A MODEL OF NOVICE DEBUGGING IN LISP

CLAUDIUS M. KESSLER
JOHN R. ANDERSON
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

ABSTRACT
This paper reports an investigation of novice programmers trying to debug
one-line LISP functions. We present a model of debugging based on protocol data
and introduce a production system simulation of the ideal novice debugger. We
conclude with a discussion of the applicability of such a model to the teaching
of programming in LISP.

INTRODUCTION

A large part of the professional activity of a computer programmer consists
of debugging programs. In programming courses, however, debugging is hardly ever
treated as a skill that needs to be taught. Although it is generally
acknowledged that bugs occur frequently and slow down the programming of novices
as well as experts, the novice must acquire the skill to correct bugs on his
own. There is some help available in the form of debugging tools that exist in
most programming languages. Frequently, however, these tools are based on an
advanced understanding of the language, and novices do not even know about their
existence. In many programming courses, structured programming Is explicitly
taught with the implication that it will make debugging of programs easier, but
there is no actual Instruction in debugging itself.

Debugging has been the target of previous research in cognitive science.
However, the outcome of this research usually is geared towards developing
programming tools for debugging. Rich & Waters (1), for example, propose a
programmer's apprentice that, among other things, helps to debug programs. They
represent the knowledge about programs as programming plans. Debugging consists
of modifying plans so they fit a given programming situation. These plans can
then be translated into code by the apprentice. The PROUST model by Johnson &
Soloway (2) examines Pascal programs and discovers bugs if they violate certain
programming structures such as looping constructs. In this way 1t develops a
model of the programmer's intentions that allows i1t to pinpoint errors in the
code. The baslc knowledge of PROUST rests in programming plans similar to those
discussed by Rich & Waters (1).

1

This research has been supported by Contract MDA903-85-K-0343 from the Army
Research Institute.

There have been a number of psychological studies looking at novice-expert
differences in debugging (3, 4, 5, 6) and subjects' abllity to deal with
different kinds of bugs (7, 8, 9, 10, 11). However, to date, the only detalled
process model of debugging is that proposed by Carver & Klahr (12). They
developed an ideal production system model for debugging LOGO programs. The
model is ideal in the sense that it is not based on data, but on a task
analysis. It is supposed to capture the processes that go into debugging as done
by an experienced, but not yet expert programmer. Carver & Klahr distinguish
four phases in the debugging process: program evaluation, bug identification,
bug location, and bug correction. The program evaluation phase compares the
program output and the expected correct output. The bug identification phase
creates one or more discrepancy descriptions which help to narrow the search for
the program statement containing the bug. The bug location process actually
searches the code for the buggy statement. Its effectiveness depends largely on
the specificity of the descriptions created in the previous phase. In the bug
correction phase, the buggy code gets replaced by new code, and a new evaluation
is initiated. The productions in the model draw on four sources of information:
the correct solution, the program output, the code, and knowledge of the
programming language.

Studies on novice programmers tend to use a rather lenient definition of
novice. Most so-called novices have received about a semester's course worth of
instruction in the language they are tested in. True novices, people who have
received little or no instruction in the language might show the difficulties
inherent in debugging more clearly than these more experienced subjects.
Furthermore, the effectiveness of instructional manipulations such as the timing
of instruction, and teaching subskills can be more readily investigated if
novices are tested in the process of acquiring a language.

In our study, we use true LISP novices, people with no previous instruction
in LISP, to study the process of debugging. We want to present a theoretical
outline of debugging based on data from protocol studies on the behavior of
these novices. To make this theory more tractable, we formulated a production
system model of debugging based on these results. The data consist of eight
protocols of novice programmers who were taught the first two lessons of a LISP
course sequence, which covered the basic LISP functions and the writing of
simple function definitions in LISP. Instead of letting our subjects write
functions, they were given buggy functions and they had to find and correct the
errors.

METHOD

Materials

The buggy and the correct versions of the LISP functions we used in this
experiment are listed in the Appendix. The functions were selected from lesson
2 of the LISP tutor {13 (chapter 2), 1li). They were designed to be simple, but
increasingly more challenging exercises in writing LISP function definitions. In
each of the functions, one and only one bug was introduced. The bugs were taken
from protocols of students that went through the LISP tutor. All of the bugs
seemed to present difficulties to students having their first encounter with the
material covered in lesson 2. Six bugs were used, each appearing in two
different LISP functions, resulting in a total of 12 buggy functions. Six more
functions were taken from lesson 2 in their correct form. They served as
distractor items.

Two of the six bugs were syntactic bugs. One parenthesized a variable, the
other quoted a variable. Four of the bugs were of a semantic nature. In one
case, functions that should have been embedded were not. The three remaining
bugs dealt with list combination problems. In one case, the 'list'-command was
omitted, in the second, 'append' was used instead of 'list', and finally, a

'peverse'-command was omitted in a list manipulation that included several
command steps.

Wwhile the first five bugs were completely isomorphic for both functions
they appeared in, the 'reverse'-bug was an exception. In the SNOC-problem (see
the Appendix), the 'reverse' that was deleted was the outermost 'reverse', while
in the ROTATER-problem (see the Appendix), the innermost reverse was deleted.
Table 1 demonstrates the ocutput obtained from the six bug types.

Table 1
The Output of the Bugged Functions

=>(first '(a b ¢})
Error: eval: Undefined function x

=>(replace 'rings '(ties hats pants))
{x hats pants)

=>{ftoc 32)
17. 7177777177778

=>(sgr 2)
|

=>(back '(a b ¢c))
({c ba) (cba))

=>{snoc 'd '{a b c))
(d e ba)

=>(rotater '(a b ¢ d))
(d d ¢ b)

Design and Procedure

The subjects in our study were eight Carnegie-Mellon Universilty undergraduates
who participated for course credit or pay. They did not know any LISP and their
previous college level programming experilence was limited to at most one
introductory Pascal class.

Two sequences of functions were made up for each subject. Each sequence
consisted of six different bugs in a fixed order. The order in which the bugs
were presented was the same as shown in the Appendix. The functions were assigned
randomly to the first or second sequence, with the exception of SNOC and
ROTATER. SNOC always was the last function in the first sequence, and ROTATER
was the last function in the second sequence. This was done because our
experience from tutoring lesson 2 indicated that the ROTATER problem was more
difficult than any of the other problems in lesson 2. Furthermore, it seemed to
us that the bug in ROTATER was harder to discover than the corresponding bug in
SNOC.

The experiment was done over two days. On the first day, subjects went
through an instruction booklet covering the material of lesson 1 of the LISP
tutor. Basically, this included an introduction to LISP functions and the use of
variables. They had to do exercises on a terminal using a LISP environment with

some added user-friendly features. Each subject was run individually.

On the second day, subjects went through an instruction bocklet that
explained how to write function definitions in LISP. The experimenter then gave
an introduction to the verbal protocol technigue, including an example of going
through the process of writing a function call. Subjects were then asked to
solve the problems in the instruction booklet on the terminal, using the same
LISP environment as on day 1. Each subject received two sequences of nine
functions, containing six buggy and three correct functions. While all of the
bugs were presented in the same order in each sequence, the correct functions
that were used as distractors were distributed semi-randomly, with the
restrictions that no two correct problems could follow one another, and that
they were neither in the first nor in the last position of a sequence.

The buggy functions were loaded into the LISP environment. Thus, the
subjects were able to call the function they were working on. Before calling the
function, however, they had to predict if the code was correct or not. The
subjects were requested to talk aloud about their problem solving during the
debugging process. The experimenter made sure that the subject did not stay
silent for a prolonged period of time by prompting them to talk. The subjects
were told that they should feel free to ask the experimenter for assistance if
they found a problem unsolvable. Assistance was given in the form of different
kinds of hints: if subjects followed a wrong path, they were told to back up,
otherwise they were given an explanation of a part of the code. This explanation
was the same for all subjects, and was constructed as to not give away the
solution directly. This process was repeated until the subjects arrived at the
correct solution. One of the verbal protocols was lost due to equipment failure.

In addition to the protocols, we obtained data from the terminal
interactions which were recorded and time stamped. Each terminal interaction was
either a completed command to run a function with some arguments or a function
definition typed in by the subject.

RESULTS AND DISCUSSION

The average solution times and the number of terminal interactions for our
eight subjects are shown in Table 2. These measures seemed more informative than
the number of hints given per problem, since, due to the simplicity of the
functions, there were hardly more than two hints given for each functien.
The time and terminal interaction data were submitted to analyses of variance
with sequence and tasks as within-subject factors. There was a main effect of
sequence for both times and terminal interactions (times: F(1, 7) = 39.73, p <
.001; terminal interactions: F(1, 7) = 8.28, p < .05). Subjects took longer to
work through the initial sequence of six tasks and typed in more statements
overall. While there were no further significant results for the terminal
interaction data, the solution times showed a main effect of tasks (F(5, 35) =
13.16, p < .001) and a significant interaction between sequence and tasks (F(5,
35) = 9.34, p < .001). However, If the first and last problems of the sequence
are excluded from the Anova, the interaction between sequence and task goes
away. Subjects speed up much more on the first problem, presumably reflecting
the fact that they are adjusting to the task on the first problem. The last
problem was the only problem that was not counterbalanced for the two sequences,
with the more difficult problem always occuring in the second sequence.
Individual t-tests for speedup between sequence 1 and 2 revealed a significant
speed-up only for tasks 1, 2,and 4 (1: t(7) = 5.49, p < .001; 2: t{7) = 3.31,
p < .05; 4: t(7) = 3.02, p < .05). Speed~up on tasks 3 and 5 falls just short of
significance (3: t{7) = 1.97, p < .09; 5: t(7) = 1.89, p < .1). The speed-up for
task 6 is quite weak statistically (t(7) = .61).

The main effect of tasks seems to be tled to task 1 in the first sequence
and to the last task in the second sequence. An analysis of varilance for

Table 2
Mean Completion Times and Terminal Interactions (in Parentheses)

Bug First Pass Second Pass
1 Parentheses 28:19 (7.62) 5:49 (3.75)
2 Quote 6:23 (3.50) 3:03 (2.87)
3 No Embedding 6:48 (U4.87) 2:56 (2.75)
4 No Combiner 13:33 (5.00) 4:53 (5.00)
5 Wrong Combiner 8:59 (6.87) 4:42 (3.37)
6 Missing Reverse 10:39 (6.37) 9:26 (3.75)

Note: N = 8 for each cell. Times in minutes and seconds.

sequence 1, with the first task excluded, shows only a marginal effect of tasks
(F(4, 28) = 2.28, p < .09). Similarly, an analysis of variance for sequence 2
with the last task (ROTATER) excluded, does not show a main effect of tasks at
all (F(4, 28) = 1.79, p < .16).

The reason subjects took so long to complete the first problem was that
they did not really understand how to write function definitions in LISP. They
had extracted virtually nothing from reading the problem instructions. This
finding ties in with other research on learning to program in LISP, e.g. (15).
Anderson {16) found that subjects show over a 50% speed-up from the first
function they code in lesson 1 of the LISP tutor to the second function. In our
experiment, most of the time in the first problem was taken up by the
experimenter giving a hands-on demonstration of a LISP function definition,
Once subjects seemed to have grasped the LISP function definition form, their
behavior in problem 1 followed pretty much the same course as in the other
problems.

The ROTATER problem proved to be the most difficult in the experiment. As
mentioned before, there are two factors contributing to this. First, the
function is more complex than any other of the 12 problems, and second, the bug
in ROTATER was harder to find than the bug in the related problem, SNOC. The
process of debugging ROTATER will receive more consideration below.

The quantitative data give a fairly obvious picture of the subjects'
performance. Subjects take an extraordinarily long time to do the very first
problem, then spend about the same time on all the other problems in the flirst
sequence. When the bugs are repeated, subjects speed up considerably, with the
exception of the last problem, ROTATER which has a slightly different bug and
which we had predicted would be more difficult. Since the terminal interaction
data do not add any further information, they will not be considered here.

A THEORY OF DEBUGGING

In order to find an explanation for the pattern of results we obtained,
and to get a better idea of the processes that go on in debugging, we consldered
protocol data from our subjects. The six bugs we used seemed to be sufficiently
distinct to produce no transfer of debugging from one bug to the other. Yet, the
protocols lead us to belleve that most subjects used the same debugging strategy
for all problems. We now want to characterize this general debugging strategy we
could extract from the protocols.

The debugging process could essentlally be broken down into four episodes.

These were code comprehension, bug detection, bug localization, and bug repair.
The first two of these episodes were usually short, and there is not much
evidence about the mental processes taking place in the protocols. The bug
localization and bug repair episodes provide the bulk of our protocol data. We
now turn to a discussion of the processes going on in the different episodes.

The Debugging Episocdes

Code Comprehension. Most subjects started out by trying to understand
what the code was doing. The reading of the code at this time was rather
superficial. Subjects often gave wrong judgments when asked to predict if the
code was correct before they were allowed to run it. In the best case, they came
out of this comprehension process with correct hypotheses of the code's behavior;
in the worst case, they skipped the code comprehension and just took a guess
about the correctness of the function. In general, they formed wrong hypotheses
about the code, either because they did not try hard enough to understand it, or
because they did not have the necessary LISP knowledge available at this point.

Bug Detection. The next step subjects took was to run the code. This was
an obvious step, which usually led the subjects to detect the error. Subjects
made very few comments during this stage. Since bug detection Includes the
process of describing the difference between the desired and the obtained
results, it is possible that our tasks were sufficiently simple that subjects
did not need to go through an elaborate process in order to compare the correct
and the bhuggy answer.

Bug Localization. This episode consisted in actually finding the piece of
code that was responsible for the error. For most subjects, this was a difficult
problem solving process. The difficulty of this episode was enhanced, of course,
if subjects had done the previous episodes improperly or not all. However,
subjects usually could locate the bug in the code after going through some
iterations of creating and rejecting hypotheses.

Bug Repair. This phase proved to be difficult independent of what had been
going on in the previous phases. Even if subjects had found the bug and knew the
faulty part of the code, it proved to be a hard task to come up with the correct
code. This was the phase where most hints were given. If subjects made a
correction that turned out to be wrong, there was a danger that they would get
lost when they tried to correct their own initial correction. In these cases,
the experimenter intervened and put them back on the track of the original
function. Thus, while we estimate that this phase took longest for all our
subjects, the time spent in correcting an identified error might be
underestimated by our experimental procedure.

Evaluation

Tne sketch of the debugging process outlined above 1s supported by six of the
seven protocols we obtained. There were no debugging episodes in these protocols
that could not be accommodated by this scheme. There were of course additional
processes going on, that in our view were less central to the debugging process.
For example, subjects often looked for LISP function definitions they could not
retrieve in memory, or they did checks on the syntax of the code they were
writing. Subjects alsc made meta-comments about how hard or easy certain
problems were.

The debugging process as described so far is by no means the only way to
debug, even at a beginner's level of proficiency. In fact, one of our subjects
displayed an entirely different strategy. The first thing he did when reading
the problem was to actually generate the code in his mind. He then compared his
code with the code actually presented. To the extent that he generated the
correct code, his strategy proved more efficlent than the one outlined so far.
This strategy would work only for simple problems such as ours, of course.

Before we look into some issues concerning specific bugs, we have to

address the question where the savings in time are coming from when going from
the first to the second sequence. First we must note that sequence and bugs are
confounded in our experiment, so that this result may be of limited validity.
We believe, however, that we would have obtained some speed-up even with
randomized repeated bug sequences, for an obvious reason: our subjects could
remember at least some of the bugs. The protocols show some anecdotal evidence
of bug recognition on the second pass. Since we did not explicitly give a
recognition test, we do not know how frequently bugs actually were recognized.
As the error data will show, bug repetition did not generally facilitate
comprehension of the code. As it stands, we do not know if bug recognition is
the only cause for the speed-up. However, the fact that we could not observe
any speed-up within the two sequences favors the bug recognition explanation.

Bug Data

We conclude this section with a closer look at the bugs and the errors they
triggered in our subjects. While we try to interpret the data in terms of our
theory, it should be remembered that bug type was confounded with presentation
sequence in our experiment. We therefore cannot exclude the possibility that the
error distribution we obtained is at least in part due to the specific
presentation sequence we used. Our main interest here is in the qualitative
nature of the errors, and not so much in their distribution over tasks.
Table 3 gives an overview of how the errors subjects made were distributed over
the six bug types. The first column gives the comprehension errors, where
subjects assumed that the function was working correctly, before they actually
ran the code. The second column gives the errors in the bug location phase, and
the third column gives the wrong repairs. Repalr errors were only counted when a
bug had been located correctly, and when a subject actually typed in the code as
a correction for the bug. If an error had been made in the location phase, the

Table 3
Number of Errors for each Bug

Bug First Pass Second Pass Overall

C L R C L R C L R
Parentheses 2 1 3 4y 90 o 6 1 3
Quote 2 1 0 1t 00 3 10
No Embedding 0 0 2 0 0 O 0 0 2
No Combiner 11 4 1 0 2 2 1 6
Wrong Combiner 1t 2 3 1 6 2 2 2 5
Missing Reverse 0 2 3 1 1 1 1 3 4
Sum 6 715 8 1.5 14 8 20

Note: N = 7 for each cell. C = Comprehension, L = Location, R = Repalr.
See text for further explanations.

wrong repair that followed it was not counted as a repair error. The table
gives the number of subjects that went wrong on a given problem in a given
phase. Repeated errors within a phase were not counted. It should be noted that
our subjects found the debugging process much harder than this error measure
indicates. Subjects often made repeated errors on a problem, and considered many
erroneous alternatives before they settled for one.

As can be seen, there is a 50% reduction of errors between the first and
the second sequence. Interestingly, this reduction occurs only for the errors in
the location and the repair phase, while errors in comprehension stay at the
same level. In addition, the errors were not distributed evenly across tasks.
The comprehension errors concentrated on the syntactic bugs, while the repair
errors occured mainly with bugs that had to do with list manipulation.

Locating a bug once an error had been detected was the easiest problem in all
of our tasks. Below we discuss the bugs in the order they were given to the
subjects, noting is in which particular debugging episode subjects had
difficulty with the bug.

Parenthesized Variable. This bug was very difficult to detect, even when
it occured for the second time. Of all six bug types given to them, subjects
most often accepted this bug as a correct solution (see Table 3). Once the bug
was found (frequently with hints from the experimenter), correction was a
problem only the first time around, when subjects were still unsure about how to
write and evaluate function definitions.

Quoted Variable. This bug alsc turned out to be hard to detect. However,
most subjects noted the quote in the function body as being rather unusual.
Subjects seemed to detect the bug just because nothing else was wrong with the
function. Again, correcting the bug was easy once it was detected.

No Embedding. This turned out to be the easiest bug for most of aur
subjects. They recognized immediately that Lo translate the mathematical
formula, the LISP code had to be embedded. Some subjects had to think hard about
now the correct embedding was to be done, but all came up with the correct
solution in the end.

No Combiner. There was some problem in detecting this bug, but it turned
out to be even harder to fix it. Subjects had trouble with the concept of
creating a list to output two numbers, and often needed a hint to find the bug.
Once the bug was found, there was the problem of finding the right combiner.
Most subjects iterated at random through the three combiner functions they knew,
without having an idea about their differences.

Wrong Combiner. Essentially, this problem showed the same characteristics
as the previous one. However, this time some subjects had to be alerted to the
fact that the combiner used produced a wrong parenthesization. Once
parenthesization was detected as the problem, localization was not too
difficult. To fix the problem, some subjects went through the same kind of
combiner iteration they had used in the previous problem.

Missing Reverse. There are actually two bugs to consider. In SNOC, the
outer ‘reverse' was left out, while in ROTATER, it was the inner 'reverse' (see
the Appendix). Nobody had problems in detecting the error in SNOC. The main
problem in SNOC was to detect the systematic relation between the correct answer
and the output. Some subjects seemed to bypass this analysls and went straight
to changing the code. This resulted in an inadequate correction, leading the
subjects back to consider alternatives., At this point, two of the subjects
decided to rewrite the code by using an (append <list> (list <atom>))
construction. The other subjects went back to the code, and discovered, with or
without hints from the experimenter, that all they had to do was to reverse the
output.

ROTATER posed a different problem. By the time they got to this problenm,
subjects had gathered some experience in debugging. Most of the subjects quickly
located the error as being in the second argument to append. Opinions on how to

fix this error differed widely, however. Most subject found the correct
solution after exploring several erroneous paths and getting hints from the
experimenter. The complexity of the code left more correction paths open for the
subjects than the previous problems. This seems to account for the additional
time needed to solve this problem.

To summarize, it seems that we are able to attribute most of the typical
errors on a particular function to one of the debugging episodes we described.
The debugging process we presented thus should be able to serve as an ldeal
model for novice debugging. The errors students make could be thought of as
deviations from this ideal model. The next section will describe a
computational model of the debugging process.

A PRODUCTION SYSTEM MODEL OF DEBUGGING

Qverview
We developed a simulation of the student debugger written in GRAPES (17), a

goal-restricted production system language intended to implement an aspect of

2
the ACT* theory (18) . GRAPES is distinguished from other production system
languages by its goal structure - productions must match to particular goals
before they can fire. One of the actions of a production can be to actually
create goals and subgoals. Thus, the goal-structure itself is created by
productions. This feature of GRAPES makes it particularly useful for modeling
the goal-directedness of human problem solving behavior. Figure 1 gives the goal
structure for the model.

CHECK~FUNCTION

/”/- T
-~ T~
— T
COMPREHEND-FUNCTION CORRECT-FUNCTION
V4 AN
~, e \\\
S \) i \\\
PARSE~CODE EVALUATE~-CODE DETECT-MISMATCH LOCATE-BUG CHANGE-CODE
Figure 1

The Goal Tree

The model is started up by giving it a problem and initializing a top goal.
When the top goal is initialized, two subgoals are set up. The first subgoal
demands an evaluation of the function in order to comprehend it, while the
second one demands to find and correct the bug. To satisfy the comprehension
goal, the function is first parsed into the smallest units that can be

2

The actual productions used and traces of their perfurmance can be cbtained
by writing to Claudius Kessler, Department of Psychology, Carnegle-Mellon
University, Pittsburgh, Pa 15213.

evaluated, The function is then evaluated according to the rules of LISP, with
the result of every LISP function call being stored in working memory. The
output that a given function call would produce is the final result of the
comprehension phase.

Under the second subgoal, code correction, further subgoals are set up that
in turn detect a bug, locate it, and finally change the code. This phase
starts out with a goal to check the output for correctness. If it is found to be
incorrect, the checking productions return a description of the discrepancy
between the output and the correct answer. Under the localization subgoal, the
evaluation results of all LISP function calls can then be compared to the
discrepancy description, and the buggy part of the code can be located in this
way. Once the bug is located, a final goal to change the buggy part of the code
is instantiated. If a change can be made, the production system goes again
through the evaluation cycle. If the output now matches the correct answer, the
production system halts with a success message. If not, the system can go
through another debugging cycle if its knowledge base indicates another possible
change. If all possibilities are exhausted, the system halts with a failure
message.

Examples
The production system was designed so it could handle all the bugs in the

Appendix. These bugs could appear in any user-defined function as long as no
other than the basic LISP functions were used. In order to see how the model
works, examples of the functions FIRST, SQR, and ROTATER are given. In addition
to the general working principles of the productions system, the FIRST function
illustrates how syntactic bugs are handled, while SQR and ROTATER demonstrate
how two aspects of suboptimal debugging that we observed in our protocols have
been built in the model.

FIRST. The top-level production sets up the subgoals to parse the function
and to match the output and the correct answer. Following LISP syntax, the
parsing productions parse the code into the basic functions “"car" with the
argument "(x)" and, since "x" is in parentheses, it is further parsed as a
function with no argument. Obviously, "x" is not a basic LISP function, and the
evaluation productions cannot evaluate it. Thus, an error message is returned as
the result of the first subgoal and the location of the error is marked as "x".

Since there is no answer to be matched, and the error is already located,
the only thing that is left to do under the second subgoal is to change the
code, This is done by the matching production that fires when there i1s a syntax
error. It corrects the code, and on the second iteration of the debugging
process, the code is recognized as correct.

SQR. In this case, the first subgoal returns with an evaluation. The
result is a number, not a list. The match productions then evoke the
DETECT-operator which gives the discrepancy description that there is no list.
The discrepancy description is then used in the locate-productions to locate the
error as a statement to make a list. Under the change-goal, a combiner function
is inserted in the code. In this case the production system has incomplete
knowledge about combiner functions. It randomly picks a combiner that has not
been used yet. This turned out to be a typlcal novice strategy. Since there are
only 3 possible statements, the debugging is guaranteed to succeed on the third
iteration at worst.

ROTATER. Agailn, the first subgoal is completed with the return of an
evaluation. The match-productions agaln evoke the DETECT operator which returns
with a discrepancy description pointing to the part of the answer list that is
wrong. The locate-productions then locate the part of the code which is
responsible for the wrong part of the answer list. The system then goes off Into
a simple means-ends analysis, trying to substitute code so it gets the correct
second element of the list. This is another novice strategy we observed. Since

this approach does not produce the correct code, it is abandoned. Qur students
also tended to give up this strategy when it did not lead to immediate success.
It then sets a goal to use the functions in the code in order to find the right
angwer, a strategy that was given as a hint when students got lost. In this
way, it finally arrives at inserting the missing reverse. The function is then
checked again and is found correct.

GENERAL DISCUSSION

The model completely specifies the processes necessary to debug the
functions in the Appendix. It does so by breaking down the debugging processes
into episodes. These episodes closely match the performance of human novices on
the same btasks. While we tried to implement some of the ineffective strategies
husan novices show, we did not impose other limitations on the production system.
Our system, for example, does not have any working memory limitations that lead
to a buggy performance. Anderson & Jeffries (19) have shown that these working
memory limitations account for a large part of the inferior performance of
novices. It is possible and highly likely that the knowledge our subjects had
about LISP was in a state where it was highly capacity demanding. Thus, working
memory limitations probably account for some of the performance we observed in our
subjects. This goes for forgetting the exact specification of a LISP function as
well as for forgetting intermediate results or goals that have been established.

Another aspect of our system that may not be true of the human novices is
the strict goal hierarchy. The behavior of our novices was not as goal-directed
as our system is. Subjects often floundered and went off into some
trial-and-error behavior until they were brought back on track by the
experimenter. We think that our model nevertheless captures all the steps a
novice is in fact going through when debugging a problem flawlessly.

. In our protocols, we observed several ways iIn which our subjects’

performance was suboptimal. Qur model captures some of the ways in which a
novice can perform ineffectively. It further allows us to identify the subskill
in which the performance flaw is occuring. We know for example that detecting a
bug does not guarantee that it also can be corrected, and vice versa, that a
person who has enough knowledge of LISP to write functions correctly, does not
necessarily recognize a given bug. Since the model attributes performance lapses
to different episodes, it could be useful as a dlagnostic tool for identifying
weaknesses in a beginning programmer's knowledge.

The research reported in this paper also has implications for the teaching
of debugging. It became clear that debugging is a skill that does not
immediately follow from the ability to write code. Rather, it consists of
several subskills that can and must be taught in addition to instructions about
how to write programs. These subskills include the ability to evaluate code
correctly, to be able to locate errors by parsing the code and matching it with
the results obtained, and the ability to generate correct code to fix the bug.

In our model, we could simulate the debugging process as we extracted 1t
from the protocols, including some inefficient strategles our novice subjects
were using. With more data on the debugging behavior of novices on different
functions, we should get a more complete picture of the possible strategies and
novice inefficiencies associated with debugging subskills. An extended
production system could model these skills, incorporating the ideal debugger and
the strategy differences and errors of the novices. As such, it would form the
core of a debugging tutoring system that could complement programnning
instruction.

REFERENCES

Rich, C., & Waters, R. C. (1981). Abstraction, inspection, and
debugging in programming (Tech. Rep. AI Memo 634). Massachussetts
Institute of Technology, Boston, MA.

Johnson, L., & Soloway, E. (1984). Intention-based diagnosis of

programming errors. Proceedings of the 1984 Conference of the AAAIL.

Youngs, E. A. (1974). Human errors in programming. International

Journal of Man-Machine Studies, 6, 361-376.

Soloway, E., Ehrlich, K., Bonar, J., & Greenspan, J. (1983). What do

novices know about programming? In B. Shneiderman & A. Badre
(Ed.), Directions in Human-Computer Interaction. Norwood, NJ:
Ablex Inc.

Jeffries, R. (1981). Computer program debugging by experts. Paper

presented at the Psychonomics Society Meeting.

Jeffries, R. (1982). A comparison of the debugging behavior of expert

and novice programmers. Paper presented at the American Educational
Research Association Annual Meeting.

Gould, J. D., & Drongowski, P. (1974). An exploratory study of

computer program debugging. Human Factors, 16, 258-277.

Gould, J. D. (1975). Some psychological evidence on how people debug

computer programs. International Journal of Man-Machine Studies, T,
151-182.

Atwood, M. E., & Ramsay, H. R. (1978). Cognitive structures in the

comprehension and memory of computer programmers: An investigation
of computer program debugging (Tech. Rep. TR-T8-A21). U. S. Army
Research Institute.

10. Soloway, E., Bonar, J., & Ehrlich, K. (1983). Cognitive strategles and

1.

loopin constructs: An empirical study. Communications of the ACM,
26, 853-860.

Katz, I. R., & Anderson, J. R. (1985). An exploratory study of novice
programmer's bugs and debugging behavior. Unpublished Manuscript.
Carnegie-Mellon University, Pittsburgh, PA.

12. Carver, S. M., & Klahr, D. (in press). Children's acquisition of

debugging skills in a LOGO environment. Journal of Educational
Computing Research.

13. Reiser B., Anderson J. R., & Farrell, R. (1985). Dynamic student

modelling in an intelligent tutor for LISP programming. Proceedings
of the International Joint Conference on Artificial Intelligence.

14, Anderson, J. R., Corbett, A. T., & Reiser B. J. (in press). Egsential

LISP. Reading, Ma.: Addison-Wesley.

15. Anderson, J. R., Farrell, R., & Sauers, R. (1984). Learning to program
in LISP. Cognitive Science, 8, 87-129.

16. Anderson, J. R. (1985). Production Systems, Learning, and Tutoring.
In D. Klahr, P. Langley, & R. Neches (Ed.), Self-modifying
Production Systems: Models of Learning and Development. Cambridge,
Ma.: Bradford Books/MIT.

17. Sauers, R., & Farrell, R. (1982). GRAPES User's Manual ONR Technical
Report. Carnegie-Mellon University, Pittsburgh, PA.

18. Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA:
Harvard University Press.

19. Anderson, J. R., & Jeffries, R. (1985). Novice LISP errors: Undetected
losges of information from working memory. Human-Computer
Interaction, 1, 107-131.

APPENDIX
The Bugged and the Correct Function Versions

BUG: Parenthesized VYarilable

This function is called first. Given any list, it should return the first
element of that list., For instance, (first '(a b c)) should return a.

wrong: {defun first (x) (car (x)))

correct: (defun first (x) (car x))

This function is called extract.It should return the second element of a list.
For instance, extract called on (a b ¢) should return b.

wrong: (defun extract (x) (car (cdr (x))))

correct: (defun extract (x) (car (cdr x)))

BUG: Quoted Variable

This function is called replace. It should replace the first element of a list
with a new element. This function takes two parameters - the new element and
the 1ist. For instance, (replace 'rings '(ties hats pants)) should return
{rings hats pants).

wrong: (defun replace (x y) (cons 'x (cdr y)})
correct: (defun replace (x y) (cons x {(cdr y)))
This function is called pair. It takes as its argument an element x and a list

y. It should return a list consisting of two elements, x and the first element
of the list y. For example, (pair 2 '(4 5 6)) = (2 #).

wrong: (defun pair (x y) (list 'x (car y)}))

correct: (defun pair (x y) (list x (car y)))

BUG: Wrong Embedding

This function is called "ftoc". It takes as its argument a degree reading in
fahrenhelt and should return the celsius equivalent. The formula for
converting fahrenheit (f) to celsius (c¢) is: ¢ = ((f - 32) / 1.8)).

wrong: (defun ftoc (x) (difference x 32)(quotient x 1.8))

correct: (defun ftoc (x) (quotient (difference x 32) 1.8))

This function is called "ctof" . It should convert celsius degrees to
fanrenheit degrees. The equation to convert celsius (c) to fahrenheit (f) is:
£ = (c*1.8) +32). ‘

wrong: (defun ctof (x) (times x 1.8) (plus x 32))

correct: (defun ctof (x) (times (plus x 32) 1.8))

BUG: No Combiner

This function is called sqr. It should return a list of the perimeter and the
area of a square, given the length of one side. So, (sqgr 2) should return
(8 §).

wrong: (defun sqr (x) (times x 4) (times x x})

correct: (defun sqr (x) (list (times x 4) (times x x)))

This function is called polar. It takes one argument that is a radius of a
circle that is situated at the origin of a cartesian co-ordinate plane and
another argument that is the angle away from the x axis. The radius and angle
are measurements in a polar co-ordinate system that are converted to cartesian
(x and y) co-ordinates and then returned in a 1list by this function. The x
co-ordinate is the radius times the cosine of the angle and the y co-ordinate
is the ggdius times the sine of the angle. For example, (polar 10 60) =

(5.0 8.66).

wrong: (defun polar (x y) (times x (cos y)) (times x (sin y)))

correct: (defun polar (x y) (list (times x (cos y)) (times x (sin y))})

BUG: Wrong Comblner

This function 1s called back. It should return two copies of a list, where

each copy 1s the original reversed. Thus, (back '(a b c}) should return
(ebachba).

wrong: (defun back (x) (list (reverse x) (reverse x)))

correct: (defun back (x) (append (reverse x) {reverse x)))

This function is called pal. It takes a single list as an argument and should
return a palindrome that is twice as long. A palindrome is a list that reads
the same forward and backward. For instance, (a b ¢ ¢ b a} would be the
palindrome made from (a b c).

wrong: {defun pal (x) (list x (reverse x)))

correct: {defun pal (x) (append x (reverse x)})

BUG: Missing Reverse

This function is called snoc. It is the opposite of cons. Instead of inserting
an item into the front of a list, it should insert the item at the end. So,
{snoc 'd '(abe)) =(abecd).

wrong: (defun snoc (x y) (cons x (reverse y)})

correct: (defun snoc (x y) (reverse (cons x (reverse y))))

This function is called rotater. Its argument is always a list. It should
return a list that is the same as the argument except that the former last
elenent becomes the new first element. Thus, it rotates the list one to the
right. For example, (rotater '(abc d)) = (d ab c).

wrong: (defun rotater (x) (append (last x) (reverse (cdr x))})

correct: (defun rotater (x) (append (last x) (reverse (cdr (reverse x)))))

