 1) subjects may fail
to mention an inference step for some model-unrelated reason, for example, because they
momentarily forgot the experimental instruction to think aloud; 2) subjects, especially
teachers, may feel inclined to explain themselves and thus, immediately report intermediate
steps that support a leap of inference but were not a part of it; or 3) subjects may be at a
different stage of expertise than DC by either a) being behind, having not yet acquired
certain configuration schemas, or b) being ahead, having acquired larger configurations
than the ones DC uses. A potential instance of (3b) may explain the 2 steps in subject R's
solution to problem 8 (see Figure 1) that he skipped though we predicted he would mention
them (see column two of Table 4). In this case, it appeared that the subject used a diagram

1Adciing the third column totals from Tables 3 and 4 yields seventeen. However, since subject R, problem 7
appears in both tables, we need to subtract three from seventeen to get the proper overall total of fourteen.
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configuration that combined two of DC's and thus was able to skip extra steps that the
current version of DC cannot.

4.3. Forward Inferencing and Completion by Exhaustion

Of the eight problems subject R solved, he solved five by a purely forward search (problems
1, 3, 4, 5, 8 in Figure 1), one by a forward search that was guided by the goal (problem 2),
and two using some backward inferences (problems 6 and 7). By pure forward search, we
mean that the problem solver did all of his reasoning without using, and often without
reading, the goal statement. The five purely forward solutions were on problems that
tended to be easier for him in the sense that he solved them in less time. Only one of these
five took fonger than any of the other three.

One somewhat peculiar and interesting aspect of subject R's forward reasoning was that
on a number of the simpler problems he was able to decide he had finished the proof
before reading the goal. For instance, while solving problem 5 he said, “I didn't even look
at the goal but I've got it". At some point in solving these problems he knows everything he
can about it. As he says while solving problem 3, "we can determine anything from there”
(see Table 1). itis as if he exhaustively searches all possible forward inferences. But, an
exhaustive search of the execution space for a particular problem is unlikely given its
typical vast size — particularly since algebra inferences could chain on infinitely. On the
other hand, the size of the diagram configuration space for these problems is quite small. In
fact, it is bounded by the number of plausible diagram configurations which appear in the
problem diagram. Thus, it seems that subject R is able to stop his forward inferencing and
conclude he is done when he has proven (or considered) all the plausible configurations.

Larkin, et. al. (1980a) describes physics experts as working forward on simpler
problems where they are relatively sure that “solving all possible equations will lead quickly
to a full understanding of the situation, including the particular quantity they are asked for.”
This description provides a good characterization of subject R if we simply replace "solving
all possible equations” by “applying all possible configuration schemas”. One difference,
though, is that physics equations typically correspond with one step in the solution of a
physics problem, while diagram configurations correspond with multiple steps in a
geometry proof. This is particularly important since the execution space of geometry is so
large. Without the chunking provided by diagram configurations, it seems unlikely that a
working forward strategy couid work on all but the simplest geometry proof problems.
Subject R's ability to purely work forward on relatively difficult problems as well as his ability
to recognize he is done before reading the problem goal are further evidence for the DC
model.

4.4, DC's Limitations

We discuss DC's limitations both in terms of how the computer simulation could be
extended to be a more complete and accurate model of geometry expertise and in terms of
what situations cause trouble for DC's particular problem solving approach. The computer
simulation could be made more complete by adding procedures 1) to refine and execute
the abstract plans DC currently creates, 2} to determine when and where constructions are
necessary, 3) to integrate diagram parsing and schema search, and 4) to draw diagrams
from general geometric statements.

4.4.1. Plan Execution. A model of plan execution would involve finding solutions, either by
retrieval or by search in the execution space, to the series of short subproblems that result
from planning. The majority of these subproblems are only one or two execution steps
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long. The longer subproblems are algebra proofs of the steps skipped by the WHOLE-PART
schemas. These proofs share the same general structure and experts do them by retrieval
for the most part. Even if the solutions to these subproblems are done from scratch, they
are small enough that they can be easily solved by search in the execution space. Adding
procedures for doing search in the execution space would have the additional advantage of
providing a way to perform certain types of algebra inferences that do not correspond with
any of DC's current diagram configurations. These inferences often involve the pairing of
two different types of configurations. For example, the RIGHT-TRIANGLE and the ADJACENT-
COMPLEMENTARY-ANGLES configurations (see Figure 4a) can be paired to form an equation
between the two non-right angles of the right triangle and the two adjacent complementary
angles. We could supplement DC with such kinds of paired-configurations (as in Figure 4b)
or, alternatively, the execution space search component could be used to discover such
pairings.

4.4.2. Constructions. The computer simulation could also be made more complete is by
adding procedures to perform "constructions”, that is, the drawing of auxiliary lines in a
problem diagram to provide new inference possibilities. Currently DC is not capable of
performing constructions and thus, cannot solve the class of geometry problems which
require them. However, we feel that DC is particularly well-suited for adding a construction
capability. The major decision points in solving proof problems which may require
constructions are 1) deciding when a construction might be needed, and 2) deciding what
construction to introduce. Typically, geometry systems attempt to perform constructions
only when other methods appear to be failing. Since the diagram configuration space for
any particular problem is relatively small compared to the execution space, DC could
quickly and definitively determine when a construction is necessary by exhaustively
searching this space. The task of proposing potentially useful constructions could be
performed in DC by completing configurations that partially match images in the diagram.

4.4.3. Integrating Diagram Parsing and Schema Search. The computer simulation could be
made more efficient and more accurate as a model of human problem solving by
integrating the diagram parsing and schema search processes that are currently performed
in separate stages. Instead of doing all of the diagram parsing ahead of time, it should only
be done on demand when the system is focussed on a part of the diagram which hasn't
been parsed. Initially, the encoding of the problem given and/or goal statements could
provide a focus of attention on a particular part of the diagram that involves these
statements. DC could parse this portion of the diagram in terms of the configurations that
appear there. Later, any new part-statements proven via schema search could shift the
focus of attention to other parts of the diagram which could be similarly parsed. What
remains to be defined is the range of attention, that is, how much of the diagram should be
parsed at one time.

Integrating the parsing and schema search would make DC more efficient in cases
where the diagram contains over-specialized figures, that is, configurations that look true,
but do not follow from the problem givens. In such cases, the current diagram parsing
process instantiates configuration schemas that will never be used in problem solving. For
example, the line GH in problem 7 turns out to be irrelevant to the solution — there is no
given information that bears on it. However, since it appears parallel to line &g, the diagram
parser instantiates numerous schemas that correspond with apparent relationships like
AGCK=AHCK, ISOS ACGH, AB | GH, and GH 1 cD. Without line GH the diagram contains 15
schema instances - with GH it contains 28 more. In the process of schema search these
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schemas are never used, so the work of instantiating them is wasted, If diagram parsing
was done on demand, however, this extra work would not be necessary.

4.4.4. Diagram Drawing. While over-specialized problem diagrams can cause a slight
amount of extra work, they do not cause DC to fail on problems. However, if the diagram is
improperly drawn, that is, it does not correctly represent the problem givens, the current
simulation will not be able to solve the problem. For example, if the line BD in the diagram
for problem 3 did not appear perpendicuiar to the base, DC would not instantiate the
PERPENDICULAR-ADJACENT-ANGLES schema and thus, could not solve the problem. One
way to extend DC to deal with such diagrams is to allow it to consider configurations
beyond those which are apparent in the diagram, like PERPENDICULAR-ADJACENT-ANGLES in
the example above. An alternative involves following the standard classroom wisdom
which suggests that such diagrams should be redrawn. In particular, we could extend DC
to deal with inaccurate diagrams by adding a diagram drawing facility that could draw
diagrams to accurately reflect a problem's givens.

5. COMPARISON WITH PREVIOUS GEOMETRY EXPERT SYSTEMS

Geometry theorem proving models have been developed by numerous researchers, most
with primarily Al concerns (Gelernter, 1963; Goldstein, 1973; Nevins, 1975) and at least
one, besides GTE, based on human data (Greeno, 1878). We make comparisons with
Gelernter's model because it was the first, Nevin's model because it is the most powerful
system we are aware of, and GTE and Greeno's model because they were based on
human data.

5.1. Gelernter's Geometry Theorem Proving Machine

Gelernter's model was the first Al model of geometry proof problem solving and it worked by
performing a backward heuristic search in the execution space. The use of the execution
space puts the model at a disadvantage that could only be overcome if the heuristics in
Gelernter's model make up for the power gained by the abstract nature of the diagram
configuration space. However, this is not the case. The major heuristic of Gelernter's
model was to reject backward paths when they became implausible in the diagram. Since
only plausible configurations are considered by DC, these backward paths that Gelernter's
model rejects are not even in the diagram configuration space for a particular problem.
Thus, they are rejected implicitly without ever being considered.

Gelernter made no claims about modeling the inference-by-inference behavior of
human problem solvers. And even at a more descriptive level, his model's emphasis on
backward reasoning is inconsistent with the opposite forward reasoning emphasis of
human geometry experts. In addition to subject R's clear forward reasoning preference, a
much larger proportion the other subjects inferences were forward rather than backward.

5.2. Nevins' Model

Nevins (1975) presents a geometry theorem-proving program which is probably more
effective and efficient than any other geometry model. His major emphasis was on
structuring the problem space of geometry such that a predominantly forward reasoning
strategy could be effective. He claimed that human experts engage in much more forward
inferencing than backward inferencing. Although he provided no evidence and was
probably reacting to the purely backward reasoning strategy of most expert systems at that
time, it is interestingly that he made this claim well before empirical evidence came out
verifying his intuition in physics problem solving (Larkin, et. al., 1980a), medical diagnosis
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(Patel & Groen, 1386), and now in geometry. The success of forward inferencing in Nevins'
model is made possible by the way in which he structured the problem space.
Unfortunately, Nevins is not very clear about the exact structure of this problem space. The
structure is embedded in the processes he describes.

However, the problem space implicit in his description is much more like the diagram
configuration space than the execution space. Because the model only recognizes six
predicates (LN=line, PR=parallel, PRP=possibly parallel, RT=right angle, ES=equal
segment, and EA=equal angle}, it is effectively working in an abstract problem space. It
ignores the distinction between congruence and measure equality as well as the distinction
between midpoint and bisector predicates and their corresponding equality predicates.
The modei makes inferences using a number of “paradigms” which are cued by certain
features of the diagram and which make conclusions in the form of the predicates. These
paradigms share many characteristics with diagram configuration schemas: 1) they are
cued by the diagram, 2) they can make multiple conclusions, and 3) they are often macro-
operators, i.e., capable of inferences which require multiple steps in the execution space.
However, they are embedded in complex procedures within Nevins' model and are not
clearly and uniformly represented like diagram configuration schemas are. Nevins' model
does not use appearances in the diagram as DC does to create candidate schemas.

Although he did not present it this way, the success of Nevins' model can be considered
further evidence for the computational efficacy of abstract planning in geometry. What the
DC model adds is an explicit and uniform representation which 1) makes clear why Nevins'
model worked and 2) makes clear how it could be extended, say, by adding diagram
configurations for circles. An important side-effect of DC's explicit and uniform
representation is that it is teachable (see section 6.4). In addition to its computational
advantages, we have provided empirical evidence that human experts solve problems like
DC.

5.3. The Geometry Tutor Expert System

The Geometry tutor expert system (GTE), as described in section 1, was designed as a
model of ideal student problem solving to use as a component of an intelligent tutoring
system. The system works in the execution space and uses a best-first bidiractional search
strategy. To be successful in the otherwise intractable execution space, GTE uses
heuristics to guide its search. These heuristics were designed to be psychologically
realistic and consistent with the ACT" theory of cognition (Anderson, 1983}, The general
idea behind heuristics in ACT" is that student problem solvers learn various contextual
features that predict the relevance of an inference. These contextual features are
incorporated in the left-hand sides of the production rules and, in GTE, are either featuraes of
the problem diagram, previously established statements, or goals. As an example consider
the diagram of problem 7 in Figure 1. Although one can immediately infer GK=GK and
CD=CD by the reflexive rule, only the latter is a sensible inference that good students make.
According to GTE this is because good students have learned that one situation where the
reflexive rule is useful is when the segment is a shared side between two triangles that
might be congruent. Thus, GTE has a rule of the form:

IF there are plausibly congruent triangles ACD and BCD,
THEN conclude CD=CD using the refiexive rule.

GTE has a large set of such rules some of which reason forward from the givens of a
problem and others which reason backward from the goal. Each rule has an aptness rating
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which reflects how likely it is to be useful. For instance, a variant of the rule above which
tests whether there is a goal to actually prove the two triangles congruent has a higher
aptness rating than the rule above which in turn has a higher aptness rating than a rule
which simply suggests that any segment is congruent to itself. These aptness ratings
correspond with production strengths in the ACT* theory.

GTE provides a reasonably good model of student problem solving and has the
advantage of being embedded in a unified theory, i.e., ACT*, that provides an account of
many other cognitive tasks. However, from a computational point of view, the model has
the disadvantage that it often gets bogged down in fruitless search while attempting difficuit
problems, especially ones where algebraic inferences are required. In addition, there is no
systematic way to assign aptness ratings to rules so extending the model becomes
increasingly difficult. From an empirical point of view, GTE's problem solving approach
does not correspond with the abstract planning approach that we observed experts using.

5.4. Greeno's Perdix

Greeno used verbal report data from geometry students as the basis for the design of a
geometry theorem proving model called Perdix (Greeno, 1978). Like GTE, it is more
accurately characterized as a model of geometry students rather than geometry experts.
Unlike Nevins, Greeno's goal was not so much to build a powerful problem solving model,
but rather to capture the problem solving behavior of geometry students. In relation, our
goal in building DC was to capture the problem solving behavior of geometry experts so as
to have a model which is not only a powerful problem solver, but also solves problems in a
way that can be profitably taught to students.

Perdix used a mixture of execution space operators and more abstract macro-operator-
like operators. With respect to algebraic reasoning, Perdix contained operators which are
essentially the same as DC's whole-part schemas (Greeno, 1983) and thus, could skip over
the details of algebraic proofs. However, with respect to geometric reasoning, Perdix
operators appear to have been procedural encodings of geometry rules, that is, execution
space operators. In the empirical research associated with Perdix, Greeno made a couple
of observations which are particularly notable in relation to DC. The first concerns the use
of perceptual processing in geometric reasoning and the second concerns a useful type of
non-deductive or “indefinite” reasoning that both students and experts appear to engage in.

5.3.1. A Physical Distance-Reducing Heuristic. The first observation is the way in which
good students appear to use a visually-based heuristic fo guide their selection of
appropriate inferences in a certain class of "angle-chaining” problems (Greeno, 1978).
These problems are common in the parallel-line lessons of geometry curricula and typicaily
involve sets of parallel lines, for example, two sets of two parallel lines forming a
parallelogram on the inside. Students are either 1) given the parallel-line relationship(s)
and the measure of some angle and asked to find the measure of another angle or else 2)
given only the parallel lines and asked to find a relationship between two angles. In either
case, the problem usually involves finding some other angle which connects the two angles
in question via the transitivity rule. Although these problems typically contain numerous
angles to choose from, Greeno observed that students are fairly regular (and accurate) in
their selection of this “chaining angle”. They tend to pick an angle which, in the diagram, is
physically between (or close fo it) the two angles to be connected.

Perdix models this behavior by forming a “scanning line" between the known and
desired angles in the diagram and candidate chaining angles are considered in order of
their proximity to this scanning line. This scanning line method is an instance of a more
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general method for proposing subgoals by identifying objects that are physically between
the known and desired objects. The method is based on a heuristic: an operation which
reduces the physical distance between known and desired objects may also reduce the
logical distance between them. Although DC has not been programmed with such a
distance reducing heuristic, such a heuristic might aid DC on harder problems in identifying
diagram configurations which are most likely to provide a link between known and desired
configurations. The protocol data provides no evidence that experts use this heuristic,
howsaver, the problems subjects solved were not particularly demanding of such a heuristic.

5.3.2. Indefinite Goals. A second notable behavior that Greeno (1976) observed of
geometry students is that they often engage in the sefting of what he called “indefinite
goals”. When given a problem, like problem 5§, with a goal to prove two triangles
congruent, instead of attempting to prove particular corresponding parts congruent that are
a part of a particular triangle congruence rule, e.g., side-angle-side, subjects attempt to
prove any of the corresponding parts statements they can. These statements are indefinite
goals because they are not associated with any definite rule. DC accounts for indefinite
goals as they are a natural consequence of the way in which it applies schemas in
backward inferences. In DC, a schema is applied in a backward inference by making all
part-statements desired. In cases where the ways-to-prove of the schema require multiple
statements, the desired part-statements are indefinite goals since they were not set in order
to achieve any particular subset.

A related type of reasoning is characteristic of certain types of forward inferencing in DC.
In particular, the selection heuristic may chose to apply a TRIANGLE-CONGRUENGE-SHARED-
SIDE schema in the forward direction because a sufficient number (2) of the schema's part-
statements are known. This selection is indefinite in the sense that these two part-
statements may not be the right ones to match any of the ways-to-prove. Geometry experts
also appear to make such indefinite selections. At some point during problem 7, subjects R,
B, K, and F all considered proving aACD = ABCD and/or aAKD = ABKD because they had
established the congruence of three corresponding parts but found that they could not since
these parts formed the insufficient angle-side-side combination.

It should be noted that both the Nevin's model and Perdix {Greeno, Magone, and
Chaiklin, 1979) are capable of introducing constructions into the geometry diagram
allowing them to solve a class of problems that DC cannot as it currently does not have a
construction capability. However, as noted in section 4.4, we feel that DC is particularly
well-suited for adding a construction capability.

6. DISCUSSION AND IMPLICATIONS

Previous models of geometry problem solving do not provide an explanation of the abstract
planning abilities of experts. Geometry experts can quickly and accurately develop an
abstract proof plan that skips many of the steps required in a complete proof. We built a
computer simulation of geometry expertise, DC, which models this abstract plarning
behavior. DC's planning is based on perceptual chunks called diagram configurations
which provide a reliable index to clusters of relevant geometry facts. To establish the
computational advantages of DC, we performed a problem space analysis that showed that
DC is more efficient than models based on the execution space of geometry. In addition,
we showed that DC's particular approach to abstract planning is much like that of human
experts. Making a conservatively simple assumption about how DC would verbalize its
inferences, we found that the model does a good job of accounting for what steps experts
mention {and skip) while developing an abstract proof plan.
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We now turn to a discussion of how these findings relate to or might inform other issues
in cognitive science. In particular, we discuss: 1) how these findings bear on the
controversy in the human reasoning literature (see Holland, et. al., 1986) between specific
instances, mental models, schemas, and natural logic rules as the representational basis
for human reasoning, 2) how these findings contribute to the study of expertise in general,
3) how these findings fit (and don't fit) within unified theories of cognition like ACT* and
Soar, and finally, 4) how these findings might be applied to improve geometry instruction.

6.1. The Raw Material of Reasoning: Instances, Models, Schemas, or Rules

Holland, et. al. (1986) discuss four alternative theoretical views on human reasoning that
have grown primarily out of the empirical research on syllogism problems and Wason's
(1966) selection task. These views present different hypotheses about the nature of the
basic material with which we reason. They are listed below in order from a view of
reasoning knowledge as extremely specific to a view of knowledge as extremely general.

+ Specific instances . Reasoning proceeds by recalling specific instances of past
reasoning events which indicate an appropriate conclusion (see Griggs & Cox,
1982).

+ Mental models: Reasoning is performed by domain-independent comprehension
procedures that construct a concrete model of the problem situation from which
conclusions can be read off (Johnson-Laird, 1983; Polk & Newsl!, 1988).

» Pragmatic reasoning schemas: Reasoning is performed by the application of
pragmatic reasoning schemas which are abstractions of past reasoning events
(Cheng & Holyoak, 1985).

+ Naiural logic rules: Reasoning proceeds by the application and chaining together
of abstract rules, much like the formal rules of logic, to deduce a conclusion (see
Rips, 1983; Braine, 1978).

While the knowledge elements of the specific instance and mental model views are
more concrete and declarative in nature, the knowledge elements of the pragmatic
reasoning schema and natural logic rule views are more abstract and procedural. In the
first two views, the knowledge elements are descriptions of concrete objects and situations
in the world which must be interpreted to derive actions or conclusions. In the latter two
views, the knowledge elements do not correspond to any particular situation or set of
objects, but to large categories of situations and they prescribe an action to be performed or
conclusion to be made in that general situation.

The question we wish to pursue is how our growing understanding of reasoning in
geometry fits within the spectrum of these four alternative views of human reasoning.
(Geometry reasoning, as characterized by DC, is least like the natural logic rule view. DC's
schemas are specific to geometry and thus, are quite unlike the general natural logic rules.
On the other hand, DC's schemas are not specific enough to equate them with the specific
instance view. In general, neither students nor experts solve geometry problems by simply
recalling past experiences of solving them.

We are left with the two intermediate views. Because the distinction between them is
somewhat subtle we describe them in more detail. The mental model approach is of
intermediate generality in that it uses general language abilities to construct a model
(referent) of the problem statement, but the effectiveness of this model is limited by the
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reasoner's specific knowledge of the language of the domain. The pragmatic reasoning
schema view is intermediate in that reasoning is based on knowledge eiements (schemas)
which are general enough to apply to numerous problem types and domains, but are not as
general as formal logic rules which are applicable in any domain. One implication of the
difference between these approaches is that the mental model approach explains
reasoning errors in terms of working memory failures, while the schema approach explains
them in terms of negative transfer — i.e., the mapping of a schema to a situation where the
schema-based inference is incorrect (Holland, et. al., 1986).

DC has similarities with both the mental model and pragmatic reasoning schema view.
it is similar to the mental model approach in that it uses the problem diagram as a specific
referent or model of the abstract problem statement indicated by the givens and goals.
Many features of this model are usually too specific to be relevant, for example, the
particular lengths of segments. However, other specifics of the model can be important as
they can provide a cue to relevant inferences, for example, congruent-looking triangles can
cue an inference to prove them congruent. A concrete model has the advantage of making
important features or relationships clearly apparent (visible in this case) whereas they are
only implicit in abstract statements. in addition, the cues from the model have the effect of
allowing the problem solver to ignore lots of potentially applicable but irrelevant logical
knowledge. A model building procedure like the one Johnson-Laird proposes is not
necessary since the diagram provides a ready-made model!. According to the mental
model approach, what is left for the problem solver to do is properly annotate the model and
read-off the conclusion. This is essentially what we propose experts do — they annotate the
diagram, on paper or in their mind's eye, by noting established relationships.

However, the annotation process is not as straight-forward as it is in other problems the
mental model approach has been applied to. Rather, it involves fairly complicated logical
inferences, including, for example, the checking of ways-to-prove. This inferencing requires
the abstract geometric knowledge which is part of the DC schemas. This knowledge is
more like pragmatic reasoning schemas in that it is applied procedurally and it appears to
be acquired as abstractions of past geometry problem solving experiences.

Although the four views can be posed as competing hypotheses, it is likely that human
reasoning in general contains efements of each. While the DC model lends support for the
use in geometry of a combination of the mental model and pragmatic reasoning schema
approaches, neither approach by itself is sufficient.

6.2. Contributions to the Study of Human Expertise

6.2.1. What's behind Expert's Forward Reasoning Ability? One claim that has been made
about human experts is that they show a greater tendency than novices (especially on
easier problems) to work forward from the givens of a problem rather than backward from
the goal. This result has been observed in physics word problems (Larkin, McDermott,
Simon, & Simon, 1980a), in classical genetics word problems (Smith & Good, 1984), and in
medical reasoning (Patel & Groen, 1986) by comparing the problem solving behavior of
experts and novices. Although the comparisons were done between different subjects, the

TWhile many geometry proof problems given in classrooms include a diagram, it is not uncommon to state
proof problems without a dlagram, for example, the problem in figure 2 could be stated as “prove that if the
perpendicular altitude of a triangle bisects the angle, it also bisects the base". Such problems are typically
solved by drawing an appropriate diagram, a concrete model of this abstract statement, and then proceeding as
usual. In this case, the problem solver is constructing a mental modei.
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invited inference is that as a person acquires skill in one of these domains their problem
solving strategy will tend to shift from working backward to working forward. To observe this
shift within the course of skill acquisition, Sweller, Mawer, and Ward (1983) developed a toy
domain, using three equations from kinematics, where subjects could become “experts” in a
relatively short period of extensive practice (77 problems). They found the expected shift as
subjects worked forward on significantly more of the final problems than they did on the
initial problems.

In geometry we have observed an expert (subject R) exclusively working forward on a
number of the simpler problems we asked him to solve. This ability to essentially solve
certain problems without looking at the goal is an ability geometry novices do not have. We
would like to address the issue of how subject R and experts in general are able to
successfully work forward.

It should be pointed out, first, that this shift to working forward is not characteristic of all
domains of expertise. In some domains the given information is inadequate to successfully
solve problems by forward search. Jeffries, Turner, Polson, and Atwood (1981) showed
that expert programmers do not work forward from the problem givens (i.e., the
programming language primitives), rather they work backward from the goal information
(i.e., the program specifications). The shift to working forward appears to be characteristic
of deductive domains, like equation chaining or proof domains, where the given information
is quite rich and uncharacteristic of design domains, like programming, where the given
information is poor.

In domains where working forward can be successfully performed, it should not surprise
us that learners adapt toward using it more often. By working forward, problem solvers can
write down inferences as they make them and relieve the memory burden of storing
previous solution steps. Backward or bidirectional search, on the other hand, demands that
the problem solver encode and integrate more information as well as remember
intermediate goals. Sweller (1988) makes similar arguments and presents a computational
model and experimental evidence to support them. The upshot is that if a learner can
develop the ability to successfully work forward, she can alleviate some of the extra working
memory burden required by a backward strategy.

Sweller (1988) also proposes an explanation for expert's ability to successfully work
forward. He suggests that experts use schemas to classify problems into categories that
carry implications for appropriate moves to make. He defines a schema as “a structure
which allows problem solvers to recognize a problem state as belonging to a particular
category of problem states that normally require particular moves.” The diagram
configuration schemas of the DC model fit Sweller's definition. They allow the
categorization of sub-problems based on recognizing prototypical images in the problem
diagram and the retrieval of the relevant sub-proof.

The key point is not so much that experts will necessarily prefer working forward. Rather,
itis that as a result of the their superior skill, experts are capable of successfully working
forward without recourse to backward reasoning. Knowledge in the form of schemas is
what allows them to do so. However, schemas alone are not enough. The schemas must
be large enough or the problem small enough so that they reduce the search space
sufficiently for forward reasoning to be effective. We have seen how DC's schemas make
the search space of even relatively difficult problems quite small, for example, the forward
search space of problem 7 is only 8 schemas (see Table 2). Still, all of our experts did
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some backward reasoning on problem 7. It was only on simpler problems, like 3 and 5 with
only 3 relevant schemas, that subject R performed a purely forward search.

6.2.2. Perceptual Chunks and Problem Solving Performance. One of the more robust
results regarding expert-novice differences is the enhanced memory of experts for problem-
state displays. This difference has been established in a variety of domains: chess (De
Groot, 1966), electronic circuits (Egan & Schwartz, 1979), baseball (Voss, Vesonder, &
Spilich, 1980), computer programming (Jeffries, Turner, Poison, & Atwood, 1981}, and
algebra (Sweller & Cooper, 1985). in the earliest study of this type, it was shown that chess
masters can remember realistic board positions much better than chess novices can {De
Groot, 1966). This result does not arise from any innate perceptual or memorial
advantages experts might have, rather it arises from their extensive chess experience.
Experts are no better than novices at remembering boards with randomly placed pieces.

While these recall abilities are correlated with game playing skill, it has yet to be
decisively established whether they are a necessary part of game playing skill or whether
they are merely a side-effect of spending lots of time staring at a chess board. The theory
behind the recall results is that subjects perceive the board in terms of prototypical
configurations of pieces, “chunks”, and that experts' chunks are made up of more pieces
than those of novices (Chase & Simon, 1973). Chase and Simon have suggested that
experts associate appropriate chess moves with these chunks and Simon and Gilmartin
(1973) have a model of chess perception. However, a model has yet to be written which is
capable of both performing the recall task and playing chess. At the same time, the
proposal that experts associate moves with these chunks has received criticism (Holding,
1986).

The DC model is a step towards establishing a detailed theoretical connection between
perceptual chunks and problem solving performance. The diagram configurations of DC
provide a ready-made theory of perceptual chunks in geometry. We have already seen that
these perceptual chunks provide the basis for expert problem solving performance. It
would not be difficult to model superior problem-state recall in geometry by chunking
problem diagrams in terms of diagram configurations. Thus, it appears that the appropriate
knowledge representation is in place in DC to model both problem-state recall and problem
solving skill in geometry. Implementing a recall component and replicating the De Groot's
empirical result in geometry are tasks for future research.

Turning back to chess, DC's use of diagram configurations for abstract planning might
be the appropriate analogy for an integrated chess model. Rather than cueing particular
moves, chunks in chess may be more effactively thought of as problem state abstractions
which provide the basis for an abstract problem space in which players can plan and
evaluate multiple-move strategies.

6.3. DC's Relatlon to Comprehensive Theories of Cognition

In 1972 Allen Newell gave his well known “20 questions” talk (Newell, 1973) in which he
argued that to avoid spinning our wheels in cognitive science research we need to begin to
integrate local hypotheses and domain models into global theories that account for
cognition across a wide variety of tasks. Creating such comprehensive theories has now
become a major research effort (Anderson, 1983; Newell, in press; Johnson-Laird, 1983;
Holland, et. al., 1986). In this section we try to place DC in terms of two of these theories,
ACT" {(Anderson, 1983) and Soar {Newell, in press). We address the issue of whether the
mechanisms of problem solving and learning in these theories can account for expert
geometry problem solving as modeled by DC.
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Because both ACT* and Soar use a production rule representation of knowledge, our
first challenge is to find a way to express DC's schemas as production rules in such a way
as to not change the resulting behavioral predictions. Consider the TRIANGLE-CONGRUENGE-
SHARED-SIDE schema in Figure 3. This schema can be represented as 6 production rules
whose left-hand sides correspond to the 6 ways-to-prove of the schema and whose right-
hand sides contain 5 actions which correspond with the 5 part-statements of the schema. A
similar transiation could be made to express backward schema application in terms of
productions. Note that these production rules are macro-operators with respect to the
execution space of geometry in that they have the effect of numerous execution space
operators.

Is anything lost in transiating schemas to productions? In terms of problem solving
behavior the answer is probably no. However, another question we need to ask with
respect to the ACT* and Soar is whether the particular productions that correspond with
DC's schemas could result from the learning mechanisms of these theories. This question
is more problematic. The clusters of productions corresponding with DC's schemas
organize the formal rules of geometry in a particular and efficient way. It is not clear how
the production rule learning mechanisms in either ACT* or Soar could arrive at such an
organized set of productions.

These theories essentially view skill acquisition as involving two phases: knowledge
acquisition and knowledge tuning. In the knowledge acquisition phase, the learning
system uses information about the problem domain, e.g., problem descriptions, problem
constraints, example solutions, etc., to build some kind of basic problem space. In
geometry, this would involve acquiring the formal ruies of geometry, that is the execution
space operators, through instruction and examples. In the knowledge tuning phase, the
basic problem space is elaborated through problem solving practice so that the system
becomes more effective and efficient. Much of the research on skill acquisition in ACT* and
Soar has focussed on this second knowledge tuning phase. The basic approach of these
theories to knowledge tuning is a process of reducing the number of productions required
to perform a procedure — essentially both use a type of macro-operator creation mechanism
in which consecutively applicable productions or operators are composed into a single
production or macro-operator!.

There are both empirical and computational reasons to doubt that DC derives from
creating macro-operators of the execution space operators. First, the step-skipping
regularity we observed is an unlikely consequence of this approach. Although ACT* and
Soar have some stipulations on the appropriate context in which macro-operators are
formed, there is little in them that indicates which sequences of consecutively applicable
productions are more likely to be composed than others. Thus, we would not expect any
regularity in the kinds of steps that would be skipped in an abstract problem space of
composed execution operators. However, such a regularity is exactly what we observed of
subjects.

To be more precise both theories stipulate that macro-operator formation occurs within a
goal structure, that is, macro-operators are formed of consecutive productions applied to

TTo cut off a potential confusion based the distinction in Soar between operators and productions, we
would like to make clear that when we use “macro-operator” in reference to Soar, we are not referring to the
combination of Soar operators into macro-operators — Soar has no direct mechanism for doing this. Rather, we
are talking about the chunking of Soar productions into bigger productions.
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achieve the same goal. Thus, the clustering of productions into macro-operators will reflect
the organization of a problem solver's goals and subgoals and to the extent that this goal
structure is consistent across many problems, a step-skipping regularity could emerge.
However, it appears more likely that marco-operator-like knowledge in geometry is not
primarily organized around goals but is organized around objects and aggregations of
objects in the domain. According to this view, DC's schemas are not really macro-operators
in the sense of being derived from execution operators. Rather, they derive from perceptual
chunking of domain objects and they merely bare a macro-operator relation with execution
space operators.

A second reason to question the macro-operator learning approach comes from
evidence in the verbal reports that in the process of executing an abstract plan, subjects
could not always immediately fill in the steps they had skipped during planning. For
example, in problem 7 subjects would plan to prove the goal from £ADC = £BDC, apparently
using the PERPENDICULAR-ADJACENT-ANGLES schema. During plan execution, some
subjects did not immediately know how to justify the link between these two statements —
they attempted an algebra proof or searched the list of available geometry rules we
provided. However, if they had learned this schema by composing execution space
operators, that is, the very operators that they needed at this point, we would expect that
these operators would be readily available. Since these execution operators remain
necessary to execute proof plans, there is no reason why they would be forgotten in the
course of skill acquisition. It appears that experts' knowledge of the macro-operator-like
schemas is occasionally stronger than their knowledge of the corresponding execution
operators. This evidence is inconsistent with a view of the schemas deriving from the
execution operators — provided, as is the case here, that the execution opserators are still
necessary to solve problems.

Finaily, there are computational reasons to question macro-operator explanation of
step-skipping. Recall the macro-operator characterization of the TRIANGLE-CONGRUENCE-
SHARED-SIDE schema given above. The collection of such macro-operators for each
schema, call it S, is a restricted subset of the space of possible macro-operators. S is
restricted in two ways. First, S does not contain any of the possible macro-operators which
could make inferences between statements which are whole-statements of schemas, for
example, it doesn't contain an operator that could infer perpendicularity directly from
triangle congruence in a problem like problem 3. Second, S does not contain any of the 2,
3, or 4 action macro-operators that would be learned on the way to a 5 action macro-
operator like the one corresponding with the TRIANGLE-CONGRUENCE-SHARED-SIDE schema.
To achieve DC's simplicity in search control and match to the human data, a composition
mechanism would need to prevent a proliferation of unnecessary macro-operators. It is not
clear how this restriction could be implemented in ACT* or Soar.

One might consider whether this restriction could be achiaved within the Soar
architecture by having a hierarchy of problem spaces corresponding with the desired
organization. However, this approach begs the question — how would this hierarchy be
learned in the first place?

6.4. implications for Geometry Instruction

One of the goals of this research is to develop a second generation geometry tutoring
system based on DC. The Geometry Tutor that was based on GTE has already been
demonstrated as an effective alternative to homework problems improving average student
performance by about one standard deviation {Anderson, Boyle, Corbett, & Lewis, in press).
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We have two reasons for believing that DC might lead to an even more effective tutor. The
first has to do with DC's abstract planning abilities and the second has to do with the way
DC uses the problem diagram.

6.4.1. Tutoring Advantages of an Abstract Problem Space. One of the difficulties involved in
building an intelligent tutoring system (ITS) is finding a way to communicate about the
thinking that students do between their abservable problem solving actions. f the grain
size of the problem solving steps that the tutor allows is the same as the grain size of
students' "thinking steps”, then there is no problem. However, if the student and tutor are
working at different grain sizes, then the tutor will be at a disadvantage in trying to diagnose
student errors and provide appropriate feedback.

One of the complaints we have heard about the Geometry Tutor is that it does not
provide very good global feedback. The feedback it provides is focussed locally on the next
proof step the student might take rather than more globally at the next few steps or an
overall plan. Critics had the intuition that proof ideas can be born at a more global level.
Our current research on geometry experts has identified this more global level and has
characterized it in terms of DC's diagram configuration schemas. In other words, skilled
geometry problem solvers think at a iarger grain size than the grain size at which the
Geometry Tutor works. A tutor working at the smaller grain size cannot give instruction at
the larger one and thus, is disabled with respect to helping students reach skilled
performance. However, a tutor based on diagram configuration schemas could give
instruction at the larger grain size characteristic of skilled performance. Thus, it could better
aid students in reaching this level of skill.

6.4.2. Tutoring Advantages of a Diagram-Based Method. We are of the opinion that if you
discover a clever way to solve problems in a domain, you should tell it to students. There
are two caveats. First, the method must be one that is "humanly tractable". For example,
although the Simplex method for linear programming is a clever way to solve certain
optimization problems, it is not tractable method for humans. Second, there must be a way
to communicate the method so that it takes less time and effort for students to understand it
than it would for them to induce it on their own through problem solving practice.

We know that DC's problem solving method is humanly tractable because it appears to
be the method human experts are using. The next question is whether we can
communicate the method to students effectively. Some ITS designers have addressed the
problem of communicating about planning that occurs at a more abstract level than the
level at which solution steps are written or executed. Some examples of the resulting
tutoring systems include Bridge (Bonar & Cunningham, 1988), GIL (Reiser, et. al., 1988),
and Sherlock (Lesgold, et. al., 1988). The basic approach is to develop a command
language, usually menu-based and possibly graphical, which reifies this planning level.

Conveniently, we do not need to invent such a command language to reify DC's abstract
problem space. Essentially, it already exists in the form of the problem diagram. What we
envision is that rather than selecting an operator from a list of geometry rules as in the
Geometry Tutor, students will select an operator from a list of diagram configuration icons.
These icons will be the building blocks for proofs just as geometry rules were the building
blocks for proofs in the Geometry Tutor.

6.4.3. Implications for Geomstry Instruction in the Classroom. While our main focus has
been on how DC can provide the basis for an improved intelligent tutoring system, our
improved understanding of geometry problem solving may also have more general
implications for how geometry is taught in the ciassroom. On one hand, the DC model is a
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theory of the internal thinking processes of skilled geometry problem solvers. On the other
hand, it can be taken seriously as new method for doing geometry proofs which can be
explicitly taught in the classroom. In addition, the organization of knowledge in DC
suggests an alternative task-adapted organization of the geometry curriculum. Typical
geometry curricula are organized around topics and focus on teaching the formal rules of
geometry. Alternatively, a curriculum could be organized around diagram configuration
schemas and have the structure in Figures 4a and 4b. The formal rules, then, could be
taught in context of how they are used to prove schemas. Such a task-adapted curriculum
organization can help students to remember rules and access them in the appropriate
situations {Eylon & Reif, 1984).
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TABLE 1

A Verbal Protocol for a Subject Solving Problem 3.

We're given a right angle — this is a right angle,
perpendicular on both sides [makes perpendicular
markings on diagram];

BD bisects angle ABC [marks angles ABD and CBD]
and we're done.

We know that this is a reflexive {marks line BD],

we know that we have congruent triangles; we can
determine anything from there in terms of
corresponding parts

and that's what this [looking at the goal statement for
the first time] is going to mean ... that these are
congruent [marks segments AD and DC as equal on
the diagram].

A e S e e e leing phase LEEEE T
Reading given: t <ADB
Inference step 1: AC L BD

Reading given: BD bisects ZABC
Inference step 2: AABD = ACBD

e e e o ok e Execution phase EEEE T

In this phase, the subject refines and
explains his solution to the experimenter.
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TABLE 2
The Size of Three Different Problem Spaces on Problem 7.

Execution Execution Space Diagram

Space . without Algebra Configuration Space
Ist ply* 45 14 3
2nd ply 563 1 3
3rd ply >10° 3 2
4th ply >10° 1
5th ply >10° 2
6th ply >105 6
Total >106 27 8

*A ply is all the operator instantiations that apply to the known statements produced
by the previous ply.
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TABLE 3
Model-data Fit for All Subjects Solving the Same Problem.

Predicted Mention Predicted Skip
Actually  Actually Actually  Actually

Sbj Prob# Mention Skip Mention  Skip
R 7 3 0 3 2

B 7 2 0 1 3

K 7 3 0 1 6

I 7 2 0 i 3

F 7 3 2 3 9
Total 13 2 9 23

as
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TABLE 4
Model-data Fit for One Subject Solving Eight Problems.

Predicted Mention Predicted Skip
Actually  Actually Actually  Actually
Mention  Skip i Skip

.
%

Sbi
R

ooqc\m-nmmwio

D O b 00 Lh a3 e

La REL PSSO T LR S Y
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Total 13

s
W
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B Problem 1
/\ GIVENS: BD bisects AE
€ E S 1) T
A AB || DE
\/ GOAL: AE bisects BD
1)

B, FProblem 3

GIVENS: vt ZADB
BD bisects ZABC

GOAL: D midpoint of AC

A Problem 5

GIVENS: AD £ AE
ZBDF & LCEG
LABL B ZACE

GOAL: ABDF £ ACEG

c FEroblem 7
GIVENS: AT & BT
G 4 . AK E BK
GoAL: AB L €O
A B
0

c

D

37

Problem 2

GIVENS: AE L CF

E LAYXBE LEXD
GOAL: /BX( & /GXF

Problem 4

C aivens: &e || oF
Bt L OF
GOAL: BE L AC

Problem 6

GIVENS: E midpoint of DB
AD || BT

c  GOAL AAED & ACDB

GIVENS: 7Y || 72
LEYZ E LXZY
ZNOP & ZuQT

GOAL: ZPNQ & LTUQ

Figure 1. Geometry problems given to subjects and solved by DC.
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GOAL: D midpoint of AC

ABD £ LCBI

0 DEF-~
ac Lep @BTSECTOR
DEF-PERP
GIVENS: rt ZADE BD bisects SABC

Figure 2. The final solution for problem 3. The givens of the problem are
at the bottom and the goal is at the top. The lines represent inferences with the
conclusion at the arrow head, the premises at the tails, and the justifying
geometry rule at the dot in between. The statements subject R mentioned
during planning (see Table 1) are numbered while the ones he skipped are
circled.
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CONGRUENT-TRIANGLES-SHARED-SIDE :

Configuration: X

w
Whole-statement: A%Y = A%

Part-statements: 1. XY = XZ_
2. YW =W
F. LY LT
4, ZY8U = 228
B, LEWY = LXV7

Ways-to-prove: {1 2} {14} {2 5)
{45} {34} {35}

PERPENDICULAR-ADJACENT-ANGLES:

Configuration: N

L P M

Whole-statemert: THM J. NP
Part-statements: 1. rt ZLPN

2.rt £LMPN

3. LLPN 2 ZMPN

Ways-fo-prove: {1} 2} {3}

Figure 3. Two examples of diagram configuration schemas. The numbers
in the ways-to-prove indicate part-statements. Thus, in the CONGRUENT-
TRIANGLES-SHARED-SIDE schema {1 2} means that if the part-statements
XY=XZ and YW=Z\W are proven, all the statements of the schema can be

proven.
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Configurations

Segmeni-Based- Angle-Based- Triangle-Based-
Configurations Conflgurations Conllgurations

Adi-Supp Possibly- Posslbly-

Adj-Angs -Angs Gross Parallel-Linesg |Paralleis-Trans Triangle

RELDF) (=

Bisected Bisected | |Ad]-Compj [Perp-Adj Perp- Paratie} Paratlels-
-Seg -Ang -Angs -Angs cross -Lines Trans

Adj-Seys

KEY:

Adj Adlacent Parp  Pemendicular

Cong  Congruant Supp  Supplementary

Comp Complementary| Trans  Transvarsal

Equilat Equilateral WP Whole-part congruence
Isos {sosceles

Figure 4a. The diagram configurations for geometry up to and including the
topic of triangle congruence. The configurations in rectangles are basic
configurations which can be recognized immediately in problem diagrams.
The other configurations are specializations of these in which certain
relationships appear to hold among the parts of the configuration.
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Paired-Configuratlons

Sagment-Pelrs /&Pulfa Triangle-Palrs
> wP-Ad|- WP-TH
WP-Ad|-Ang SUBB-AnKE -Angs

o ZaN/INPATAN
WP-Ad)-Segs}] Equal-Hall P-Adj-Angs| | Equal- WP-Adj-
-Overlap -Sage -Overiap Half-Angs Comp-Angs Cong-Trl

P

Cong-Trl- Cong-Trl-
Shared-Sid Shared-Ang

WP-Ad|-Comp-
Angs-Overlap

Figure 4b. The pairing of basic configurations where relationships hold
among the corresponding parts of the configurations paired.
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I

ADEDC| ABEBC
GOAL

LA 8 LC

Figure 5. DC's solution space for problem 3, The schemas DC recognizes
during diagram parsing are shown in the boxes. The lines indicate the part-
statements of these schemas. A solution is achieved by finding a path from
the givens to the goal satisfying the constraints of the ways-to-prove slot of
the schemas used.



