HUMAN-COMPUTER INTERACTION, 1986, Volum;: 2, pp. 135-166
Copyright © 1986, Lawrence Erlbaum Associates, Inc.

—

Learning Flow of Control:

Recursive and Iterative Procedures

Claudius M. Kessler and John R. Anderson
Carnegie-Mellon University

%
ABSTRACT

‘Two experiments were performed to study students’ ability to write recursive
and iterative programs and transfer between these two skills. Subjects wrote
functions to accumulate instances into a list. Problems varied in terms of
whether they were recursive or iterative, whether they operated on lists or num-
bers, whether they accumulated results in forward or backward manner,
whether they accumulated on success or failure, and whether they simply
skipped or ejected on failure to accumulate. Subjects had real difficulty only
with the dimensions concerned with flow of control, namely, recursive versus
iterative, and skip versus eject. We found positive transfer from writing itera-
tive functions to writing recursive functions, but not vice versa. A subsequent
protocol study revealed subjects had such a poor mental model of recursion that
they developed poor learning strategies which hindered their understanding of
iteration. It is argued that having an adequate model of the functionality of pro-
gramming is prerequisite to learning to program, and that it is sensible peda-
gogical practice to base understanding of recursive flow of control on under-
standing iterative flow of control.

Authors’ present addresses: Claudius M. Kessler and John R. Anderson, Department of
Psychology, Carnegie-Mellon University, Pittsburgh, PA 15213,

136 KESSLER AND ANDERSON

CONTENTS

1. INTRODUCTION: PREVIOUS EXPERIMENTS ON RECURSION AND
ITERATION
2. EXPERIMENT 1: NOVICE DIFFICULTIES WITH RECURSION AND
ITERATION
2.1. Method
2.2. Results
2.3. Discussion
3. EXPERIMENT 2: A CLOSER LOOK AT TRANSFER ISSUES
3.1. Method
3.2. Results
3.3. Discussion
4. PROTOCOL ANALYSES
4.1. General Characteristics of the Protocols
4.2. Transferring From Recursion to Iteration
4.3. Transferring From Iteration to Recursion
4.4. Quantitative Analysis
5. GENERAL DISCUSSION

1. INTRODUCTION: PREVIOUS EXPERIMENTS ON
RECURSION AND ITERATION

Over the last few years there have been many attempts to foster and facilitate
the acquisition of programming skills. A central research topic within this con-
text is the issue of how novices acquire knowledge about control structures. For
programming languages like Pascal, understanding the different kinds of itera-
tion and their appropriate uses presents a major problem to the beginning stu-
dent. A major problem when teaching novices a language like LISP is to find an
effective way to teach recursion. Most students seem to have little trouble
acquiring the language until recursive programming constructs are intro-
duced. At this point, many students exhibit unusually strong comprehension
problems that jeopardize their further progress.

Previous work comparing the acquisition of recursive and iterative proce-
dures has shown that novices tend to understand the recursive process as an it-
erative one. Kahney and Eisenstadt (1982), for example, let novices and ex-
perts judge recursive programs. The subjects had to decide if the programs
actually did what they were supposed to do and give an explanation of their an-
swers. Nearly all of the novices’ answers gave evidence of a wrong or inadequate
model of recursion. The most popular misconception was to represent recur-
sion as a loop structure that iterates through a problem.

Kurland and Pea (1983) showed that the same kind of misconception under-
lies children’s understanding of recursive LOGO programs. Although subjects
could mentally trace a tail-recursive procedure, they could not evaluate pro-

LEARNING FLOW OF CONTROL 137

grams that included embedded recursive calls. The children’s verbal protocols
of their evaluation processes clearly showed that they viewed recursion as
iteration.

Anzai and Uesato (1982) got subjects to write simple recursive constructs
with about 1 hr of instruction. Subjects were taught a paper-and-pencil
method to simulate a factorial function and then had to build factorial functions
of their own. One group started with a recursive procedure and then switched
to an iterative one, while a second group received the opposite order. The re-
sults show that writing iterative functions first facilitated the writing of recur-
sive functions more than writing recursive functions first facilitated the writing
of iterative functions. It was difficult for the subjects in the experiment to inter-
pret recursive calls in the recursive procedures. Anzai and Uesato hypothesized
that learning iteration first helps with recursion because iteration provides a
model for what a recursive call does. However, learning recursion first does not
help with iteration because iteration is easily mastered, and the recursive con-
struct is not understood well enough to serve as the basis for transfer.

Unfortunately, Anzai and Uesato did not run control conditions that would
allow them to distinguish the amount of facilitation due to increased practice
from the effect of transferring from one procedure to another. It may be that
subjects improve in the iteration-to-recursion condition because of general
practice. In the recursion-to-iteration condition, there could be negative trans-
fer combined with the effects of general practice. These possible explanations
could be investigated if the transfer results of their conditions are compared
with the improvement that would occur in conditions that transfer from recur-
sion to further recursion and from iteration to further iteration.

With respect to the relevance of this study to computer programming, it
should be noted that the subjects in the Anzai and Uesato experiment did not
have to learn a computer language to execute the recursive procedures. The
fact that one normally learns about recursion in the context of learning a com-
puter language might introduce further factors in the process of skill acquisition
that are not addressed by Anzai and Uesato.

The experiments reported in this article are designed to further investigate
how novices learn about recursion and iteration and to test their ability to trans-
fer from learning one construct to learning the other. Because we are interested
in the acquisition of programming skills, our subjects learned about these con-
structs within the context of a programming language.

2. EXPERIMENT 1: NOVICE DIFFICULTIES WITH
RECURSION AND ITERATION

The programming language used in this experiment, SIMPLE (Shrager &
Pirolli, 1983), was designed especially for the purpose of studying the acquisi-
tion of recursive programming skills. SIMPLE does a few LISP-like operations

138 KESSLER AND ANDERSON

whose implementations read as close to English as possible. Subjects learned
this language and then solved a set of problems in a recursive and/or iterative
fashion.

The tasks were designed to address the following questions:

® Is it easier to learn iteration than it is to learn recursion?

® Is there transfer from learning one of these constructs to learning the
other?

® What factors influence the difficulty of writing recursive or iterative
functions?

2.1. Method

The Programming Problems. The programming tasks specified a set of
constraints to extract certain book titles from a catalog. Each title was associa-
ted with a catalog number and a subject area.

The functions that had to be written differed on five dimensions (in parenthe-
ses, we give the name of the dimension as it will be used throughout this article):

1. whether they were recursive or iterative (recursion/iteration),

2. whether subjects had to search over a list of names or over numbers, that
is, whether they had to work with the book titles or the catalog numbers
(list/number),

3. whether the answers were accumulated in a forward or reverse manner
when doing the recursive call or iterative loop (forward/reverse),

4. whether success or failure instances were accumulated in the answer, that
is, whether a book title did or did not belong to a certain category (success/
failure), and)

5. whether the answer was returned as soon as the accumulation test was
negative or whether the function worked its way through the whole
database by skipping negative instances (eject/skip).

The last four task dimensions were selected because they interacted with the
recursion/iteration dimension to produce variations of code with which stu-
dents in programming courses experience difficulty. We hoped to get at the
heart of these difficulties with a systematic study of the variations.

Figure 1 gives an example of a recursive function that works on a list, accu-
mulates successful instances in a forward manner, and ejects on a positive
nonaccumulation test. The example in Figure 2 is its iterative analog on
numbers.

All functions were patterned similarly: The first line contained a function
header, the second line a test for termination. Lines 3 and 4 carried out the tests
and accumulated the appropriate answer according to the function specifica-

LEARNING FLOW OF CONTROL 139

Figure 1. A recursive function.

The following is an illustration of a SIMPLE function called FIRST-SCIENCE
which takes a list of book titles and returns an answer list that contains all science titles
from the first of the list to the first nonscience title. The answer list contains the titles in
the order they appear in the variable. For example, FIRSTSCIENCE [basic logic faust
lisp dune] returns the answer [basic logic].

1. firstscience list IS

2. IF (list = [)) THEN[],

3. IF ((FIRST list) ISA? science) THEN

((FIRST list) PRE (firstscience (REST list))),

4. ELSET]
Comments:
1. Header: function-name (“firstscience”) and variable (“list”).
2. Termination condition: If the list is empty, then return the empty list.
3. Conditional branch: If the first item of the list is a science title, then return the first

itern and put it in front of the result of the recursive call on the rest of the list.

4. Conditional branch: Else return the empty list.

Figure 2. An iterative function.

The following is an illustration of a SIMPLE function called FIRST-SCIENCE
which takes a list of book catalog numbers and tests numbers less than and including the
given number. The function returns an answer list that contains all science catalog num-
bers from the given number to the first nonscience number. The answer list contains the
numbers in descending order. For example, FIRST SCI ENCE 7 returns the answer [7 6],
if number 5 is a nonscience title.

1. firstscience num IS

2. UNTIL (num = 0),

3. IF (num ISA? science) THEN

(ANSWER BECOMES (num POST ANSWER)),

4. ELSE DONE,

5. REPEAT WITH (num BECOMES (SUB1 num)).
Comments:
1. Header: function-name (“firstsciene”) and variable (“num”).
2. Loop termination: Test if the number has reached 0.
3. Conditional branch: If the number is a science title, then include it at the end of the

answer-variable.

4. Conditional branch: Else eject from the function.
5. Repeat statement: Repeat the loop with the number decremented by 1.

tion. For the iterative function, a fifth line contained the repeat statement. Of
all the dimensions varied, the difference between recursion and iteration was
the most profound on the level of the actual code. As can be seen by comparing
Figures 1 and 2, it affected every line of code but the first.

Differences on the list/number and forward/reverse dimensions involved
simple term replacement. When working with a list, the constructs FIRST

140 KESSLER AND ANDERSON

<list> and REST <list> were needed. For numbers, the analogical con-
structs were a number variable <num > and SUB1 <num > . The termination
test was list = [] for the listand num = 0 for the numbers. Otherwise, the func-
tion remained unchanged when going from list to number.

The forward/reverse dimension only affected the answer accumulation. For
recursion, the function word PRE signified forward accumulation, POST
signified reverse accumulation. For iteration, POST signified forward accumu-
lation, and PRE signified reverse accumulation. In both cases, the change from
forward to reverse accumulation involved only changing one function word.

On the success/failure dimension, going from accumulation of success cases
to accumulation of failure cases involved exchanging the then- and else-actions
of Lines 3 and 4 of the code (see Figures 1 and 2) for each other. This was true in
both iteration and recursion.

The eject/skip dimension required more subtle changes. In recursion, a
function ejected the answer after the empty list, [], had been returned. A func-
tion skipped over cases when a recursive call was made without an accumula-
tion action for the element the function currently was working on. For iteration,

the function word DONE after a test made the program eject from a loop, while
ANSWER BECOMES ANSWER was used for skipping the construct.

Instructions. The instructions about how to write the recursive and itera-
tive functions emphasized three aspects. First, a theoretical explanation of the
recursive or iterative construct was given. Then, a template for writing the
function was presented. Finally, the subjects obtained an example of a re-
cursive or iterative function.!

Design. There were two phases in the experiment, training and transfer.
In each phase, some of the task dimensions were varied systematically. There
were 16 conditions overall, obtained by having subjects transfer from program-
ming any of number-iteration, number-recursion, list-iteration, or list-
recursion in training to any of these in transfer. In each condition, there were
two subjects. One subject did forward accumulation in training and reverse ac-
cumulation in transfer, while the other subject did the opposite.

Within each condition, subjects had to solve four tasks that were obtained by
crossing the two task dimensions success/failure and eject/skip. The four tasks
obtained in this fashion were given to the subjects in a fixed order. This order
was kept constant over all subjects.

As an example, the subjects in the training condition recursion-list-forward
obtained problems they had to solve recursively, by working on a list and by
doing forward accumulation in the answer. Given this, the four problems they
had to solve were ordered in the following way: First, subjects had to accumu-

! A transcript of the instructions can be obtained from the authors.

LEARNING FLOW OF CONTROL 141

late successful instances while ejecting at the first positive nonaccumulation test
(success-eject). The second task accumulated failure instances and had the
same eject-condition (failure-eject). The third task also accumulated failure in-
stances, but it worked through the whole list given, skipping the nonaccumu-
lated elements (failure-skip). Finally, the fourth task accumulated successful in-
stances and skipped nonaccumulated elements (success-skip). The same task
sequence was employed in the transfer conditions.

Procedure. The participants in the experiment were Carnegie-Mellon
University undergraduates who had little or no programming experience. The
maximum programming experience allowed was one introductory program-
ming course. The subjects were assigned randomly to conditions. Because it
proved difficult to assess differences in programming proficiency prior to the
experiment, we employed analyses of covariance (ANCOVAS) to control for
differences in programming skills (see the Results section).

The whole experiment took place in two sessions over two consecutive days.
In the first session, subjects were familiarized with the commands of the pro-
gramming language and wrote four simple three-line function definitions
which employed no recursive or looping structure. One of the tasks, for exam-
ple, was to test if the first book title of a list belonged to a given category. This
first session was identical for all subjects.

In the second session, the subjects obtained instructions according to the
condition they were assigned. In the training phase, they learned either about
recursion or iteration and then had to solve the four tasks described above. Each
subject was given the first task he or she had to solve as an example. After
completing the training phase, subjects went directly into the transfer phase.
The procedure for the transfer phase was identical.

The experiment was self-paced. Subjects learned from an instruction booklet
and did the tasks on a computer terminal. After typing in the code for a prob-
lem, the subjects could change, delete, or insert a line of code to correct errors
they had noticed. After subjects signaled that they were done with a problem,
their code was tested for correctness. If it was correct, the subjects got positive
feedback; otherwise they got an error message and an example of a correct func-
tion which they could examine for as long as they wanted. Subjects did not
necessarily have to write the same function as was presented to them, but most
subjects chose to do so.

The learning criterion set for the subjects was to solve each of the four func-
tions correctly. If they made a mistake, they had to rewrite the function. Sub-
jects could solve the functions with the example present in their first pass. If
they made any mistakes, the example function was taken away, and they had to
solve the tasks on their own on their second pass. It took the subjects between 2
and 5 hr to finish the entire experiment. Nine subjects could not finish the ex-
periment and gave up prematurely. The reasons for their failure ranged from

142 KESSLER AND ANDERSON

genuine difficulties in understanding the task to fatigue and insufficient time to
finish the experiment. The data of two subjects were discarded because they
showed unusually high differences between the training and the transfer phase
(> 30 min). One of the subjects was faster in the training phase, the other in the
transfer phase. Both of the subjects were in the recursion-iteration transfer con-
dition. Additional subjects were run to replace these 11 subjects.

2.2. Results

The data collected included the time for each line of code written and a record
of the subjects’ terminal interactions, including all editing operations. This sec-
tion will present results about overall response times and response times on in-
dividual tasks. Response time for each problem was defined as the time be-
tween the presentation of the problem and the typing of the final function
terminator (a period), including all the editing operations a subject might have
performed. The overall response times were the sums of all the individual prob-
lem response times.

An ANCOVA was performed on the overall response times with program-
ming construct (recursion-recursion, recursion-iteration, iteration-recursion,
iteration-iteration) and datatype (list-list, list-number, number-list, number-
number) as between-subjects factors and phase (training, transfer) as within-
subjects factor. The response times in the definition phase were used as the
covariate because the phase captured subject attributes such as typing speed
and basic understanding of programming and the SIMPLE language, but not
skills related to recursion or iteration. The product-moment correlation be-
tween the times of the definition and training phases was .83, between the defi-
nition and transfer phase, .76. The ANCOVA yielded a main effect for phase,
F(1,16) = 11.28, p < .01, and a significant interaction between construct and
phase, F(3, 16) = 3.5, p < .05. The main effect indicates that there was a gen-
eral speed-up from the training to the transfer phase; the interaction indicates
that the speed-up was not uniform over the four groups that worked with a dif-
ferent sequence of constructs. All other effects or interactions were not signifi-
cant. Because the factor datatype was not significant, F(3, 15) = 1.26, p = .33,
further results will be discussed with respect to the four groups obtained by
crossing recursion/iteration with the training and transfer phases.

Figure 3 presents the total time to criterion and mean number of incorrect
functions in the training and transfer phases for the four training-transfer con-
ditions recursion-recursion, recursion-iteration, lteration-recursion, and
iteration-iteration. The data are the actual time taken, not adjusted for the
ANCOVA. It is obvious that the recursion-iteration condition behaved differ-
ently from the other three conditions. Post hoc comparisons revealed signifi-
cant differences below the 5% level for tests between recursion-iteration and
the three other conditions with respect to the total time taken in the transfer

LEARNING FLOW OF CONTROL 143

Figure 3. Experiment 1: Total time to criterion in seconds (means) and number of
errors (in parentheses).

Training/Transfer

Condition Definition Training Transfer Difference
Recursion-recursion 1305 1799 1125 674

3.9 (3.6) (1.4) (2.2)
Recursion-iteration 1702 2031 2244 - 113

(2.9) 3.1 (4.6) (-1.5)
Iteration-recursion 1013 1852 1162 690

(2.9) (4.4) (1.5) 2.9)
Iteration-iteration 882 1270 908 362

2.1 (1.1) (1.6) (-.9)

Note. n = 8 for each cell.

Overall (N = 32) 1211 1738 1360

(2.9) (3.0) (2.3)

phase. There were no significant differences between groups in the training
phase.

The speed-up for the recursion-recursion and iteration-recursion conditions
was significant, #(7) = 3.23, p < .05, and #(7) = 3.09, p < .05, respectively;
the speed-up for the condition iteration-iteration fell just short of significance,
t(7) = 2.01, p = .085. Because this condition was the fastest overall, the lack of
significance for iteration-iteration might have been due to a ceiling effect. The
recursion-iteration condition actually slowed down, although not significantly,
#(7) = 1.02, p = .34. The difference in speed-up between the iteration-
recursion and recursion-iteration conditions was significant, ¢(14) = 2.91,p <
.01.

The results reported so far were obtained through the manipulation of
between-subjects factors. We now want to turn to the results of our within-
subjects manipulation. Recall that within each condition and phase, subjects
had to solve four problems that were given to them in a fixed order. These prob-
lems were success-eject (Task 1), failure-eject (Task 2), failure-skip (Task 3),
and success-skip (Task 4).

Figure 4 shows the mean time to criterion for these four problems, split ac-
cording to construct group and phase. An analysis of variance (ANOVA) on
the total time to criterion for each task, with construct as a group factor and task
as a within-subjects factor, revealed a significant main effect for task in the
training phase, F(3, 84) = 7.50, p < .001. The group factor and the interac-
tion were not significant. Post hoc comparisons showed that the third task
(failure-skip) took longer than the other three tasks (Task 1-Task 3: #(31)
3.15, p < .01; Task 2-Task 3: #(31) = 2.82, p < .01; Task 4-Task 3: £(31)

144 KESSLER AND ANDERSON

Figure 4. Experiment 1: Mean time to criterion for single tasks (in seconds).

TRAINING (n = 8 for each cell)

Task Success-Eject Failure-Eject Failure-Skip Success-Skip
Recursion-recursion 429 340 705 324
Recursion-iteration 441 468 650 459
Iteration-recursion 335 510 641 379
Iteration-iteration 361 346 369 194

TRANSFER (n = 8 for each cell)

Task Success-Eject Failure-Eject Failure-Skip Success-Skip
Recursion-recursion 240 401 277 196
Recursion-iteration 452 620 684 489
Iteration-recursion 175 259 509 218
Iteration-iteration 293 245 192 178

5.65, p < .001). There were no significant differences among the other three
tasks.

For the transfer phase, the analogous ANOVA revealed a significant main
effect both for group and task, F(3, 28) = 6.40, p < .01, and F(3,84) = 3.02,p
< .05, respectively. The interaction was not significant. The group main effect
was due to recursion-iteration, which took significantly longer to respond than
the other groups (see Figure 3). '

The task main effect was caused by Task 3 taking significantly longer than
Task 1 and Task 4 (Task 1-Task 3: #(31) = 2.16, p < .05; Task 4-Task 3 t(31)
= 2.72,p < .05), and Task 2 taking significantly longer than Task 4 (¢(31) =
2.74, p < .01). Although the other ¢ tests for differences between tasks were not
significant, the results give the following rank ordering of time to criterion,
longest to shortest response time: Task 3 (failure-skip), Task 2 (success-skip),
Task 1 (success-eject), and Task 4 (failure-eject). This ordering, however,
might be slightly misleading, for if the groups are collapsed according to the cri-
terion “same or different construct from training to transfer,” the interaction of
group and task becomes significant, F(3, 90) = 2.88, p < .05. Figure 4 shows
that only the groups that change constructs exhibited the longer response times
with Task 3. Thus changing constructs seemed to aggravate the difficulty sub-
jects have with Task 3.

We also analyzed the times to write each line of code, but these analyses did
not provide any significant results. The data seemed to reflect some individual
differences in solution style, but there did not seem to be any systematic relation
to our task manipulations. For example, some subjects took very long to write
the first line of code, whereas other subjects spent a large amount of time
editing. We will try to point out some systematic relations between tasks and so-
lution styles in Section 4.

LEARNING FLOW OF CONTROL 145

The error data was analyzed in the same way as the response time data but
did not yield any significant results. However, an analysis of the distribution of
errors within the first four trials of each phase (i.e., the subjects’ first tries at
each of the problems) showed some interesting patterns. In the training phase,
the subjects working with the recursive construct made significantly more er-
rors than the subjects working with the iterative construct (32 vs. 18 errors;
x%(1) = 6.43, p < .05). Also, subjects made significantly more errors on Task 3
than on the other tasks (20 vs. an average of 10 errors; x2(1) = 11.68, p < .01).
For the transfer phase, the four groups distinguished themselves significantly
only on Task 3. Here, the groups that did not change constructs made signifi-
cantly less errors on their first try than the groups that did change constructs (4
vs. 13 errors, x}(1) = 10.42, p < .05).

We classified errors into semantic versus other, where semantic refers to pro-
grams that were syntactically correct and free of typing errors but for some rea-
son did not do the right operation. Overall, 68 % of the errors were semantic,
with 52% involving problems getting programs to skip or eject.

2.3. Discussion

There seem to be two major effects responsible for the results obtained in this
experiment. One is the difficulty the recursion-iteration group had in the trans-
fer phase. This group showed longer response times and higher error rates in
the transfer phase than any other group. The second effect is the difficulty sub-
jects had with the skip/eject dimension in the training phase which re-emerges
if they had to change constructs in the transfer phase.

There are two obvious features we can try to use to explain the strange behav-
ior in the recursion-iteration condition. One is the greater conceptual difficulty
of recursion. Perhaps dealing with recursion in some way hurt subjects when
they came to iteration. The second is the greater syntactic complexity of itera-
tion. Perhaps, subjects were not prepared to deal with the syntactic complexity
after recursion. Before elaborating on either of these explanations, we will con-
sider the result of Experiment 2, which tried to equate the syntactic complexity
of recursion and iteration.

Because doing the first skip-problem was so difficult, it is interesting to exam-
ine what exactly the subjects had to do to solve the problem of skipping an ele-
ment. In the recursive condition, skipping involved introducing a second
recursive call without an answer accumulation after the test for negative in-
stances. Subjects had never seen a function with two recursive calls in this ex-
periment, nor had they been told explicitly that this was possible at all. Given
the success-eject example, it required some creative effort and a good under-
standing of recursion to come up with the correct solution without being given
the example. Only 4 out of 16 subjects succeeded in doing so in the training
phase, and 1 out of 8 in the transfer condition iteration-recursion.

For the iterative skipping construct, there were two immediate solutions for

146 KESSLER AND ANDERSON

going from the example given (success-eject) to the skip case. One solution in-
volved omitting the fourth line of code (ELSE DONE, see Figure 2). The loop
would still work and would accumulate only successful cases. To get it to accu-
mulate failure cases involved a second, rather idiosyncratic change. Because no
negative test was available in SIMPLE and because there were only three catego-
ries, one could write two tests to accumulate the two categories other than the
negated category. Only two subjects in the iterative conditions came up with
this solution. Six more subjects actually generated the skipping construct that
was used in the feedback given to the subjects, ANSWER BECOMES ANSWER,
which left the answer variable unchanged if the test failed on a given iteration.

Given this interaction of the skip/eject and the recursion/iteration dimen-
sions, it is a reasonable assumption that the subjects who changed constructs
were exposed to most of the difficulties involved in the skip/eject dimension
twice. There obviously is not much opportunity for transfer because changing
constructs also altered the way the skip/eject dimension had to be written.
Thus, exactly these subjects had difficulty with the failure-skip problem in
transfer.

It should be emphasized that although subjects had to create something new
to deal with the skip case, they were given sufficient information from which, in
principle, they could create the program. They equally had to create something
new to deal with the failure dimension and had much less difficulty. The basic
point is that this dimension, which is concerned with flow of control, is harder
to master. .

It is also worth noting two null effects we obtained. First, there was no differ-
ence in the solution times between the iterative and recursive group in the train-
ing phase. In our view, the equal solution times seem to result from a trade-off
between syntactic complexity in iteration and semantic difficulty in recursion.
As noted before, subjects made more errors in their first pass at recursive func-
tions compared to iterative functions. If we accept this as an indication that sub-
Jects had a harder time understanding recursion, the question becomes one of
accounting for the comparatively long time it took for subjects to do the itera-
tive problems. In order to give this account, it is necessary to look at the itera-
tive construct at the level of code the subjects had to write. The iterative con-
struct in SIMPLE is rather awkward and looks very complicated compared to a
recursive SIMPLE function. This is reflected in the high number of edits with it-
eration (110 vs. 62 for recursion). If the number of edits is an indication of sub-
Jects’ syntax problems, as opposed to comprehension problems, the trade-off
hypothesis is supported: In recursion, subjects spent their time trying to under-
stand what they are asked to do on the algorithmic level, while in iteration, sub-
Jects knew the algorithm but had a hard time getting the code right.

The second null effect deals with one of the other task dimensions tested in
the experiment, list/number. This dimension was systematically varied be-
cause we expected it to be relevant to the subjects’ representation of the pro-

LEARNING FLOW OF CONTROL 147

gramming constructs. However, it seems that the kind of problems we used
were sufficiently easy to understand with both lists and numbers. There was no
operation required that did any mathematical operation other than sub-
tracting, and the lists had all very simple one-level structures that did not re-
quire any complex list structure manipulations.

3. EXPERIMENT 2: ACLOSER LOOK AT TRANSFER ISSUES

This experiment is essentially a replication of the previous one. Although the
basic design remained the same as in the first experiment, a few changes were
made to improve its shortcomings. This included changes to SIMPLE, such as
simplifying the iterative construct so that the syntactic complications present in
the first experiment were reduced. Additionally, the possibility of a negative
test was introduced, which further simplified the task of writing the functions.
To get better data on the subjects’ learning, we made the task harder by
changing the example problem given to the subjects. In the first experiment,
the first task subjects had to solve was given to them as an example. Now, the
example was a function that demonstrated the recursive or iterative construct
but was not one of the experimental problems.

Two further changes were made to the design of the experiment. Because the
first experiment showed that list/number did not influence the results and we
did not know the impact of the forward/reverse factor, we exchanged these two
dimensions in the design. In addition, the task sequence within each of the two
phases, which had been kept constant in the first experiment, now was varied to
test for differences between the individual tasks.

With respect to the forward/reverse dimension, we expected subjects to slow
down if they changed constructs, because changing from recursion to iteration
or vice versa elicits a counterintuitive change in the forward/reverse dimension
on the code level. If the construct value changes, subjects have to use the same
function word (pre or post) to change the order of accumulation. On the other
hand, if the construct value remains the same, subjects have to change the func-
tion word. This is not an artifact of the SIMPLE language, but involves the dif-
ference between recursion and iteration. Thus, varying this dimension pro-
vides an additional test for subjects understanding of the programming
constructs.

3.1. Method

Programming Problems. The tasks used were the same as in Experiment 1.
Some features of SIMPLE were changed in order to simplify the language. The
first two features dealt with the looping construct in iteration. The function .
word LOOP was used to indicate the beginning of an iterative loop, and the ter-
mination test for the loop was approximated as much as possible to the termina-

148 KESSLER AND ANDERSON

tion test for recursion. Manipulation of the eject/skip dimension was made sub-
stantially easier with the iterative construct. Skipping could now be achieved by
simply doing nothing — the ANSWER BECOMES ANSWER construction of Ex-
periment 1 became obsolete. The success/failure dimension could now be ma-
nipulated by exchanging only the function words ISA? and ISNOTA?. It was no
longer necessary to exchange whole lines as in Experiment 1. Figure 5 shows an
iterative function written in the new version of SIMPLE.

Instructions. The instructions were nearly identical to those in Experi-
ment 1, with some changes made to accommodate the new features mentioned
above. In addition, subjects were no longer shown an example of a task they ac-
tually had to solve. Rather, this time the example was a sorting function that ex-
hibited all the features of the problems in the experiment except for the negative
test (see Figure 6).

Design. The design was basically the same as the design of Experiment 1.
There was a training and a transfer phase, and 16 between-subjects conditions.
The only difference was the exchange of the factors list/number and forward/
reverse. The factor forward/reverse now was crossed with recursion/iteration to
obtain the four transfer conditions for each of the four training conditions.
Thus, subjects transferred from programming any of forward-iteration,
forward-recursion, reverse-iteration, or reverse-recursion in training to any of
these in transfer. The factor list/number was always changed to the opposite of
the training condition for each subject. '

Within each of these conditions, subjects again were given the four problems
obtained by crossing the factors success/failure and eject/skip. In this experi-
ment, the sequence of the four tasks was varied according to the following crite-
rion: In going from one task to the next, one and only one value on one of the
two dimensions was changed. The eight sequences fitting this criterion were
counterbalanced with the four between-subjects training conditions. The eight
subjects in each of the four training conditions obtained a different task se-
quence. In the transfer phase, the four tasks for each subject were presented in
the same sequence as in the training phase.

Procedure. The procedure was identical to that of the first experiment ex-
cept that the two sessions of the experiment were held either one or two days
apart, rather than on consecutive days. In addition, subjects were now allowed
to keep the example problem and were free to work with it until the end of the
experiment.

Subjects were Carnegie-Mellon University undergraduates with little or no
programming experience. It took the subjects between 3 and 5.5 hr to go
through the whole experiment. Seven subjects could not finish the experiment
or gave up prematurely. Additional subjects were run to replace them.

Figure 5. A new iterative function.

The following is an illustration of a SIMPLE function called NOSCIENCE, which takes a
list of book catalog numbers and tests numbers less than and including the given num-
ber. The function returns an answer list that contains all nonscience catalog numbers
less than and including the given number. The answer list contains the numbers in de-
scending order. For example, NOSCIENCE 7 returns the answer [76 2 1], if numbers 3 to
5 are science titles.

1. noscience num IS

2. LOOP,

3. IF (num = 0) THEN DONE,

4. IF (num ISNOTA? science) THEN

(ANSWER BECOMES (num POST ANSWER),

5. REPEAT WITH (num BECOMES (SUB1 num)).
Comments:
1. Header: function-name (“nosciene”) and variable (“num”).
2. Start of loop.
3. Loop termination: If the number has reached 0, then eject.
4. Conditional: If the number is not a science title, then include it at the end of the

answer-variable.

5. Repeat statement: Repeat the loop with the number decremented by 1.

Figure 6. The new example function.

The following is an illustration of a function called SORT, which sorts a list of book titles
so that all science titles are at the beginning of the list. For example, Sort [dune faust
zorba lisp] returns the answer [lisp zorba faust dune].
Recursive example:

1. sortlist 1S

2. IF (list = [)) THEN[],

3. IF ((FIRST list) ISA? science)

THEN ((FIRST list) PRE (SORT (REST list))),

4. ELSE ((FIRST list) POST (SORT (REST list))).
Iterative example:
sort list IS
LOOP,
IF (list = []) THEN DONE,
IF ((FIRST list) ISA? science)

THEN (ANSWER BECOMES ((FIRST list) PRE ANSWER)),

ELSE (ANSWER BECOMES ((FIRST list) POST ANSWER)),
6. REPEAT WITH (list BECOMES (REST list)).

B> GO N =

(&)

149

150 KESSLER AND ANDERSON
3.2. Results

The ANCOVA on the overall response times was done with programming
construct and accumulation type (forward-forward, forward-reverse, reverse-
forward, reverse-reverse) as between-subject factors and phase as within-
subjects factor. The response times of the definition phase were taken as the
covariate. The product-moment correlation between definition and training
phase was .19, between definition and transfer phase, .26. These correlations
are substantially lower than the ones obtained in Experiment 1. Two explana-
tions for this can be offered. On the one hand, the problems in the training and
transfer phases were more difficult to solve in Experiment 2 than in Experiment
1, while the definition phase remained the same in both experiments. On the
other hand, the variance of the subject sample in Experiment 2 was lower than
in Experiment 1. As in Experiment 1, analyses on error data did not produce
any significant results.

The analysis of covariance on response times yielded a main effect for phase,
F(1, 16) = 27.48, p < .001, and a significant interaction between phase and
construct, F(3, 16) = 4.14, p < .05, signifying (as in Experiment 1), a general
speed-up between training and transfer phase, except for the recursion-
iteration condition. All other effects or interactions were not significant. Be-
cause the factor accumulation type was not significant, F(3, 15) = 2.08, p =
.15, further results will be discussed in the same way as in Experiment 1, by re-
fering to the four groups: recursion-recursion, recursion-iteration, iteration-
recursion, and iteration-iteration. ‘

Figure 7 presents the total time to criterion and mean number of errors for
these four conditions. As in the first experiment, there were no significant dif-
ferences between the conditions in the training phase. In the transfer phase, the
following comparisons proved significant: recursion-recursion versus re-
cursion-iteration, #(14) = 5.67, p < .001; recursion-recursion versus iteration-
recursion, #(14) = 2.40, p < .05; and recursion-iteration versus iteration-
iteration, ¢(14) = 4.05, p < .001.

It seems that changing constructs in the transfer phase had a more marked in-
fluence in Experiment 2. If analyzed in terms of whether groups changed con-
structs or not, that is, by collapsing the recursion-recursion and the iteration-
iteration groups into a same-construct group, and the recursion-iteration and
the iteration-recursion groups into a different-construct group, a ¢ test of the
transfer phase times was highly significant, #(30) = 4.22, p < .001. The group
that changed constructs took longer overall to go through the transfer phase.

With respect to speed-up from the training to the transfer phase, the first ex-
periment was nearly replicated: The conditions recursion-recursion, W7 =
8.55, p < .001, iteration-recursion, t(7) = 3.75, p < .01, and iteration-
iteration, #(7) = 3.17, p < .05, exhibited speed-up, while the recursion-
iteration condition did not, #(7) = - .27, p = .80. Specifically, the difference

LEARNING FLOW OF CONTROL 151

Figure 7. Experiment 2: Total time to criterion in seconds (means) and number of
errors (in parentheses).

Training/Transfer

Condition Definition Training Transfer Differences
Recursion-recursion 1193 2678 1225 1453

(1.5) 3.1 (1.1 (2.0)
Recursion-iteration 1512 2219 2329 - 110

4.1) (5.1) 4.9) (.2)
Iteration-recursion 1521 2893 1784 1109

4.2) 4.1) (4.2) (-.1
Iteration-iteration 1208 2385 1304 1081

2.9) (3.6) (2.9) (7

Note. n = 8 for each cell.

Overall (N = 32) 1358 2530 1608

(3.2) (4.0) (3.3)

in speed-up between recursion-iteration and iteration-recursion was signifi-
cant, t(14) = 2.84, p < .05.

Thus we have replicated the asymmetry in transfer despite efforts to equate
syntactic complexity. It does appear that our changes to the iterative construct
to make it of comparable syntactic complexity were successful. Subjects made
almost the same number of edits with the iterative programs (158) as with the
recursive programs (148).

We performed two ANOVAs for the within-subjects manipulation. One
used task sequence as a factor, the other used task type. The first of these analy-
ses, with task sequence as within-subjects factor and construct as between-
subjects factor, showed a main effect of speed-up from the first task to the last
task in both phases regardless of the construct subjects worked with (training:
F(3,90) = 31.81, p < .001; transfer: F(3, 90) = 18.79, p < .001). Although
the group factor was not significant in the training phase analysis, it was in the
transfer phase analysis, F(1, 30) = 13.51, p < .001, reflecting the fact that
groups that changed constructs took longer on each of the four tasks than
groups that did not change. The interaction was not significant in either phase.

In the first experiment, because task type and task sequence were con-
founded, it was unclear whether the two task dimensions manipulated within
the sequence of tasks were contributing to the variance of the response times. In
the current experiment, we separated these two factors. An ANOVA for each
phase with group as between-subjects factor and the four task types as within-
subjects factors revealed no significant effects. Thus it can be assumed that
none of the four tasks was more or less difficult than any other. Furthermore,
the task dimensions success/failure and skip/eject seemed to be equally difficult
in recursion and iteration.

152 KESSLER AND ANDERSON

Although the four tasks were of equal difficulty, it is still possible that a
change in the value of the dimensions skip/eject or success/failure could have
caused difficulties. Recall that, as subjects progressed from one task to the next,
only one of the binary values on the two dimensions skip ‘eject and success/
failure was changed. Because there was no overall difference between the tasks,
tests for sequence effects depending on changes on one of the two task dimen-
sions could be performed. Half of the subjects changed values on the skip/eject
dimensions from Task 1 to Task 2, while the other half changed values from
Task 2 to Task 3. The same is true for the success/failure dimension. Task 1 and
Task 4 had all subjects in the same condition with respect to experienced value
change. Thus, the crucial differences should be found with response times to
Tasks 2 and 3. Figure 8 presents the times to criterion according to this
analysis.

The interaction between point of change for the skip/eject dimension
(whether subjects changed on Task 2 or 3) and task sequence was significant
(training: F(1, 30) = 6.06, p < .05; transfer: F(1,30) = 16.19, p < .001). The
main effect of point of change was not significant. The interaction is due to a
significant difference in solution time on Task 2. The group that changed the
value on the dimension skip/eject on Task 2 took longer on this task than the
other group (training: £(30) = 2.34, p < .05; transfer: 1(30) = 2.39, p < .05).
In addition, only the change-on-2 group exhibited speed-up from Task 2 to
Task 3 (training: #(15) = 3.08, p < .01; transfer: {(15) = 2.79, p < .05). The
change-on-3 group actually slowed down, although significantly only in the
transfer phase, #(15) = 3.06, p < .01. '

In doing this analysis for the skip/eject dimension, we implicitly have done it
for the success/failure dimension, too. Remember that changes on the success/
failure dimension were complementary to changes on the skip/eject dimension:
If one dimension changed its value from one task to the next, the other did not.
Thus our results show that subjects were faster overall if the dimension success/
failure changed from one task to the next, while they slowed down if this dimen-
sion did not change. Taken together, this implies that the skip/eject change was
the more difficult factor.

As in the previous experiment, most of the errors could be classified as se-
mantic (68%), and a large fraction of these (36%) involved errors with skip/
eject. The next most common semantic error concerned confusions of success

and failure (22%).
3.3. Discussion

The pattern of results obtained in Experiment 2 replicates the major out-
comes of Experiment 1. Subjects had problems transferring from recursion to
iteration and difficulty with the skip/eject dimension. The complexity of the it-
erative syntax is not the reason for the peculiar behavior of the recursion-

LEARNING FLOW OF CONTROL 153

Figure 8. Experiment 2: Mean time to criterion for trial sequence (in seconds),
with groups divided according to location of first change on the skip/eject
dimension.

Trial 1 2 3 4
TRAINING
Change2 (n = 16) 1159 657 413 359
Change3 (n = 16) 1116 465 534 384
TRANSFER
Change2 (n = 16) 695 495 277 278
Change3 (n = 16) 637 278 440 214

Note. Change2 = Group changes value on the skip/eject dimension on

Trial 2. Change3 = Group changes value on the skip/eject dimension on
Trial 3.

iteration group, as this syntax was simplified in Experiment 2. As a matter of
fact, there is nothing in the data of the second experiment that hints at an expla-
nation for the difficulty experienced by this group.

To return to our original questions, this experiment showed that subjects ac-
tually can acquire the skill of writing recursive functions within a few hours of
instruction, thus confirming the result of Anzai and Uesato (1982). In addition,
it was shown that subjects could acquire the recursive construct as easily as they
acquired the supposedly more natural iterative construct. When subjects did
learn both constructs, the sequence of acquisition was crucial. When the sub-
Jjects learned iteration first, and transferred to recursion, their speed-up was
significant. When they started with recursion, there was no speed-up after they -
were transferred to iteration.

The claim of Anzai and Uesato that knowing iteration facilitates learning re-
cursion is not really supported by these results. Our control group, which prac-
ticed recursion only, arrived at the same performance level in the second phase
as did the iteration/recursion group. Therefore, all that can be said about the ef-
fect of learning iteration before learning recursion is that it seems to be as effec-
tive as increased practice on recursion itself. This, of course, does not change
the pedagogical implication that it is beneficial to learn iteration before learning
recursion.

In order to understand the peculiar behavior of the recursion-iteration
group, it is important to look at the kind of problem solving the subjects actually
were doing in this experiment. As Pirolli and Anderson (1985) showed, if the
instructional environment permits, subjects generally solve their first recursive
problems by analogy to examples. The instructions given in this experiment
did provide an example and so the analogy process was available. Subjects’ in-
formal comments suggested they did make a good deal of use of analogy to the
example. It is possible that they solved the recursive problems by analogizing

154 KESSLER AND ANDERSON

from the surface structure of the example without really understanding how it
worked. '

If this were true, we could hypothesize that the recursion-iteration subjects
did not really learn anything about the control construct in the training phase.
Rather, they learned a set of surface templates by analogy. If subjects did not
understand flow of control in recursion, they would have no basis for any trans-
fer to a new construct. Therefore, the null transfer from recursion to iteration
may be because subjects actually had to learn the iterative construct in the
transfer phase as if they had had no previous experience with the task. This ex-
planation could account for the lack of speed-up in our recursion-iteration sub-
Jects. In addition, it fits in with the fact that their error data in the transfer phase
is not significantly different from the error data of subjects who learn iteration
in the training phase.

Our third initial question was how other factors influence the acquisition of
control constructs. Of the task dimensions we varied, only the skip/eject dimen-
sion proved to have any influence. Changing on this dimension was difficult
and interacted with the recursion/iteration dimension. Although we cannot be
sure if this is an artifact of our particular problems and/or programming lan-
guage, it is interesting to note that the skip/eject dimension is the one dimen-
sion besides recursion/iteration that most influences flow of control.

4. PROTOCOL ANALYSES

In order to test our speculations about subjects’ representations and strate-
gies, we collected protocols of four subjects in the recursion-iteration and
iteration-recursion conditions. In taking the protocols, the procedures of Ex-
periment 2 were followed. The only difference was that the experimenter
stayed in the room while the subjects solved the problems. His task was to
prompt the subjects if they kept quiet for a long period of time. Otherwise, he
did not interfere with the subjects’ behavior. The experimenter’s presence had
one important consequence, however. Although subjects in Experiment 2 were
told they could ask the experimenter for help if they did not understand the in-
structions or the feedback given to them, they hardly ever did so. The protocol
subjects, on the other hand, were much more likely to ask questions. In these
cases, the experimenter reiterated the information given in the instruction until
the subjects decided that they had received a satisfactory answer. As a result,
the protocol subjects showed less random behavior than some subjects in Ex-
periment 2 (i.e., they never copied a previous function to solve the next prob-
lem, and they never went right to the feedback without trying to solve the
problem).

There were eight protocols overall, four from subjects in the recursion-
iteration condition (Subjects 1 to 4) and four from subjects in the iteration-
recursion condition (Subjects 5 to 8). All subjects worked with lists in the train-

LEARNING FLOW OF CONTROL 155

ing phase and with numbers in the transfer phase. A comparison with the data
of Experiment 2 shows that all iteration-recursion subjects approximated the
behavior of the subjects in the same condition of Experiment 2. Mixed results
were obtained with the recursion-iteration subjects. One subject (S4) slowed
down, while another one (S1) exhibited a slight speed-up. The other two sub-
Jects (S2 and S3) did not finish the transfer part of the experiment, although
they finished their third and fourth trials, respectively, in the transfer phase. In
both cases, subjects were unwilling to cooperate further due to fatigue. All sub-
Jects in the recursion-iteration condition took longer overall than would have
been expected from Experiment 2.

There are two reasons why we did not exclude Subjects 2 and 3 from the anal-
ysis. First, except for taking longer, they did not exhibit any obvious behavior
differing from that of Subjects 1 and 4. Second, we concentrated our analysis of
the protocols on the first four problems in each phase. It became clear from the
protocols that subjects had established their problem-solving strategy at about
the third or fourth trial, as discussed in the following section.

4.1. General Characteristics of the Protocols

The protocols of both groups show some common characteristics supporting
the findings of Anderson, Farrell, and Sauers (1984) in their analyses of proto-
cols from subjects learning to program in LISP. In general, the knowledge sub-
Jects had acquired prior to the training phase of the experiment was not suffi-
cient to allow them to solve the programming problems directly. The knowl-
edge consisted of three parts: practice in the basic commands of the SIMPLE
language; instruction about the construct, including a template showing the
structure of the resulting function; and an example. When starting out, the
main information that was used was the example that was given with the in-
structions. Subjects never made any reference to the template and frequently
did not remember basic SIMPLE commands, the knowledge of which they had
demonstrated earlier.

As subjects went through the training phase, they usually became more accu-
rate and faster in solving the problems. After two or three exposures to the feed-
back consisting of correct functions, subjects were able to keep these correct
functions in working memory and to adjust them to the given problem. Refer-
ences to the example were made only for syntactical questions such as par-
enthesization and argument ordering.

For the most part, errors committed after Problem 3 were mere lapses, (e.g.,
forgetting a comma or mistyping a word) or working memory failures (e.g.,
misremembering the previous function and falsely copying it). Subjects seemed
to have developed a successful procedure for doing the problems at that point.

This general characterization of the training phase also holds for the transfer
phase. That is, subjects showed reliance on the example in Trial 1, developed a

156 KESSLER AND ANDERSON

solution procedure over Trials 2 and 3, and finally made a smooth application
of this procedure. :

Differences in the protocols obtained from the recursion-iteration and
iteration-recursion groups show that subjects differ in their use of the example,
and, more generally, in the way they approach the problem-solving process.
These differences are examined in detail in the following section. Although
such protocol evidence is necessarily opportunistic, we would like to argue that
these dissimilarities account for the observed performance differences between
the groups in the transfer phase. This account will schematize the protocols,
and thus make them look more similar than they really are, but we feel that it
captures the, major differences that can be detected between the two groups. In
order to support the hypothesis about different solution strategies given in the
next section, we later present some quantitative analyses about utterances in
the protocols which support our account.

4.2. Transferring From Recursion to Iteration

A typical solution process in the training phase was given by Subject S4.
When solving his first problem, the subject was able to map the first three lines
of code from the example to his solution. Although he was not very verbal about
the mapping process, he took considerably more time to write the first three
lines of code than would be necessary for straightforward copying. Rather, he
tried to check each line of the example with regard to its relevance to the prob-
lem specification. He was able to convince himself that he could take over the
first three lines of code without modification. This solution process broke down
for the fourth line of code. There, the subject clearly stated what he had to do—
skip the nonscience elements— but he also remarked that he did not know how
to do it. Because the example did not provide a clue here, the subject finally
tried a construction that he did not expect to work.

The reliance on the example varied markedly between subjects, as shown by
other protocols from subjects in this group. One subject (S1) pursued a stub-
born word-by-word mapping from the example to the problem. She went
through several iterations of trying to understand the example and mapping it
to the problem. Although she pursued a variety of dead ends, she finally suc-
ceeded in getting the function right by finding a mapping for each piece of code
in the example. Another subject (83) virtually ignored the example because she
was convinced that she did not understand it. She tried to solve the problem by
applying the knowledge she extracted out of the instructions. Although she did
not succeed in solving the problem in this way, she maintained this strategy
throughout the training phase. Her improvement was due to repeated expo-
sures to the correct functions which she could approximate better after each
trial.

What unites these different ways of using example and feedback is the fact

LEARNING FLOW OF CONTROL 157

that none of the subjects in this group demonstrated any sign of abstracting in-
formation about the flow of control from the example and/or the problem solu-
tions. Their reasoning remained at the surface level of actual code; their strat-
egy could be characterized as a form of means-ends analysis. Subjects tried to
detect the difference between the problem and the example or the previous solu-
tion shown to them and then tried to reduce this difference doing a local repair
consisting of exchanging a small part of the code.

What the subjects seemed to take away from the training phase was a strategy
that proved reasonably effective, although it neither required nor created an
understanding of the construct. Most subjects initially used the same approach
in the transfer phase. Three of the four subjects tried to solve the first iteration
problem by mapping from the example. Because the example was a function
working on lists and the subjects now had to work with numbers, none of the
lines, except for the loop statement, could be copied directly. Although all sub-
jects failed to write this first problem correctly, they seemed to grasp the itera-
tive control structure much better than the recursive structure once they re-
ceived feedback.

In order to provide a demonstration of how subjects neglected consideration
of an algorithm and stuck to the code when doing the iterative problems, Figure
9 gives an excerpt from the protocol of S1 coding the second problem in the
transfer phase. It illustrates how the subject used the example and her memory
of the previous problem todoa line-by-line generation of the code, without be-
ing able to devise a working algorithm before she started coding. Although the
subject demonstrated an intuitive understanding of the control structure, she
still relied on the step-by-step approach carried over from the training phase.
Each line of code was treated as a separate entity, without consideration of the
relationship between the code and the control structure. The claim is made here
that this coding strategy is typical for the subjects in this group. After present-
ing an analysis for the iteration-recursion group, more quantitative evidence
will be presented to support this claim.

4.3. Transferring From Iteration to Recursion

Subjects starting out with iteration also made heavy use of the example in the
first problem. With increasing experience, the subjects became more inde-
pendent of the example and used it mostly for reference to syntax problems. A
good example is Subject S6 doing the second problem in the training phase. She
started out immediately writing the first two lines, then went through the loop
mentally before she wrote the next line. She made the decision which test to use
and wondered how to accumulate and where to put the repeat statement. Only
then did she start writing out code. All this was done without reference to the ex-
ample, which led her to write a false repeat statement, the only mistake in her
code.

Figure 9. Protocol excerpt: Subject 1, transfer phase, Trial 2.

Problem Statement:

Write a function that takes a science ID as a variable. The function should return an an-
swer list that contains all science IDs less than and including the variable. Answer list
IDs should be in descending order.

1.

11.

12.

13.

14.

15.

17.

“The first thing that we’re doing here is function, and then the number . . .”
Writes: func num is
loop,

. “and then we have our all purpose if . . .”

Writes: if (num = 0) then done,

. “Alright, if number is a science — if the number, yes, is a science then the answer be-

comes number, and while I'm in descending order, that would be post answer — yes
I think.”

. “If number, now number is a function, right. So, number—I'm not sure about the

syntax of this. Does it have to have . . . take an argument? I don’t know. Am I sup-
posed to have a paren there? I don’t think so.”

. “Then—if the number is a science then answer becomes —that would be the

number—. . . so it'’s number which is the function, and then pre answer.”
“So is it pre or post? Pre.”

. “Alright, I'm rereading the instructions. . . . Answer becomes the number dis-

played in front of the answer. I don’t really understand all that, but I'm going to
continue.”
Writes: if (num isa? science) then (answer becomes (num (pre answer))),

. “Now I have to do the subl. No, no I need an else. If the number is not a science,

that’s my else.”

- “Now at the last time at this point I just said done.”
. (Rereading the instructions) “I wonder if this means it contains only science IDs. Al-

right, so I can’t say else done, I have to say take out the first number, which would be
first num, that would be answer becomes . . .”

“Alright, the answer becomes. . . . Now this one, the example gives everything
back. I don’t want it to give everything back. I want it to take that out.”

“Now I'm not sure if this is gonna do that. If the number is a science then — answer
becomes and is displayed — that’s very circular. Else, ifit is not a science, you extract
it.”

Writes: else (answer becomes (first num))

“Now I am at the repeat. At this point, I've forgotten how to write this, but I want to
tell the number, and I'm hoping this is right. Here I use subl. So I am telling it to
subtract number. The parens are wrong. I didn’t put subl in its parens.”

“Now . . .,”(rereading the instructions) “I think I'm supposed to have —I wonder if
I'm supposed to have pre answer in there. It doesn’t say that in the example.”

“I don’t know how these things are arranged. We are assuming that these things in
the catalog are arranged in descending order. If they are, this will skip over any-
thing that is bigger. I expect it would go look for the next sub1. Well, I'm not going
to worry about that.”

“Repeat —now I have copied that pretty exactly, but I don’t have any idea if this is
going to work. I think this is just another approximation, so I'm gonna tell it to
stop.”

Writes: repeat with (num becomes (sub1 num))

158

LEARNING FLOW OF CONTROL 159

The other subjects in this group showed the same kind of planning behavior,
with decreasing reliance on the example. Some of the subjects actually com-
mitted syntactic mistakes because they did not check the example for the right
application of such statements as REPEAT WITH . .. or ANSWER BECOMES

There is some evidence that subjects carried over their problem-solving
strategy into the transfer phase. The subjects in this condition seemed to use
planning instead of means-ends transformation of the example during the
transfer phase. The following quotation from S5’s protocol illustrates this strat-
egy transfer:

We don’t need a loop command here, we need an “if.” We’re gonna ana-
lyze from v down, we’re gonna check to see if v equals 0 —yeah, you can
check for v equals 0.

Let’s see, you get to something that is a science [reading the instructions].
This program is gonna end when you hit the first science ID. How do I
end this program? It’s gonna end when you reach either a science or 0.

I could make a list from v to the first science. If it isn’t a science then you
can add it in. If it’s not, you don’t. I'll take a wild stab at “if v isnota?” But
you need something if v is 0. What if » equals 1? No that makes sense, I
think. If » equals 0, then nothing.”

When making these comments, the subject had only written the header line
of the function. He sketched the algorithm, and only afterwards went on coding
the function. Although he did not write a correct function, his strategy carried
over to subsequent problems.

As will be discussed in the next section, there is no evidence that the under-
standing of recursion was better for this group than for the other group. It seems
that the groups distinguished themselves mainly in the strategy they were
using.

4.4. Quantitative Analyses

In order to substantiate the claims made in the previous sections, we looked
for more quantitative indicators in the protocols that would help support our
hypotheses. There are two major claims:

1. The groups use different strategies in solving the programming problems.
2. The groups acquire essentially the same mental models of the constructs.

We characterized the different strategies as means-ends analysis involving a
line-by-line mapping for the recursion-iteration group and planning for the

160 KESSLER AND ANDERSON

iteration-recursion group. Apart from the anecdotal evidence in the protocols,
one important indicator of this strategy difference should be the number of ref-
erences subjects made to the example and the feedback (the correct functions).
We would expect the recursion-iteration group to make substantially more use
of these knowledge sources, because subjects did not rely on the control struc-
ture of the problems. Their mapping needed the feedback or the example as a
point of departure. On the other hand, the iteration-recursion group needed
the example primarily to check for syntactic errors. However, they also could
use the instructions for this purpose. Furthermore, syntactic checking was not-
done very frequently, probably because the subjects had enough practice with
the expressions they had to use. For these reasons, the recursion-iteration
group should show more references to the example than the iteration-recursion
group. Figure 10 shows the number of references made by both groups in the
training and transfer phase. Only the first four trials in each phase have been
considered because the subjects had learned the important features of the prob-
lems. An ANOVA with group as between-factor and phase and trial sequence
as within-factors revealed that the only significant effect was the effect of se-
quence, F(3, 18) = 10.81, p < .001. Not surprisingly, most references
occurred in the first trial in both phases. Although the test is not powerful
enough to detect a significant difference with only four subjects in each group,
F(1,6) = 2.16, p < .2, the recursion-iteration group seemed to make more ref-
erences to the example regardless of the phase. This would support our original
conjectures. :

Finally, we can look at one more indicator in order to find out about the sub-
Jects’ representation of the control structures. This is the number of references
to the control structure (loop or recursive call). As Figure 11 shows, the subjects
did not distinguish themselves in the number of references over the first four
trials in each phase. Again, only the trial sequence effect was significant in the
ANOVA, F(3,18) = 7.89, p < .01. This time, however, no trend is visible in
the data, except for the fact that there were more references to the recursive con-
trol structure than to the iterative structure in both groups, F(1,6) = 3.99,p <
1.

In order to understand subjects’ representation of the control structure, it is
not enough to consider how often they mentioned something about the struc-
ture. It is equally important to find out what exactly subjects were saying about
their notion of control. Figures 12 and 13 give some sample comments from
subjects in the two groups. With the iterative construct (Figure 12), all of the
subjects’ utterances were fairly straightforward. Subjects usually mentioned
that they needed a REPEAT statement, and they became more confident about
the loop structure as they proceeded through the experiment. There was no case
in which their utterances about iteration revealed a misconception about what
was going on in the program.

With the recursive construct, the picture looks different. None of the subjects
volunteered a comment that unequivocally showed an understanding of recur-

Figure 10. Number of references to the example function.

Condition Recursion-Iteration Iteration-Recursion

TRAINING (n = 4 for each cell)

Trial 1 17 8
Trial 2 10 0
Trial 3 3 0
Trial 4 3 0
Total 33 8
TRANSFER (n = 4 for each cell)
Trial 1 13 6
Trial 2 6 1
Trial 3 5 0
Trial 4 2 0
Total 26 7
Figure 11. Number of references to the control construct.
Condition Recursion-Iteration Iteration-Recursion
TRAINING (n = 4 for each cell)
Trial 1 6 5
Trial 2 4 1
Trial 3 4 2
Trial 4 0 0
Total 14 8
TRANSFER (n = 4 for each cell)
Trial 1 3 6
Trial 2 1 4
Trial 3 2 1
Trial 4 1 1
Total 7 12

Figure 12. Sample utterances about control structures: Iteration.

Subject 1, Trial 1, Transfer:

“I have just said ‘rest list.” Now, if the first list is a science, then it’s at the beginning.
And here I told it to stop if the first is not a science. So, now I want it to iterate, repeat
with—" :

Subject 1, Trial 4, Transfer:

“And then we have our repeat . . . Alright, that tells it to continue . . .
Subject 4, Trial 2, Transfer:

“If I do an ‘if and then an ‘else’ and then another ‘then,’ is it going to include all—oh
wait, there’s also a ‘repeat with.” ”

Subject 5, Trial 3, Transfer:

“I'have to reassign the answer, and ‘x becomes’ will be in the repeat loop. I'm gonna do

repeat to chop it off.”

»

161

162 KESSLER AND ANDERSON

Figure 13. Sample utterances about control structures: Recursion.

Subject 1, Trial 1, Training:

“Now, the trouble with ‘rest list' —wait a minute, ‘rest list’ says it also gives the rest of
the list. So maybe I don’t want that there. I have to have that there, otherwise it will stop,
it won’t be recursive. ‘Pre first list —I wonder if what I want is just ‘pre func rest list.” I
never did understand what that meant.”

Subject 1, Trial 3, Training:

“I'wantit tolist the isnota’s. T'ake alook at the rest of the list, exercise function, and put
this at the beginning, so . . .”

Writes: then ((first list) pre (func (rest list))),

“else —now, if the first thing is not, is a science, then — if the first item in the listis not a
science, put it first; however, if itis a science, I don’t want that ‘post,’ what I want is exer-
cise your function on the rest of the list. . . . So, do I want ‘func rest list?’ If the first line is
not a science, then take it out, look at the rest of the list, exercise your function, and put
this at the beginning. If it is a science, then look at the rest of the list and exercise your
function. You don’t want ‘post,’ no, no, no, so I think it’s just . . .”

Writes: else (func (rest list)).

Subject 2, Trial 1, Training:

(looking at the example function “sort”)

“I thought sort was a function in the language. Is sort already in there?”
Subject 2, Trial 2, Training:

“I need to use the function that I declared in the problem somewhere.”
Subject 4, Trial 1, Training:

“Ifit’s a science, then I'm gonna do like the example, put it in front and then continue
‘funcing’ it with the rest of the list.”

Subject 5, Trial 1, Transfer:

“Wait, this is supposed to be recursive, I should have ‘function v’ in there somewhere.
. . . I need to recur in there somewhere, I'm not gonna use ‘answer becomes.’ ”

Subject 6, Trial 1, Transfer:

“Okay, then I put x before ‘function sub1 x’— but is that gonna put me back up where
‘sort x* is?”

Subject 8, Trial 2, Transfer:

“If ‘num isnota? science,’ it would take ‘pre func subl num,’ so it would go one lower,
and go through the function again, and put that not-a-science before. I think that’s the
basic idea, but I'm not sure if it’s gonna work.”

sion. As Figure 13 demonstrates, the majority of utterances about recursion
showed only a superficial level of understanding or a complete misconception.
All comments were made by the subjects in the course of their problem solving.
The subjects usually did not reflect on their understanding of the construct and
were not asked about it. One subject (S1), however, volunteered the following
statement about her understanding of recursion after she had correctly solved
all problems in the training phase:

Code: func list is

if (first list) isa? science then [],
else ((first list) pre (func (rest list))).

LEARNING FLOW OF CONTROL 163

I never did understand recursion. . . . Ifit’s not a science, take it out, look
at the rest of the list, and then I would think it would see this word, func,
and it would say, “hey, you never told me what func is — you mentioned it
up here in Line 1, but you never have spelled anything out.”

Taken together, the evidence shows that subjects do not develop a correct rep-
resentation of recursion. However, over the course of solving the problems,
they can develop a working model that incorporates the notion of repeating
some action over and over. This, of course, is the misrepresentation of recur-
sion as a loop structure that was observed by Kahney and Eisenstadt (1982) and
Kurland and Pea (1983).

5. GENERAL DISCUSSION

In this study, we established that there is asymmetric transfer between the ac-
quisition of recursive and iterative control structures. Although there is positive
transfer from iteration to recursion, there is no transfer from recursion to itera-
tion. The protocol studies pointed out that this asymmetry may be due to differ-
ences in the solution strategies between subjects in the iteration-recursion and
recursion-iteration conditions. Our subjects had further difficulties with the
skip/eject dimension which also is closely related to flow of control.

With the following account of the differences in the solution processes be-
tween the two groups, we try to provide an explanation for the observed differ-
ences in solution times. The iteration-recursion group was able to extract the
idea of a general notion of control in the training phase. When subjects went
into the transfer phase, they were able to accommodate the recursive function
to the representation of flow of control they had developed. Their previous ex-
perience with the task dimensions made it easier to distinguish the parts of
recursive code responsible for the different actions to be taken. In particular,
they were able to recognize the recursive call as a type of repeat statement. This
account by no means presupposes that the subjects actually understood recur-
sion. However, looking at a function in terms of flow of control enabled subjects
to plan a solution. This strategy proved more effective than the one the
recursion-iteration subjects settled on.

The recursion-iteration group started out by solving the problems using
means-ends analysis. Subjects took the example and tried to match it line-by-
line to the problem specification. With the constant feedback given after incor-
rect solutions, this amounted in the end to a memory task. If the relevant pieces
of code could be remembered correctly, these subjects were guaranteed a solu-
tion. Subjects never needed to look at the function as a whole; they could con-
centrate on the small differences between the skip/eject or success/failure di-
mensions. And even if they took the whole function into account, it was unlikely
that they followed the flow of control through the recursive function. When en-

164 KESSLER AND ANDERSON

tering the transfer phase, these subjects continued to use this strategy. They
were not able to plan their functions on the level of the algorithm, because they
had not acquired any representation of flow of control. Rather, they relied on
the means-ends analysis method for local fixes. Because the surface form of the
iterative code was sufficiently different from the recursive code, there was not
much opportunity for transfer. Therefore, subjects had to learn how to deal
with the new construct both without benefiting from their previous problem
solving and with an inappropriate learning strategy.

Clearly, subjects do have difficulty with concepts involving flow of control.
In either iteration or recursion, in training or transfer, subjects had difficulty
mastering the skip/eject dimension. These results reinforce the importance of
having adequate mental models of programs and, in particular, flow of control
for mastering programming. Having a model of iteration enabled subjects to
see how to transfer their training knowledge to recursion. In contrast, subjects
studying recursive programs without the aid of such models were overwhelmed
by the surface differences between iteration and recursion.

In general, we speculate it is good to teach iterative programming before
recursive programming for students who have had no prior programming ex-
perience with either construct. Students can develop mental models of iterative
procedures relatively easily. These mental models can serve as the basis for un-
derstanding recursive procedures —although not in the simple way our subjects
did. Rather, recursive procedures can be understood in terms of a procedure
looping over a stack of function calls. This is the copy model advanced by
Kahney and Eisenstadt (1982).

It is informative to compare the results of our experiments with other studies
of how people learn to program (Anderson et al., 1984; Pirolli & Anderson,
1985). All accounts emphasize the importance of analogical reasoning as a basis
for learning to program. We characterized this process as a complex mapping
procedure which goes beyond mere copying of an example. Although it has not
been the purpose of this article to discuss analogical reasoning as a basic mecha-
nism of skill acquisition (see Carbonnell, 1983; Gentner, 1983; Gick & Holy-
oak, 1980, 1983; Rumelhart & Norman, 1981), it should be noted that our ex-
periments demonstrated the benefits as well as the limitations of the use of
analogies. The benefits were clear in cases in which the subjects had developed
an adequate, if sometimes incorrect, mental model of the programming con-
struct. Here, subjects could make use of the example to write syntactically cor-
rect code. In accordance with previous studies, these subjects also demon-
strated great savings in solution time when going from the first problem to the
second. In addition, these subjects showed less reliance on the example in sub-
sequent problems. On the other hand, the subjects who did not develop an ade-
quate mental model of the programming construct used a mapping strategy
that depended heavily on the surface features of the example through both pha-
ses of the experiment. As we have shown, this second group of subjects showed

LEARNING FLOW OF CONTROL 165

no benefit of training in the transfer condition, although the first group did.
This extends the observations of Pirolli and Anderson (1985), who showed that
successful learning of recursion depended on an adequate mental model. We
now know that possessing an adequate mental model is also critical to the trans-
fer of learning between recursion and iteration.

In conclusion, the reason for programming novices’ difficulty in understand-
ing flow of control lies in their inability to develop adequate mental models of
the task. The importance of mental models for the understanding of human
skill acquisition is currently a well-represented research topic in cognitive sci-
ence (see Gentner & Stevens, 1983). The preceding account tried to illustrate
some of the cognitive processes underlying the formation of mental models of
flow of control in programming, especially in relationship to the control dimen-
sions of our tasks, recursion and iteration. We could demonstrate that these
task variables influenced the development of mental models of our subjects.

Acknowledgments. We thank Peter Pirolli for his help in designing the program-
ming tasks and for making his instructions on recursion and iteration available to us.

Support. This research is supported by contract N00014-84-K-0064 from the Office
of Naval Research.

REFERENCES

Anderson, J. R., Farrell, R., & Sauers, R. (1984). Learning to program in LISP. Cogni-
tive Science, 8, 87-129. '
Anzai, Y., & Uesato, Y. (1982). Learning recursive procedures by middleschool chil-
dren. Proceedings of the Fourth Annual Conference of the Cognitive Science Society, 100-102.
Carbonnell, J. G. (1983). Learning by analogy: Formulating and generalizing plans
from past experience. In R. S. Michalski, J. G. Carbonnell, & T. M. Mitchell (Eds.),
Machine learning — An artificial intelligence approach (pp. 137-162). Palo Alto, CA: Tioga
Publishing.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive
Science, 7, 155-170.

Gentner, D., & Stevens, A. L. (Eds.). (1983). Mental models. Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc.

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology,
12, 306-355.

Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cogni-
tive Psychology, 15, 1-38.

Kahney, H., & Eisenstadt, M. (1982). Programmers’ mental models of their program-
ming tasks: The interaction of real world knowledge and programming knowledge.
Proceedings of the Fourth Annual Conference of the Cognitive Science Soctety, 143-1 45.

Kurland, D. M., & Pea, R. D. (1983). Children’s mental models of recursive LOGO
programs. Proceedings of the Fifth Annual Conference of the Cognitive Science Society, 1-5.

Pirolli, P., & Anderson, J. R. (1985). The role of learning from examples in the acquisi-
tion of recursive programming skills. Canadian Journal of Psychology, 39, 240-272.

166 KESSLER AND ANDERSON

Rumelhart, D. E., & Norman, D. A. (1981). Analogical processes in learning. InJ. R.
Anderson (Ed.), Cognitive skills and their acquisition (pp. 335-360). Hillsdale, NJ:
Lawrence Erlbaum Associates, Inc.

Shrager, J., & Pirolli, P. L. (1983). SIMPLE: A simple language for research in programmer

psychology [Computer program]. Pittsburgh, PA: Carnegie-Mellon University, De-
partment of Psychology.

HCI Editorial Record. First manuscript received July 23, 1985. Revision received
March 17, 1986. Accepted by Bill Curtis. Final manuscript received July 28, 1986. —
Editor

