HUMAN-COMPUTER INTERACTION, 1987-1988, Volume 3, pp. 351-399
Copyright © 1987-1988, Lawrence Erlbaum Associates, Inc.

—_—
Debugging:
An Analysis of Bug-Location Strategies

Irvin R. Katz and John R. Anderson
Carnegie Mellon University

ABSTRACT

This article presents a series of four experiments investigating students’
debugging of LISP programs. The experiments involve a population of
students who know LISP reasonably well in that their errors are best classified
as slips (Brown & Van Lehn, 1980). That is, students are unlikely to repeat the
same errors either within their program or across programs (Experiment 1).
The students’ understanding of LISP is also reflected in their debugging
behavior: They can usually fix a bug once they locate it. Students’ difficulties
are in locating the erroneous line of code. We observe that students use a
variety of bug-location strategies during debugging (Experiment 2) and that
the choice of strategy differs depending on whether students are debugging
their own programs or other students’ programs (Experiment 3). In addition,
we observe that although the different bug-location strategies affect which
lines of a program are searched, once students decide on a line, their ability
to judge whether or not the line is correct and their ability to correct an error
are not substantially affected by the strategy used to locate the line (Experi-
ment 4). Finally, we argue that our results have implications not only for
debugging in other computer languages, but for the general processes
involved in troubleshooting as well.

Authors’ present address: Irvin R. Katz and John R. Anderson, Department of
Psychology, Carnegie Mellon University, Pittsburgh, PA 15213.

352 KATZ AND ANDERSON

CONTENTS

[y

. INTRODUCTION
2. EXPERIMENT 1: AN EXPLORATION OF PROGRAMMING ERRORS
~ 2.1. Experiment 1a: Errors While Using an Intelligent Tutoring System
Method
Results and Discussion
2.2. Experiment 1b: Errors in a “Natural” Programming Environment
Method
Results and Discussion
2.3. Discussion of Experiments 1a and 1b
3. EXPERIMENT 2: AN EXPLORATION OF DEBUGGING
3.1. Method
3.2. Results and Discussion
4. EXPERIMENT 3: DEBUGGING YOUR OWN VERSUS ANOTHER'’S
PROGRAM
4.1. Method
4.2. Results and Discussion
5. EXPERIMENT 4: BUG-LOCATION STRATEGIES
5.1. Method
5.2. Results and Discussion
6. CONCLUSIONS
APPENDIX: SUPPLEMENTARY FIGURES

1. INTRODUCTION

This article reports the work we have done thus far in trying to understand
how students debug LISP programs. However, we do not regard the
significance of this research as being limited to debugging in LISP or to
debugging in general. We believe that the phenomena we are studying are
Just particularly clear instances of a very general problem-solving process-
namely, troubleshooting. Troubleshooting permeates our everyday lives: The
car won't start; the television’s reception is bad; our computer programs don’t
work correctly; and so on. Figure 1 provides a high-level model of what is
involved in troubleshooting. A

Generally, a person must first come to understand or have a representation
of the device being repaired. The person then usually tests the device in some
way, if only to observe that incorrect behavior is produced. The person must
then locate the error in some way and, once the error is found, repair it. After
allegedly repairing the device, the person should test the device to be assured
that correct behavior is now produced. If the device still acts incorrectly,
further location and repair may be needed. Thus, according to this model,
troubleshooting contains four steps (understanding, testing, location, and

a

DEBUGGING STRATEGIES 353

Figure 1. Simplified model of general troubleshooting.

Understand
System

v

Test
System

R

Yes

deate
Error

v

Repair
Error

repair), repeating the last three steps if necessary. A similar characterization
of troubleshooting has been suggested by Morris and Rouse (1985).

It is clear that this model is oversimplification of troubleshooting. Among
other things, the model neither addresses the issue of how the processes
interact nor how the processes are instantiated in a particular domain (i.e., for
a particular device) or in a particular situation. This article fills in these details
for the domain of computer program debugging.

Debugging may be thought of as just a specific instance of troubleshooting,
but instead of fixing the problems in a device, the errors in a computer
program are sought and corrected. Other researchers (e.g., Gugerty & Olson,
1986; Kessler & Anderson, 1986; Klahr & Carver, 1988) have shown that
debugging may be characterized as consisting of subprocesses that correspond
to the model of general troubleshooting just presented. Specifically, when
debugging, one must: (a) test the program and detect that it isn’t behaving
incorrectly, (b) locate the erroneous line or lines of code, and (c) rewrite the
buggy code. Also, if a person had not written the program originally (or had
written it a long time ago), that person would probably need to first
comprehend (or understand) the program.

Rl

354 KATZ AND ANDERSON

Debugging is a good domain in which to study troubleshooting for two
reasons. First, there is a great deal of flexibility in both what different subjects
might do and how an experimenter can manipulate the task. Thus, trouble-
shooting may be observed in a variety of contexts, and subjects are free to
troubleshoot in the same way they would in a normal programming environ-
ment. Second, most debugging requires subjects to go through each step of
the troubleshooting process distinctly from each other. Thus, it is possible to
investigate in detail each portion of troubleshooting. Other domains in which
troubleshooting occurs may inherently simplify the character of the behavior.
For example, if we were to study troubleshooting in the domain of TV-
reception improving, we might not be able to observe separate steps because
to improve a television’s reception, a person normally just adjusts the
fine-tuning or the antenna; the steps of location and repair merge into one set
of actions.

This article presents a series of experiments in the domain of computer
program debugging, designed to further specify the model of general trou-
bleshooting already presented. In addition, these studies address some issues
specific to debugging. In all of the studies, debugging is done in the LISP
programming language, and the subjects are students enrolled in introductory
LISP courses.

2. EXPERIMENT 1: AN EXPLORATION OF
PROGRAMMING ERRORS

A prerequisite to understanding student debugging is knowledge about
what kinds of bugs students produce and how these bugs reflect their state of
knowledge. For instance, if most bugs reflect a fundamental lack of knowledge
on the students’ part, we should see very different debugging behavior than if
most errors reflect slips (as defined by Brown & Van Lehn, 1980). Therefore,
our first experiment consists of a series of observations about the errors
students make while programming. The first study (Experiment 1a) is of the
errors students make while working with a computer-tutoring system that
teaches LISP programming (Anderson & Reiser, 1985; Reiser, Anderson, &
Farrell, 1985); the second study (Experiment 1b) is of students’ errors in a
“natural” programming environment.

2.1. Experiment 1a: Errors While Using an Intelligent Tutoring
System

Method

Subjects. The data analyzed were from two groups of students and the
subjects of Experiment 3. The first group consisted of 13 students who coded

DEBUGGING STRATEGIES 355

some basic LISP functions' (exercises from chapter 1 of Anderson, Corbett,
& Reiser, 1987) and list-iteration functions (chapter 8). The second group
consisted of 20 students who coded functions involving reading and printing
(chapter 5), input-controlled iteration (chapter 6), and numeric iteration
(chapter 6). In addition, the data from the 36 subjects of Experiment 3 were
similarly analyzed. These subjects had coded four numeric-iteration functions
(chapter 6). Sample problem descriptions and their solutions for problems
involving basic LISP functions (Figure 14), list-iteration functions (Figure
15), reading/printing functions (Figure 16), input-controlled iteration func-
tions (Figure 17) and numeric-iteration functions (Figure 24) are found in the
appendix.

Procedure. The data were collected during the normal operation of the
LISP tutor. This computer-tutoring system requires students to code a set of
exercise problems for each lesson; the lessons correspond to the chapters of
Anderson et al. (1987). In its usual capacity in a class, the system has students
generate fairly standard programs; every student writes a program that is
almost identical to every other student’s program. Feedback to the student is
only given when the student makes a coding error. As long as the student
types in correct code, the tutor remains silent. In this way, when students are
finished coding a problem, their result is a perfect program.

In addition to teaching LISP programming, this system also works as a
data-collection device. The LISP tutor records information relevant to the
student’s coding of each function. In order to better explain the analysis
performed and the data used, a brief explanation of the internals of the LISP
tutor is necessary (see Anderson & Reiser, 1985, for more complete details).

The LISP tutor was built around a model-tracing paradigm. That is, the
tutor has built into it an ideal student model, a production-system model of
the different ways a student should write LISP code, that follows along with
the actual student coding a function. Each production corresponds to the
student either typing or planning a portion of the function. When the student
deviates from the correct solution path, the tutor gives specific feedback and
requires the student to try again (from the most recent production firing, not
from the beginning of the function). For example, say a student should have
typed (car arg), where arg is a variable name and car is a function that
returns the first element of the list in arg. Instead, the student might make an
error and begin to type (cdr arg), cdr being a function that returns the given
list minus its first element. As soon as the student finishes typing (cdr, the
tutor would respond with the feedback: “CDR will remove the first item from

! All LISP programs are functions in the sense that other programming languages use that
word. In this article, the term function is used synonymously with program.

356 KATZ AND ANDERSON

arg, but we want to return that first item. You will need a different function.”
Student errors that have such remediation are referred to as diagnosed bugs.

If the tutor doesn’t recognize a student’s input as correct or as a bug, the
tutor displays “I don’t understand that.” and asks the student to try again.
These errors, student inputs for which no feedback exists, are referred to as
undiagnosed bugs. After entering two undiagnosed errors for a particular input,
the student is given the answer that the tutor expected (via the ideal student
model) and an explanation of why the answer is correct. Students may also
obtain a particular answer and an explanation of the answer at any time while
coding a function by typing an explain key. In sum, there are four actions a
student may take that are relevant to each coding-production: entering a
correct answer, entering a diagnosed error, entering an undiagnosed error,
and typing the explain key. The tutor records (and time-stamps) each student
Interaction in terms of the productions possible, the student’s input, and the
tutor’s response.

For the analysis, a 4 X 4 table of frequencies was calculated. For each
Opportunity to input to a particular production, we recorded the action taken
by the student (i.e., correct response, diagnosed error, undiagnosed error,
explain key) and the action taken on the previous opportunity with the same
production. For example, if for a particular production the subject gave a
correct response and had typed the explain key on the previous use of this
production (which could have been in the same or a previous function), then
we would add one to the number in the lower left-hand box of the frequency
table (Figure 2).

Before discussing the results, what we mean by “opportunity to input to a
particular production” needs clarification. Although students are given a
number of tries to enter the correct code for each production, the frequency
table only reflects the student’s first response. Thus, if the first response is an
error, it is recorded as such, the student receives feedback, and is prompted
to try again. However, for purposes of our analysis, these responses that
immediately follow feedback are excluded. The next opportunity would be the
next time that production is needed in either the current problem or a later
problem.

Results and Discussion

The frequencies for Lessons 1,5, 6, and 8 are collectively shown in F igure
2. The entry for diagnosed-error/diagnosed-error contains two numbers. The
first is the number of times the prior diagnosed error was the same as the
current error; the second number is the number of times the prior error was
different from the current error. Altogether, 13,793 pairs of responses are
analyzed, 2,298 of which involve at least one error.

This figure shows three Interesting characteristics. F irst, the probability of

DEBUGGING STRATEGIES 357

Figure 2. Frequency data of Experiment 1a.

Current Action

Previous Action Correct Diagnosed Undiagnosed Explain-key

Correct 11495 507 343 58
Same/Different

Diagnosed 589 99/44 31 7

Undiagnosed 435 28 68 5

Explain-key 59 6 3 16

generating a correct answer after a correct answer was entered is high (.93).
Thus, it is unlikely for students to make an error once they use a production
correctly, but the chance of making an error is still greater than zero. Second,
the probability of entering an error after generating an error is somewhat low
(-22). These numbers suggest that students’ errors are unstable. Out of the
2,298 pairs that involve at least one error, only 307 involve an error on both
occasions (the sum of the numbers in the 3 X 3 submatrix made by excluding
the row and column labeled correct). Of these, 143 involve diagnosed errors on
both occasions and 99 of these are repeats of the same bug. This proportion
(99 out of 143) might seem high, however, note that on the average, the tutor
can recognize about two bugs per production. So, if both bugs were equally
likely, we would have a 50:50 ratio. The observed value of 70:30 is not
surprising given that some bugs are more frequent than others. In sum, there
is no evidence in the data for the proposition that students tend to repeat their
errors in the way we would expect them to if they had systematic misconcep-
tions.

One final observation about the frequency table is that the frequencies from
students in each lesson are distributed similarly despite the fact that the data
were generated during the coding of very different LISP functions. In fact, the
students in Lesson 1 weren’t even coding their own LISP functions; they were
merely generating calls to existing functions. Thus, whatever characteristics
the figure shows, they must stem from a source that does not necessarily
change with increasing programming knowledge.

Summary. The analysis seems to reveal that the errors produced during
coding with the LISP tutor are relatively unstable; it is much more likely that
a student enter a correct response after an error, rather than two errors in a
row. In addition, once the student does enter a correct response to a
production, it is unlikely that the student will make a mistake on that
production again. Even when students make an error twice in a row, there is
a good chance that the errors will be different.

358 KATZ AND ANDERSON

2.2. Experiment 1b: Errors in a “Natural” Programming
Environment

After observing the characteristics of the bugs students generate, we
decided it would be useful to look at students programming in an unrestrained
LISP environment to see if the same trends held. In addition, we wanted to
gather protocols from the subjects to help us identify the source of these
errors. In other words, we have seen quantitative evidence for bug instability;
how we wish to see the qualitative explanation for such instability.

Method

Subjects. Subjects were 18 Carnegie Mellon University undergraduates
enrolled in a LISP course. All had previously completed one introductory
PASCAL course. The LISP course was divided into 10 lessons, ranging from
basic LISP functions to recursion and search techniques. For the first 9
lessons, each student received a lesson booklet and attended a lecture. The
lesson booklets, which were draft copies of Anderson et al. (1987), were used
in lieu of a textbook. Each booklet described the new concepts for the lesson
and gave functions for the student to write. Half of the class (structured
section) completed each lesson with assistance from the LISP tutor (described
in Experiment 1a) and the other half completed each lesson on their own
(exploratory section). Of the students who participated in this study, 10 were
from the structured section and 8 from the exploratory section. Preliminary
analysis revealed no substantial difference betwen students in the two sections,
so all results will be collapsed over the sections.

Design and Materials. Subjects wrote three LISP functions with the aid of
a human tutor (discussed next). The first and third functions, BREADTH
and BEFORE, are instantiations of a general graph-searching function format
presented in Winston and Horn (1981). In this format, the variable of
primary interest is queue, the control variable for the search loop. This variable
contains a list of nodes of the network that have not yet been examined. After
being examined, a node is removed from the queue and its immediate
successor nodes are added to the queue. The function stops either when all
nodes have been examined (i.e., the queue is empty) or a particular node is
found. In the case of BREADTH, the function is looking through a
predefined network, in a breadth-first fashion, for the first node with a
particular attribute. In BEFORE, the function searches a network of course
prerequisites and outputs all courses that are the prerequisites for a given
course. The second function that subjects coded, PRE-REQUISITE, sets up
the course prerequisite network that BEFORE searches. The problem
descriptions and ideal solutions for these three functions may be seen in
Figures 18, 19, and 20 of the appendix.

DEBUGGING STRATEGIES 359

Procedure. The data were collected while the subjects completed a lesson
on search techniques. For this lesson, the subjects received a booklet (as
usual), but instead of completing the lesson on their own or with the LISP
tutor, all subjects received the help of a human tutor. The function of the
human tutor was to answer any questions the subject might have, assist the
subject (minimally) in writing the three functions that comprised the lesson,
and act as a verbal-protocol prompter. In addition to verbal protocols, a
time-stamped transcript of everything the subject typed into the LISP
environment was collected. The LISP environment used was the same one in
which the exploratory students did their previous lessons and in which the
structured students tested each problem in a lesson after having written the
problem with the help of the LISP tutor.

Results and Discussion

The modal time to complete the lesson was 2 hr. Subjects’ final solution to
each problem were typically similar to the solutions shown in Figures 18, 19,
and 20, with any differences being relatively minor and not changing the
overall flow-of-control of the ideal solutions.

Figure 3 shows the frequency of each bug we observed subjects generating
in the three programs. For sake of readability, these bugs have been placed
into 5 categories according to their possible origins:® (a) goal errors, which
show as missing pieces of code; (b) misrepresentation errors, which show as a
misunderstanding about the problem statement or confusion over the roles of
variables; (c) intrusion errors, which show as pieces of code that would have
worked in a previous program, but are inappropriate in the current program;
(d) misconceptions, which reflect a misunderstanding about an aspect of
LISP; and (e) syntactic errors. An exhaustive set of examples of these bugs
may be found in Figures 21, 22, and 23 of the appendix. A discussion of the
nature of these errors follows. For purposes of the current discussion, only the
results pertaining to the bugs generated by subjects are presented. The
debugging of these bugs is discussed in Experiment 2.

From a descriptive point of view, the data show two obvious results: (a) that
the bugs are very local and (b) that bugs do not repeat. The fact that the bugs
are local means each bug is associated with only one line of code. None of the
bugs produced span a number of lines, which would show that subjects had a
misunderstanding about some programming or algorithm construct.

In addition to generating local bugs, subjects did not often generate the
same bugs neither within a program at different places nor between programs.
For example, although some subjects missed the setq (i.e., the “argument for
function call: setq” bug of Figure 3) at one place where a variable was being
set, they used setq correctly at other places in the same program or used setq

2 For a more detailed discussion of these bug categories, see Katz and Anderson (1986).

Figure 3. Bugs generated in each program.

*indicates that errors were possible.

Program Name

Breadth

Prerequisite

Before

Goal Errors
argument function call:
setq
car
expand
cons
list
prog
missing label
missing result update
missing (go loop)
missing member test
missing queue update

missing loop variable update

missing cdr step
(of queue update)
missing append step
(of queue update)
missing exit test
missing argument to:
equal
putprop
member
missing has-pre-req putprop

*

fa—y

* ® %D

NN -~ O

P N =t bt e oy

Total

10

10

21

Intrusion
argument for function call:
return
list for expand
nil returned
(go loop) inside cond

10

Lol SN RS

Total

10

11

Misrepresentation Errors

member test/action mismatch

result initialized as queue
result updated as queue
extra list

t returned

example for variable
depth-first search
parameter for (car queue)
no loop '

* R = N = N

360

DEBUGGING STRATEGIES 361

Figure 3. Continued

Program Name

Breadth Pre}'equisite Before

'loop’ for variable name * 1 *
pre-req-for for has-pre-req 2

Total 22 4 6
Misconceptions
arguments in wrong order:

cons * 1
putprop 3

cons for append * 1 1

missing quote 2 * *

extra quote 4 8 *
putprop has-pre-req separately 3

didn’t add pre-req-for 11

Total ' 6 26 2
Syntactic Errors

missing) 9 1 5

extra) 1 1 *

missing (* 1 *

extra (* 1 *

missing () * 1 *

extra () * * 2

Total 10 5 7

correctly in a later or earlier program. Of the 58 bugs generated in the first
program, only 9 were generated by the same subject in later programs; of the
48 bugs generated in the second program, only 4 were generated by the same
subject in the last program.

With the exception of one subject who was confused about cons and
append and a few subjects who had problems with putprop (a function that
had just been introduced), subjects clearly did not hold many firm miscon-
ceptions about LISP. Their errors reflect this fact in that particular subjects
did not generate the same bugs either within a program or across programs.
If a subject did have a misconception, as the few subjects did, every time there
was an opportunity to generate the bug, the subject should do so. Because
subjects only occasionally generated particular bugs, some other explanation
of the origins of the bugs is necessary.

Although subjects didn’t hold many firm misconceptions, it should not be
inferred that subjects held no misconceptions. It is entirely possible that some
bugs were caused by the subjects misunderstanding something about search

362 KATZ AND ANDERSON

functions or about LISP in general. The reason the bugs didn’t repeat might
be because students corrected their misconception after one instance of
feedback (i.e., correcting the bug). Or, subjects might have been unsure
about what to type, had entertained some competing hypotheses about what
1s correct, and had picked the wrong action. On the next try, subjects would
have a better chance of picking the correct hypothesis.

However, the fact that many of the bugs appeared for the first time in later
programs after the subject had coded, without error, the same or a similar line
in a previous function, plus the fact that bugs did not repeat within programs,
suggests a third explanation: Subjects had the correct LISP and programming
knowledge, they just failed to retrieve or apply the knowledge correctly. These
retrieval or application failures would have been caused by some inconsistent
mechanisms such as working-memory failure or set effects.

2.3. Discussion of Experiments 1a and 1b

The results reveal evidence for the generation of errors primarily by some
inconsistent mechanism rather than due to misconceptions on the part of the
subjects. Anderson and Jeffries (1985), who were looking at a different set of
errors, also observed the inconsistency of programming errors. They found
that the frequency of such errors increased with working memory load. Their
hypothesis was that errors were due to loss of information from working
memory. This hypothesis is consistent with certain categories of errors we
observed from Experiment 1b such as goal and syntactic errors. The other
major category of error from Experiment 1b also produces an inconsistent
pattern. These are the errors produced when the subject misunderstands the
problem. The subject is unlikely to misunderstand the next problem state-
ment that creates the same error.

We do not mean to imply that subjects never have misunderstandings
about LISP or that their errors cannot reflect these misunderstandings.
However, it is apparent that misunderstandings are quite infrequent for our
population of subjects solving the kind of problems we give them. The errors
we find are quite different than the misconceptions studied by Spohrer and
Soloway (1986), although a possible reason for this difference might be the
method of instruction used (standard classroom instruction vs. an intelligent
tutoring system). The fact that misunderstandings are so infrequent means
that when we examine subjects’ debugging behavior in Experiments 2, 3, and
4, we are looking at subjects with adequate knowledge to correct the bugs if
they can find them. This characteristic of our subject population greatly
simplifies analysis.

3. EXPERIMENT 2: AN EXPLORATION OF DEBUGGING

Having now characterized the source of errors in programming, the next
agenda item is to see how subjects go about debugging. In this experiment, we

DEBUGGING STRATEGIES 363

were Interested in observing the range of possible behaviors for subjects
debugging LISP functions. To allow the subjects as much freedom as
possible, the functions were coded and debugged in an unrestrained LISP
environment.

3.1. Method

The subjects, design, materials, and procedures for this study were
described under Experiment 1b.

3.2. Results and Discussion

The schematic protocols of eight subjects debugging BEFORE were used.
The protocols covered from when BEFORE was initially entered to when it
was completely debugged. The eight subjects were chosen for observation
because they all generated bugs leading to BEFORE returning “nil.” Unlike
many error messages, this symptom did not print to a specific area of the code
as being incorrect. Thus, subjects were forced to think about their program in
detail and look for more information with which to track down the actual bug.
In addition, because many of the observed bugs in BEFORE could produce
this symptoms, and it was often the case that a few of the nil-producing bugs
existed in a function at one time, it was possible to look at the relative
dlfﬁculty of debugging various bugs that produce the same symptom.

Some of the bugs that gave the nil symptom were more difficult to find than
others. That is, although the subjects seemed to find some bugs quickly and
without any help from the human tutor, other bugs required extensive tutor
intervention. However, it was rare for a subject to need assistance in fixing a
bug once it was located. For these subjects, the trouble was in finding the bug
rather than correcting it, but other researchers have found problems in the
fixing stage of debugging (e.g., Jeffries, 1982; Kessler & Anderson, 1986).
This result is consistent with our earlier observation that the bugs manifested
by this subject population did not reflect any real misconceptions about LISP.

The observations are discussed in terms of the troubleshooting model
covered in the introduction (Figure 1). Specifically, we focus on the location
and repair stages of debugging. The first stage shown in the model,
understand, was not observed in the current situation, although other
researchers have observed such a process when a subject debugs another’s
program (Jeffries, 1981, 1982; Kessler & Anderson, 1986). That is, in this
experiment, subjects did not spontaneously look over their program before
testing it, perhaps because they felt that they already had a good under-
standing of what they wrote.

Locating Bugs. When looking for a bug, the subjects seem to be working
from a mental representation of the program as well as the listing of the

364 KATZ AND ANDERSON

program itself. This mental representation is probably built during the coding
of the function and maintained by the salience of the actual, written code. The
representation appears to contain information regarding the subjects’ inten-
tions in writing a line or whole section of code as well as presuppositions
concerning the code in general (e.g., the only possible exit from the function
is the return statement).

There were three general strategies that the subjects used to locate a bug:
(a) a simple mapping from the program’s behavior to the bug, (b) hand-
simulation, and (c) causal reasoning.

The simple mapping strategy merely means that the program’s buggy
behavior pointed to the bug that produced this behavior. In the current
situation, the buggy behavior invoking this strategy was an error message. A
typical example of this strategy is when a subject saw the error message
“ERROR: eval: undefined function course.” The subject wondered aloud why
the computer thought that “course” was a function (course was a variable
name), and started looking at instances of the word couse in the program. No
reasoning about the program was necessary beyond realizing that because the
error messages referred to the word course, the bug must have something to
do with where that word appeared in the program. This strategy may become
more difficult to use when a program has a large number of occurrences of a
particular variable.

Hand-simulation consists of the subject executing the program (with
sample parameter values— similar to Kant & Newell’s, 1984, test-case execu-
tion) as the computer would and looking for inconsistencies between what
occurs in the actual function and what is expected as per the subject’s
representation of the function. Researchers studying debugging in other
languages have also observed this strategy. For example, Klahr and Carver’s
(1988) “brute-force” strategy observed in children debugging LOGO pro-
grams or Jeffries (1981, 1982), who observed this strategy being used by both
expert and novice PASCAL programmers. In addition, the use of simulation
in electronics troubleshooting may be inferred because factors that would
seem to affect the difficulty of simulating a system (e.g., the existence of
feedback loops; Rouse, 1979) cause a degradation in troubleshooting perform-
ance. '

However, unlike the novices in Jeffries’s (1982) experiment, for our
subjects, simulation did not seem to be a frequently used strategy and, in fact,
many subjects switched from simulation to causal reasoning in the middle of
simulating. A problem noted with simulation is that subjects may believe that
they are executing the program as written, but may, in fact, be executing the
program as intended. For example, several subjects generated the “argument
for function call: setq” bug in Line 9 of BEFORE (Figure 20). When
simulating the function, some of these subjects would interpret the line as if
it read “(setq visited (cons (car queue) visited))” instead of what was

DEBUGGING STRATEGIES 365

actually there: “(cons (car queue) visited)”. Thus, the subjects incorrectly
read the actual line as updating the result variable visited. It is unlikely that
this misinterpretation is caused by a general misconception with setq, or other
LISP functions, for two reasons: all subjects correctly used setq elsewhere,
and all subjects were able to correct the line once they determined (or were
told) that the bug existed at that line. Curiously, this misreading of the code
did not seem to appear when subjects used the causal reasoning strategy.

The causal reasoning strategy involves looking at the information obtained
in the testing of the function (e.g., the program’s output or the results of
tracing the subfunction EXPAND) and reasoning about what might be
causing the bug. In this strategy, it is the subjects representation of the
program, as well as general LISP knowledge, that seems to guide the search
for the bug, as opposed to hand-simulation in which the actual, written codes
guide the search. This strategy, in slightly different forms, has also been
observed in subjects debugging PASCAL and LOGO programs (Gugerty &
Olson, 1986) and in subjects troubleshooting electronic circuits (called the
“evaluative strategy” by Rassmusen & Jensen, 1974). As an example of causal
reasoning, consider one subject who had generated the bug “missing result
variable update” (Figure 23). Upon seeing the nil symptom, he started reading
over the program (simulating) from the beginning. When he reached the
cond-clause ((null queue) (return visited)), he stated, “visited has nothing in
it when it returned, maybe we didn’t add anything to visited.” The subject
then looked at the appropriate section of code and realized that he had
forgotten to update the result variable.

As it happened, not updating the result variable was not the bug that caused
the program to return nil. The function returned nil because, due to a missing
close parenthesis, the (go loop) statement was skipped. The subject eventually
found this bug by tracing the helping function, EXPAND, and seeing that
BEFORE never looped. It seems that the fact that the function would
potentially not return through the return statement of Line 5 (Figure 20) was
not initially encoded in the subject’s representation of the function. Only when
forced by other information was the subject able to elaborate his representa-
tion to include this possibility.

Why are some aspects of the program represented initially in the subject’s
mind but other aspects are only added after other possibilities are refuted?
One answer might be familiarity. If a person often makes parenthesis errors,
such an error might well be the first thing checked when debugging
future programs, perhaps even independently of whether or not a program’s
behavior actually reflects such bugs. As time goes on, people may learn more
and more of these mappings between bugs and behavior, until most of their
debugging looks like simple mapping. It is just these “compiled reasoning”
mappings that Klahr and Carver (1988) used in teaching children debugging
skills. For our subjects, it might have been the case that their past programming

ot b g S R g

366 KATZ AND ANDERSON

assignments were of sufficient simplicity that parenthesis errors were rare or
obvious when made (and, for the structured subjects, the LISP tutor handled
parenthesis balancing). As a result, they did not have a sufficiently refined
representation of the parenthesis level at which a statement occurs and, there-
fore, found certain parenthesis bugs difficult to locate. The importance of
subjects’ representation of the program is addressed further in Experiment 3.

Repairing Bugs. As reported in Experiment 1b, subjects’ troubles did not
stem from problems with their general knowledge of LISP, but rather from
the application of this knowledge to code a program. This result is also
reflected in the subjects’ ability to fix bugs once they were located. Subjects
had little difficulty in correcting errors once it was known at which statement
in the function the error occurred. Only 8 out of 18 subjects made mistakes
when correcting a bug; each subject make only one error. Thus, out of the 47
errors that were corrected in BEFORE, only 8 miscorrections were made. No
miscorrections were made in either BREADTH or PRE-REQUISITE.

Summary. The protocols show that subjects produce a wide range of
behaviors when debugging their programs. From the observations, it is clear
that debugging is not a single activity, but a set of activities, each component
- of which may be performed differently depending on the situation. Specifi-
cally, in the current situation, subjects showed a variety of strategies in how
they went about locating the bugs in their code.

With these two experiments as background, we now report two experiments
that focus on the issue of the processes involved in locating a bug. The first
experiment is concerned with how these bug-location strategies might vary
depending on whether subjects are debugging their own program or someone
else’s.

4. EXPERIMENT 3: DEBUGGING YOUR OWN VERSUS
ANOTHER’S PROGRAM

Programmers often report that instead of debugging someone else’s pro-
gram, they would rather write their own version. These programmers are
implicitly stating that the task of debugging another person’s code is more
difficult than the combined tasks of writing and debugging their own
program. Are the tasks of debugging your own versus another’s code really so
different? The notion is intuitively appealing as well as supported by an
informal observation made of subjects’ behavior in the exploratory experiment
(Experiment 2). Specifically, we speculate that subjects might vary in their
choice of bug-location strategies.

In her study of expert and novice programmers, Jeffries (1982) reported
seeing little use of the causal reasoning strategy by her subjects, who were
debugging programs prepared by the experimenter. In contrast, the causal

DEBUGGING STRATEGIES 367

reasoning strategy was observed quite frequently in Experiment 2, in which
subjects were debugging their own programs. Although there are many
differences between Experiment 2 and Jeffries’s study (e.g., different com-
puter languages, different debugging situations, and different length of
programs), the difference in authorship of the programs being debugged
seemed the most interesting distinction to focus on. Thus, Experiment 3 was
designed as a direct look at the relationship between authorship and perform-
ance.

4.1. Method

Subjects were asked to write and debug four LISP functions. Subjects
debugged their own functions (OWN task) as well as other subjects’ functions
(OTHER task). For each of the four trials, subjects wrote either a target
function or a filler function. After writing a target function, subjects debugged
that function. After writing a filler function, subjects debugged another
subject’s target function. There were four experimental conditions which
differed in the order of debugging tasks that subjects performed: (a) OWN,
OWN, OTHER, OTHER; (b) OTHER, OTHER OWN, OWN; (c) OWN,
OTHER, OWN, OTHER; and (d) OTHER, OWN, OTHER OWN. In
addition to time-stamped keyboard transcripts of the subjects’ interaction with
the system, concurrent verbal protocols were collected while some subjects
were debugging the functions.

Subjects. Subjects were 36 Carnegie Mellon University undergraduates
who were recruited from three introductory LISP courses. Fourteen, 11, and
12 subjects were taken from each class, respectively. The data from one
subject in the third class was excluded because the subject refused to follow
instructions. The experiment was completed as an optional course assign-
ment. The experiment occurred approximately halfway through each LISP
course, as Lesson 6 out of 12 total LISP lessons. All three courses used the
same textbook (draft copies of Anderson et al., 1987) and assigned the same
homework problems. Students in the first class normally completed each
homework problem on their own. Students in the other two classes completed
most of the problems with the aid of the LISP tutor, and one problem per
lesson was completed on their own. Thus, students in all three classes were
exposed to almost identical LISP materials.

The computer experience of the subjects differed depending on which
course they were recruited from. The first class consisted of students who had
previously taken at least one introductory PASCAL course, although some
students had more experience than just one prior programming course. A
prerequisite for the second class was that students had taken exactly one
introductory PASCAL course previously. A prerequisite for the third class

368 KATZ AND ANDERSON

Finally, concurrent verbal protocols (Ericsson & Simon, 1984) were
collected from 13 of the subjects as they debugged each function. The protocol
subjects were evenly distributed among the four experimental conditions: four
subjects from the first condition and three subjects each from the other three
conditions.

Materials. There were six LISP functions used in this experiment. The
problem descriptions and code for the functions are shown in Figure 24 of the
appendix. Four of the functions (FACTORIAL, CREATE-LIST, LIST-
SKIP, and NUM-SUM) were target functions; they were all debugged by
subjects, although each subject wrote only two of these functions (as described
next). Two of the functions (NEXT-PRIME and NEXT-PRIME-BOUND)
were filler functions; they were written by all subjects before debugging
another subject’s function.

experiment, the tutor was altered to accept certain errors in coding as if they
were correct.

The bugs that were allowed by the system were chosen from keyboard
transcripts of students from Past classes writing the same functions. The
frequency with which these bugs appeared suggested that subjects in the
experiment would be likely to generate the bugs. There were three types of
bugs used in this experiment, which were distinguished by how they usually

infinite loop (actually, the LISP environment in which programs were
executed was guarded against true infinite loops because an error message was
displayed when a function iterated more than 250 times), (b) return the initial
value of the result variable (e.g., FACTORIAL returning 1 or CREATE-
LIST returning a list containing the argument to the function), or (c) return
some other incorrect or incomplete result (e.g., CREATE-LIST return (12

program.

In order to debug functions, subjects were given the use of an editor. The
main purpose of this editor was to keep the subject from creating any more
bugs in the function than already existed, thus assuring that subjects would be
looking for only those bugs generated during coding rather than bugs

DEBUGGING STRATEGIES 369

introduced during debugging. This restriction was necessary to insure that
yoked subjects would always be looking for the same bugs. To implement this
restriction, subjects were allowed to make any changes to the function that
they wished, although if the function didn’t work (as determined, internally,
when the subject exited the editor), the editor would restore any changes that
would not have specifically fixed the bugs in the program. For example, say
a subject’s function has two bugs in it. During an editor session, the subject
might fix one of the bugs, but change some other parts of the function that is
unrelated to either bug. When the subject leaves the editor, the only change
to the function that would be kept would be the actual bug fix. The code
associated with the other change would be restored to what it was before the
subject started the current editor session, and a message would be printed to
tell the subject that the editor had done such restorations. The current version
of the function was always displayed to the subject upon leaving the editor and
reentering the LISP environment.

Clearly, this editor restricted the range of possible debugging behaviors that
a subject might exhibit. Specifically, subjects were limited in the possible
debugging strategies they could use. The editor did not allow subjects to add
lines that would print variables nor did it allow them to make successive
approximations to the bug fix. However, these restrictions should have caused
subjects to act more homogeneously; it would be more likely that subjects
performed the same whether or not they were debugging their own function.
Thus, the limits caused by the editor actually worked against our hypothesis
that people perform differently in the two debugging tasks.

Design. For each subject, the experiment consisted of four trials in which
the subject wrote one LISP function and then debugged one LISP function.
Subjects debugged either a function they had just written or a function written
by a previous subject. In the latter case, the OTHER debugging task,
subjects wrote a filler function (either NEXT-PRIME or NEXT-PRIME-
BOUND; see Figure 24) before receiving the other subject’s function for
debugging. Subjects debugged two of their own functions and two of another
subject’s functions. Subjects in the same class always debugged the four
programs in the same order, although each subject probably saw the
programs with different bugs in them. Two classes debugged FACTORIAL,
CREATE-LIST, LIST-SKIP, and then NUM-SUM; the other class de-
bugged CREATE-LIST, FACTORIAL, NUM-SUM, and then LIST-
SKIP. Thus, any results collapsed over program should be relatively inde-
pendent of attributes of the particular programs, but not entirely. Completely
counterbalancing the order of functions was not feasible due to the limited
number of subjects available.

There were four experimental conditions distinguished by the order of
debugging tasks subjects performed. Figure 4 shows these conditions and how

370 KATZ AND ANDERSON

Figure 4. Design of Experiment 3.

GROUP 1 OWN OWN OTHER OTHER
GROUP I1 OTHER OTHER OWN OWN
GROUP 111 OWN OTHER OIVN OTHER
GROUP 1V OTHER OWN OTHER OWN

they interacted. As shown by the arrows in the figure, the subjects in Groups
I'and IT and in Groups III and IV passed their functions (i.e., a LISP function
plus any bugs generated) to each other. The first Group I and III subjects
from each class debugged programs written by the experimenter and seeded
with two bugs each; these data were excluded from all analyses. In general, a
Group I subject would debug two of his own functions and then two functions
of the previous Group II subject, while a Group II subject would debug the
first two functions of the previous Group I subject and then two of her own
functions, which, in turn, would be passed on to the next Group I subject. A
similar relationship held between subjects in Groups III and IV. This partial
yoking reduced the chance that any differences found between the two tasks
are due to people debugging different bugs. Because the editor did not allow
bugs to be introduced during debugging, yoked subjects were always looking
for precisely the same bugs.

Procedures. Subjects completed the experiment either alone or in groups
of two, but all worked separately. Before beginning the experiment, subjects
were trained on the use of the computer tutor and on the editor. The subjects
from two of the LISP classes needed no training on the tutor because they had
been using the tutor for their class. The other group of subjects received a
small amount of instruction on the use of the tutor and then used the LISP
tutor to write two functions, which they had written on their own previously
in the class. All subjects then received about 15 min of training on the editor
in which they had to perform a set of editing procedures. An informal
criterion was used to determine when a subject was proficient enough on the
editor to begin the experiment.

After the training, subjects were told that they would be writing four
numeric-iteration functions with the aid of the LISP tutor. Subjects were told:

DEBUGGING STRATEGIES 371

“The tutor has been altered to be a little more forgiving than usual in the range
of solutions it will accept. As a result of this extra freedom, the tutor may not
recognize when you make an error. Thus, the programs you write may
contain bugs and, afterwards, you will use the editor and the LISP window to
debug your programs.” Subjects then wrote their first function for the
experiment with the aid of the LISP tutor.

Once this function was written, a LISP environment was made available to
subjects. At this point, subjects were asked to debug a function. If a subject
was to debug the function just written, he or she was told to “make the
function you just wrote work, if it doesn’t work already, by using the LISP
environment and by using the editor you saw previously” (subjects were able
to easily switch between the editor and the LISP environment). If a subject
was to debug another subject’s function, he or she was given the problem
description for that function (Figure 24) and told essentially the same
instructions, except that the subject was to debug a function that the computer
had just loaded in and to forget about the function he or she had just written.
Sometimes it turned out that the subject was asked to debug a completely
correct program. In these cases, the subjects’ task was trivial: They merely
had to test the program once (for every function, before being allowed to go
on, the subjects were required to call each function successfully at least once)
and then go on to write the next program.

For all subjects, the experimenter was available to answer questions about
editor commands, although the experimenter usually did not watch as the
subjccté debugged or wrote their functions. If subjects had not fixed the
function within 20 min, the experimenter told them what bugs remained and
watched as they fixed those bugs. After correcting the first function, subjects
wrote their second LISP function. This procedure continued for four trials.
Subjects were then debriefed on the purpose of the experiment, and an
informal interview usually ensued.

4.2. Results and Discussion '

The modal time to complete the experiment was 2 hr, with times ranging
from Yhr for quite experienced programmers to over 3 hr for relatively
computer-naive subjects. Figure 5 shows some performance comparisons of
the subjects with different backgrounds. The subjects from the first class were
less likely to generate an error in the two programs that they wrote than were
subjects of the other two classes, x*(1, N = 72) = 5.05, p < .03. Also, given
that a subject is debugging a program with a bug (recall that some programs
may contain no errors), the subjects with more experience were able to find
the error without any assistance (nonsignificantly) more often than the other
subjects, x2(1, N = 77) = 1.31, n.s. However, the current series of studies

372 KATZ AND ANDERSON

Figure 5. Comparisons of subjects from the three classes: number of incorrect
programs and errors found without assistance.

Relative Computer Experience

High Moderate Low
Erroneous programs 13 15 17
Correct programs 15 7 5
Errors found 15 15 17
Errors not found 6 12 12

was not designed to investigate differences due to background and, in other
comparisons, expert-novice differences do not appear. Thus, the remaining
results were collapsed over the three groups.

The first hypothesized source of differences between debugging your own
versus another’s program was in the relative understanding of the program in
each task. Jeffries’s (1982) subjects, who debugged the experimenter’s pro-

subjects of Experiment 2, who debugged their own programs, did not spend
' time just looking at the program. Thus, a subject debugging another’s
program should spend some time looking at the program before beginning
debugging, but should spend less time (if any) looking at his own program.
This prediction was substantiated. Comprehension time was taken as the time
between a person first seeing a program and when the person began to type.
Due to a technical error, this measure was not available for two subjects.
People debugging their own program (M = 37 sec) spent about 1 min less just
looking at the program compared with when they were debugging another
person’s function (M = 101 sec), a difference which is statistically significant
(within-subjects comparison), F(1, 28) = 17.09, p < .0003.

To investigate relatively how well people performed on each task, the time
to debug the first bug in a program was compared for each subject. Because
subjects differed in their computer expertise, a within-subjects comparison
was used. Seventeen subjects were excluded from the analysis because there
were no data on their debugging times for one of the tasks (their own
debugging or other debugging). In addition, the time to Just the first bug was
used so that programs with more than one bug could be included in the
analysis. The mean debugging times are shown in Figure 6. There is a
significant advantage for persons debugging their own program, K1, 18) =
8.84, p < .009. This advantage is almost entirely due to people being
unsuccessful in finding the bug in the other person’s program (i.e., the subject
didn’t find at least one bug in the program within the 20-min time limit; such
occurrences were scored as the subject taking 20 min). In fact, only one

DEBUGGING STRATEGIES 373

Figure 6. Min to debug the first bug in a program.

Task
Own Program Other’s Program n
All subjects 9.9 15.0 19
Successful subjects 9.8 10.4 8

subject (of the 19 represented in the figure) debugging his own program could
not find any bugs, whereas 10 subjects debugging other people’s programs
could not find any bugs, although they were able to find the bugs in their own
programs. Clearly, subjects were better overall at finding bugs in their own
programs, which might reflect that subjects understood their own programs
better than other subject’s programs.

What about the subjects who were successful at debugging (i.e., those that
found at least one bug within 20 min)? Our predictions were based on subjects
who were able to find at least one of the bugs in a program. It is unclear what
subjects are doing when they go over the 20-min time limit: Did they need just
a little more time, had they given up, or had they been floundering and just
guessing? Thus, all further analyses considered only those subjects who were
able to find at least one bug in the program they were debugging.

For overall debugging times, if only successful subjects are considered
(Figure 6), no advantage for one’s own program is shown, K1, 8) = .23, n.s.
However, the predictions concern differences in the strategies used in each
task, and average times are not suitable for demonstrating such strategy
differences (Siegler, 1987). Thus, two analyses that were more sensitive to
strategy differences were performed: an analysis of the learning effects over
the course of the experiment and an analysis of the verbal protocols collected
while subjects were debugging.

To investigate possible learning effects, we compared the time to debug
each program for the four experimental conditions (Figure 7). Here, time to
debug refers to times for only the first bug found in a program. This measure
allows us to perform an analysis collapsed across all programs with bugs. The
alternative would have been to plot separate graphs for programs with one,
two, three, and so on bugs, and would have resulted in each graph reflecting
only a small number of observations.

We had predicted that subjects would use one type of strategy when
debugging their own program and a different type of strategy when debugging
another’s program. Thus, if we assume that the tasks of debugging your own
versus debugging another’s program are distinct, we should see separate
learning trends for each task. Although there should be transfer from
performing a task on one program to performing that task on another

[

374 KATZ AND ANDERSON

Figure 7. Min to debug the first bug across the three programs.

16 1
14
12 4
(7]
o]
5 10 4
£
=
a-
6-
4
Program #1 Program #2 Program #3
T+ Group | OWN OWN OTHER
O Group 1l OTHER OTHER OWN
4 Group Il OWN OTHER OWN
@ Group IV OTHER OWN OTHER

program, there should be no between-tasks transfer. A 4 X 3 (Condition X
Program?) between-subjects analysis of variance (ANOVA) was performed.
Because the experimental conditions differed only in the order of the
debugging tasks performed,* we would expect a Condition X Program
interaction, which was indeed the only significant effect found, F(6, 21) =
3.21, p < .03.

In looking at the graph of the data (Figure 7), it is clear that Groups I and
IT are very similar as are Groups III and IV, but the two sets of groups are
different from each other. This similarity between groups is not surprising
because each pair of groups are complements of each other in terms of the
tasks performed (Figure 4). Groups I and II perform the same task twice, then
a different task, whereas Groups III and IV alternate tasks. In fact, in

people did not generate any bugs.

* From one of the LISP classes, the data of subjects who had debugged the programs in a
different order from subjects in the other two classes were excluded from the analysis because only
data from subjects in experimental Groups I and II were available. There were not any data from
the subjects in the other groups because the subjects in Groups IIT and IV did not generate many
bugs in the second or third programs, and those few subjects who did get an opportunity to debug
generally were unsuccessful at finding the bugs.

DEBUGGING STRATEGIES 375

collapsing the groups by task pattern, a 2 X 3 (Task Pattern X Program)
ANOVA revealed the obvious interaction as the only significant effect, (2,
27) = 10.75, p < .0004. An explanation of the interaction becomes clear
upon examination of the different groups performance for the second and
third programs.

For the second program, the two groups taking the least amount of time
(Groups I and II) are also the groups performing the same task as performed
in the first program. Group I subjects had debugged their own program for
the first and second program; Group II subjects had debugged other subjects’
programs for the first and second programs. In contrast, Groups III and IV
took more time than the other groups to debug the second program. Thus, for
the second program, the groups that performed a particular task for the first
time were (nonsignificantly) slower at debugging than the groups that had
performed the same task twice (Groups I and II: 7.7 min; Groups IIT and IV:
12.7 min; F(1, 7) = 2.34, n.s.).

The trend of the two debugging tasks being different becomes more
pronounced in the third program. Groups I and II now take significantly
longer to debug the third program compared to Groups III and IV (14.2 vs.
6.6 min; F(1, 11) = 24.09, p < .0005). Subjects in Groups I and II had
performed their particular debugging tasks for the first time in the third
program, whereas subjects in the other two groups had performed each type
of debugging task once on previous programs.

The different learning trends for each task suggest that subjects are
performing (and, therefore, learning) different behaviors in each debugging
task. To pinpoint the differences in behaviors, an analysis of the subjects’
protocols was performed.

For purposes of this analysis, we divided debugging strategies into two
types: those that reflect forward reasoning and those that reflect backward
reasoning. Forward-reasoning strategies are those in which the subjects’ search
stems from the actual, written code. Two examples of such strategies are: (a)
comprehension (Jeffries, 1982; Kessler & Anderson, 1986) where a subject
finds bugs while building a representation of the program (usually para-
phrasing the code in the process) and (b) hand-simulation (Experiment 2;
Gugerty & Olson, 1986; Jeffries, 1982; Klahr & Carver, 1988) where subjects
evaluate the code as if they were the computer. Backward-reasoning strategies
are those in which the subjects search starts from the incorrect behavior of the
program. Examples of such strategies include: (a) simple mapping (Experi-
ment 2; Klahr & Carver, 1988) where the program’s output points directly to
a specific line (or type of line) being incorrect and (b) causal reasoning
(Experiment 2; Gugerty & Olson, 1986) where the subject searches backward
from the program’s output, using their knowledge of the program and
programming to find the error.

The analysis consisted of deciding whether a particular protocol reflects a

.

376 KATZ AND ANDERSON

Figure 8. Strategies used separated by debugging task.

Task
Own Program Other’s Program
Forwards reasoning 2 o
Backwards reasoning 5 2

forward- or backward-reasoning bug-location strategy. Specifically, if a
subject refers to successive lines of the program, without considering the
output of the program, the protocol may be categorized as reflecting forward
reasoning. If the subject makes predictions about the location of the bugs in
a program based on the program’s output or uses the program’s output to limit
his search of the program, that subject’s protocols may be categorized as
reflecting backward reasoning. As it turned out, subjects tended to use either
one type of strategy or another, therefore, the categorization was an easy one
to make. Only two subjects, one debugging his own function and one
debugging another’s function, both referred to the output of the program and
to successive lines of code. Because in both cases the output of the program
seemed to be main piece of information used, both protocols were coded as
reflecting backward reasoning.

In performing this high-level analysis, each debugging trial of a subject was
categorized separately. Of the 52 protocols collected (13 Subjects x 4
Debugging Trials Each), 8 were excluded because of technical failures in the
recordings and 27 were excluded because either the programs being debugged
didn’t contain any bugs or the subjects did not successfully find at least one of
the bugs in a program. The results of the analysis on the remaining 17
protocols are shown in Figure 8. As predicted earlier, subjects debugging their
own functions tended to use a backward-reasoning strategy whereas subjects
debugging another’s function tended to use a forward-reasoning strategy,
x*(1, N = 17) = 4.5, p < .05. When searching their own program, subjects
used the program’s output and their knowledge of the program to guide their
research; in contrast, when searching another subject’s program, the subjects’
search was guided by the actual, written code. Note that this effect is not
merely a demonstration that people debugging another’s program first try to
comprehend it. By forward reasoning, we refer to the several different
strategies just outlined. Some of the subjects debugging another’s program
discovered bugs through hand-simulation of the program rather than during
their initial period of comprehension.

Summary. Subjects debugged programs differently depending on whether
or not they had written the program. Overall, subjects were more successful

DEBUGGING STRATEGIES 3717

at debugging their own programs. In addition, the practice data suggested
that subjects performed the two debugging tasks differently. An analysis of the
subjects’ verbal protocols showed that subjects debugging their own programs
tended to use a backward-reasoning strategy but used a forward-reasoning
strategy when debugging other subjects’ programs.

In this experiment, as in previous ones, bug-location strategy has appeared
to be the debugging phase of main interest. In the final experiment, we
investigated what effects the different bug-location strategies might have on
the other phases of debugging.

5. EXPERIMENT 4: BUG-LOCATION STRATEGIES

The final experiment was more controlled than previous ones. Here, we
directly manipulated the bug-location strategy subjects could use in order to
see the effects of bug-location strategies on the other components of debug-
ging. In particular, we were interested in seeing if the two types of
bug-location strategies, forward reasoning and backward reasoning, would
have different effects on debugging performance.

5.1. Method

Subjects. Subjects were 27 Carnegie Mellon University students who
completed the experiment as an alternative to one of the tutor lessons, as
described previously. The subjects were recruited from two different LISP
classes, 18 from one class and 9 from the other. All of the subjects had had
prior programming experience on the order of one or two college courses.

The experiment consisted of two subexperiments: a manipulation of the
strategy subjects were forced to use and an investigation of the trainability of
bug-location strategies. The bug-location strategy was manipulated by giving
subjects in different groups the same problems, but with different debugging
interfaces.

Stimuli. Every subject saw 12 programs (two groups of six). The first four
programs in each group had one bug each; the sixth program in each group
did not contain any bugs. The fifth program in each group had two bugs each,
but because of technical problems, subjects’ performance on these problems is
not discussed. All of the problems were numeric-iteration programs (Chapter
6, Anderson et al., 1987), similar to those written by subjects in the previous
experiment (Experiment 3; Figure 24).

Strategy Conditions. There were three groups of subjects defined by the
debugging strategy used on the first set of six programs. One group used what

378 KATZ AND ANDERSON

Figure 9. Sample stimulus program from hand-simulation condition.

How the program appeared to subjects:

(defun factorial (num)
(let (<COUNTER-INITIALIZATION >
<RESULT-INITIALIZATION >)
(loop
(cond (<TEST>
<ACTION >))
<COUNTER-UPDATE >
<RESULT-UPDATE >)))

The actual (correct) program:

(defun factorial (num)

(let ((count 0)
(prod 1))
(loop
(cond ((equal count num)

- (return prod)))

(setq counter (1+ counter))
(setq prod (* prod counter)))))

seemed to be a typical forward-reasoning strategy, hand-simulation (Experi-
ment 2). A second group used a typical backward-reasoning strategy, which
is similar to causal reasoning (Experiment 2), and is referred to as working-
backwards. A third group was allowed to look at the code in any way they
wished. For the second set of programs, all subjects could look at the program
in any way they wished. The first set of six programs is referred to as training
programs; the second set is referred to as transfer programs.

The strategies controlled how subjects went about locating the erroneous
line of code in a function. Subjects were allowed to see only one line of code
at a time. The other lines of the program showed only place-holders such as
<COUNTER-UPDATE > or <EXIT-CONDITION>. The strategies controlled,
to some extent, the order in which subjects looked at lines of code.

In hand simulation, subjects were required to look at each line of code in
the same order LISP would execute the program. Figure 9 is an example of
what a stimulus program looked like before subjects chose a line of code to
check. Subjects were told to execute the program using given parameters that
were displayed, which would cause the correct version of the function to loop
once (i.e., the first time the exit test, at <TEST>, is executed it would be
false, but after executing the variable-update lines, the test would be true and
the function would exit). At each line of code, subjects were asked to evaluate
the line (the computer kept track of the values of variables in the program and

e v

DEBUGGING STRATEGIES 379

Figure 10. Top-level menu for working-backwards condition.

What do you wish to check:
1 Check if the function stops at the right time
2 Check if a variable equals the answer when the function stops
3 Check if the function returns the variable

displayed these to subjects) and to judge the correctness of the line. If the line
was buggy, they were asked to type in the correct line of code. Subjects were
given minimal feedback (correct or incorrect) on each question. For typing in
correct code, subjects were given two tries to enter the code before being told
the answer. These questions (evaluate, judge, and record if necessary) were
asked for every line of code. To make all the strategy conditions similar, these
questions were asked in the same way no matter which bug-location strategy
was used. Thus, the strategies differed only in the way subjects chose a
particular line, but not in what they did with each line of code.

The interface for the working-backwards strategy was designed to guide the
subject through a reasoning process: Given the buggy output of the function,
what line(s) could contain bugs? The top level of the interface was a menu of
possible ways of characterizing the buggy output (Figure 10). After choosing
one of these items, the subject was given a menu of the particular lines of code
that were relevant to what the subject wanted to check. For example, if the
subject, wanted to check if the function stops at the right time, her or she would
be given a choice of looking at the counter-initialization, test, and counter-
update, which were the only lines of code relevant to the program stopping.
From this menu, the subject would choose one of the lines of code (or return
to the top-level menu) and would be asked the same questions for each line,
as already described.

The final interface, the neutral strategy, was similar to working-backwards
in that the lines of code were the leaves in a hierarchy. However, in this
interface, the top-level menu was location-based. That is, subjects chose
which area of the code (initializations, exit-condition, updates) they wished to
look at and then were given a choice of the two lines of codes in that area. For
example, if a subject chose to look at the updates, he or she was given the
choice of looking at the counter-update or result-update. The subject would
then be asked the same questions already mentioned. After answering the
questions and assuming the line was correct, the subject would be returned to
the top-level menu.

As stated previously, all subjects were transferred to the neutral strategy
during the second group of six programs. The purpose of this switch was to see
the effect of different prior training: Would subjects trained in different
strategies behave differently when allowed do what they wanted? To allow

380 KATZ AND ANDERSON

subjects as much freedom as possible, but still remain in the current
paradigm, the neutral strategy was used. Unlike for the first six programs,
subjects were no longer required to evaluate each line of code (recall that this
question was included in the neutral and working-backwards interfaces to
make them similar to the hand-simulation interface). Thus, for each line,
subjects had only to Judge if the line was correct and enter the correct code if
the line contained a bug.

Procedure. Subjects were given a brief description of the experiment and
then completed three practice problems to familiarize themselves with the
various interfaces they would be using. The general scheme of what a subject
did for each program is as follows. F irst, the subject read a description of what
the program was supposed to do and saw two examples of the program being
used. The subject was asked by the system to Judge whether or not the
program worked properly. If the program was buggy, the subject would then
try to locate one of the bugs using one of the bug-location strategies described
previously. '

After finding a bug, and correcting it, subjects were shown the same two
examples of the program being used, now with the bug fixed, and were asked
to judge if the program was working properly (which it was because the
programs discussed here all had one bug each). Subjects then went on to the
next program.

This procedure continued for all 12 programs. Subjects were then debriefed
on the phrpose of the study, and usually an informal discussion of the
experiment ensued.

5.2. Results and Discussion

Our primary goal was to observe what effects the forced bug-location
strategies would have on subjects’ performance during the various compo-
nents of debugging (e.g., bug location and bug repair). The simplest
prediction is that variables related to bug location should be affected by the
different strategy conditions while those variables related to other components
of debugging should be unaffected.

We were also interested in seeing if subjects would carry over any of the
strategies they were trained on into the case where they were free to use any
strategy, or combination of strategies, they wished. If the strategy conditions
have any effect on free debugging, we would expect to observe the same effects
in both the training (forced strategy) and transfer (free debugging) phases of
the experiment.

Bug Location. There are three measures related to searching the program
for the bug: (a) the time it takes to choose each line to check; (b) the number

DEBUGGING STRATEGIES 381

Figure 11. Transfer problems: sec to choose each line and number of lines
searched.

Strategy Conditions

Working-Backwards Hand-Simulation Neutral
Seconds to choose 14.0 8.4 13.0
Number of lines 1.0 1.7 1.4
n 9 9 9

of lines inspected before finding the buggy line; and (c) most importantly, a
trace of the subject’s search through a program—which lines the subject
inspected and in what order.

The results of the first two measures for the transfer problems are shown in
Figure 11. The measures for the training problems are not shown because
these measures are so intertwined with the way each interface was imple-
mented that any results obtained would be suspect. For the transfer problems,
neither measure shows a significant effect (time to choose: F < 1, n.s.;
number of lines: F(2, 24) = 1.17, n.s.). Although not reliably different, the
time it took subjects to choose each line is in the correct direction if subjects
are using the same debugging strategy that they were trained with. Specifi-
cally, the hand-simulation condition chose lines slightly more quickly than
either of the other two groups, which is what would be expected because
choosing the next line in hand-simulation follows a simple rule: Choose the
next line in the execution of the function (and in these functions, the next line
is usually the next one serially). Clearly, however, a more sensitive measure
of each subject’s search of the programs is needed: a trace of the subjects’
search behavior.

To analyze subjects’ search through the various programs, we obtained a
rating of how well a particular search (i.e., the identity and order of each line
checked) reflects the two bug-location strategies introduced in the experiment.
To perform this analysis, three models were defined. Each model predicts
which lines (and in what order) subjects will check if the subjects are using a
particular bug-location strategy. Thus, the models give us a way of objectively
stating whether or not a particular search by a subject is consistent with a
particular debugging strategy. What we then did was rate how all of the
searches performed by subjects in a particular condition match each of the
strategies. Each of the nine subjects in a condition searched four programs,
thus there were 36 searches performed per condition, and our ratings are the
percentage of these 36 searches that fit each of the models (a separate rating
was calculated for each model). Before proceeding to the actual analysis, each
model is discussed in more detail.

-

382 KATZ AND ANDERSON

The three models reflect the debugging strategies subjects might be using to
search the programs. The first two models were based directly on the two
debugging interfaces: working-backwards and hand-simulation; a model for
the third interface, the neutral condition, was not created because that
interface did not force any particular debugging strategy. The third model
was based indirectly on the hand-simulation strategy, and the motivation for
this model is discussed next.

The model based on the working-backwards strategy, referred to as the
causal model (to avoid confusion with the experimental condition), which
predicts subject performance by defining groups of program lines and
asserting that subjects will search the lines in one group before proceeding to
a line in another group. The three groups are identical to the lines associated
with the three hypotheses of what might be wrong with a program as shown
in the top-level working-backwards menu (Figure 10). However, it should be
noted that both the order in which the groups are checked and the order of
lines checked within a group are not predicted by the model. Similarly,
subjects may skip lines in a group (or skip a group altogether) and still be
categorized as reflecting the model. The model only defines the groups of lines
and predicts that groups will not overlap during a subject’s search of the
program.

The model based directly on the hand-simulation interface, the program-order
model, is different from the previous model in that it predicts the exact order
in which subjects will search the program. Specifically, to be categorized as
fitting this model, a subject would search the lines of the program in the same
order the computer would execute those lines, given the sample function call
that subjects are shown (these function calls always resulted in the correct
program looping once). Thus, the model predicts the following sequence of
lines: counter-initialization, result-initialization, test, counter-update, result-
update, test, and action (Figure 9). As with the previous model, subjects may
skip lines and still fit the model as long as the lines they search preserve the
Just-mentioned sequence.

The final model, based indirectly on the hand-simulation interface, is
referred to as the serial order model. Similar to the program-order model, this
model defines a sequence of lines subjects will check and asserts that subjects
will check the lines in the same order as the sequence, although lines may be
skipped. This sequence reflects the serial order of the lines on the screen:
counter-initialization, result-initialization, test, action, counter-update, and
result-update (Figure 9). Thus, the model differs from the program-order
model in the relation between the action of the condition and the variable
updates. In the serial-order model, the action must be checked before either of
the variable update lines; in the program-order model, the action must be the
last line checked. The serial-order model was created based on the intuition
that some subjects might interpret the hand-simulation interface incorrectly,

DEBUGGING STRATEGIES 383

Figure 12. Percentage of searches fitting each model.

Training Problems

Strategy Conditions

Models Working-Backwards Hand-Simulation Neutral
Causal 82% 0% 40%
Program-order 9% 100% 33%
Serial-order 9% 50% 53%

Transfer Problems

Strategy Conditions

Models Working-Backwards Hand-Simulation Neutral
Causal 60% 10% 16%
Serial-order 0% 40% 20%
Program-order 20% 20% 16%

thinking that the interface was forcing them to search the program serially,
instead of searching in the order the computer would execute the program.

For the analysis, we wanted to obtain ratings of how well program-
searching in each condition reflects each of the models—nine ratings overall.
We calcylated separate ratings for each model because a particular search may
be consistent with more than one model. To get a rating of the match between
a particular model and the searching done in a particular condition, we
categorized each of the 36 searches done by subjects in the condition (9
Subjects X 4 Programs) as either fitting the model, not fitting the model, or
ambiguous (i.e., consisting of less than four lines searched). The rating we use
is the percentage of searches that fit the model out of the total number of
unambiguous searches. Thus, each of the nine ratings may range from 0% to
100% .

The fact that some searches may be considered consistent with more than
one model is somewhat problematic; so to reduce the amount of overlap,
searches consisting of less than four lines were excluded from the analysis (i.e.,
categorized as ambiguous). In general, the lines that subjects looked at when
they only checked three lines or less could be categorized as fitting all of the
models. Thus, if we had included these searches, the percentages shown next
would have all been much higher, and any effects would have been obscured.
In addition, the removal of these small searches increases our chances of
categorizing the search correctly: The more lines checked during a search, the
less likely we are to say incorrectly that the search fits a particular model.

The straight-forward prediction is that the subjects trained on a particular
strategy should act consistently with the model derived from that strategy;

384 KATZ AND ANDERSON

their behavior should fit the appropriate model. Thus, subjects in the
working-backwards condition should be more consistent with the causal
model than they are with program-order or serial models. In contrast,
subjects in the hand-simulation condition should be more consistent with the
program-order or serial models. As shown at the top of Figure 12, this
prediction holds when subjects are being forced to use a particular debugging
strategy. In particular, a convincing effect appears if we focus on the two
strategy conditions and the first two models. The working-backwards subjects
are quite consistent with the causal model (82% of the debugging done by
subjects in this condition fits the causal model), but are not as consistent with
the program-order model (9%). The reverse is true for the hand-simulation
subjects, none of whom act consistently with the causal model and al] of whom
are consistent with the program-order model. These are the results we would
expect because each model was based on the interface used in that condition:
The hand-simulation interface completely forces the subjects to be consistent
with the program-order model, whereas the working-backwards interface only
partially forces the subjects to be consistent with the causal model.

The results for the transfer problems are more interesting (Figure 12,
bottom). When subjects were able to search the program in any order they
wished, they still behaved (for the most part) as if they were using the
debugging strategy that they were trained with during the first part of the
experiment. This result is easiest to see in the case of the working-backwards
subjects who were quite consistent with the causal model again, but did not
act consistently with either of the “order” models. The hand-simulation
subjects did not behave as the program-order model would predict, although
they did act consistently with the serial-order model. These subjects did not
seem to pick up on what we had been intending to train — that they should
search the program by executing each line of code in the same order the
computer would—but instead went to a straight serial-order search. In any
event, these subjects clearly did not fit the causal model as well as they fit the
serial-order model, as was predicted.

For the neutral subjects, in both the training and transfer problems, there
does not seem to be a clear preference for a particular strategy. Each search
is about equally likely to match any of the strategies, although there does seem
to be a slight preference for the serial-order strategy, which intuitively seems
to be the easiest strategy to use, if not the most efficient one.

To sum so far, for the two groups who were explicitly being trained on
bug-location strategies, the analysis of the subjects’ search showed that
subjects continued to search using the strategy they were trained with, even
when the interface no longer forced them into a particular strategy. Thus, if
debugging strategies affect other components of debugging, we would expect
to see any effects appear in the transfer programs as well as in the training
programs.

DEBUGGING STRATEGIES 385

Figure 13. Judging and recoding times in sec. Numbers in parentheses are mean
errors per subject.

Judging
Strategy Conditions
Working-Backwards Hand-Simulation Neutral
Training programs 7.8 4.8 3.6
(4) (6) (10)
Transfer programs 19.0 15.0 11.0
) (11) (15)
Recoding

Strategy Condition

Working-Backwards Hand-Simulation Neutral
Training programs 38.0 43.0 25.0
(6) (6) (11)
Transfer programs 51.0 53.0 41.0
(16) (15) (15)
n 9 9 9

Other Components of Debugging. The two variables considered in this
section are: (a) how well subjects were able to judge that a buggy line (once
selected by the bug-location strategy) was indeed incorrect, and (b) how well
subjects were able to correct that buggy line of code. As stated previously, we
predict that the particular debugging strategy used (either forced by the
interface or one a subject might be using in the transfer programs) will have
no effect on those components of debugging unrelated to line selection.

The top of Figure 13 shows the time and error data from subjects judging
the correctness of the buggy line. In both the training and transfer programs,
there is a main effect for strategy, although the effect is only marginally
significant for the second set of program —Training: F(2, 24) = 4.77, p <
.02; Transfer: F(2, 24) = 2.73, p < .09. These effects are tempered,
however, by the opposite (nonsignificant) trend in the error data. Thus,
subjects using different strategies show different speed-accuracy tendencies.
The neutral subjects are fastest, but also most prone to making an error,
whereas the working-backwards subjects are slowest, but most accurate. It is
interesting to note that the same speed-accuracy trend occurs both when the
subjects are forced to use a strategy and when all subjects are transferred to
the neutral strategy. This result lends further support to the proposal that
subjects are carrying over the debugging strategies they were trained with into
the problems in which they are free to use any strategy.

e o Ao o A8 e e P 4 1 B 1 2t M 73

386 KATZ AND ANDERSON

Finally, Figure 13 (bottom) shows the time and error data from subjects
entering the code to fix a buggy line. There is again a slight, but not
significant, tendency for the neutral subjects to be faster and make more
errors. Except for this tendency, there are no significant effects of strategy
either when subjects are forced to use a strategy or when they are free to use
any strategy they wish.

Summary. The results suggest that the process of locating a bug is fairly
independent of other processes involved in debugging. The interfaces directly
manipulated how the subjects would search the programs, and these interfaces
had an effect (not surprisingly) on the order and identity of the lines in the
program subjects inspected. In addition, when subjects were not forced by the
interface to use a particular search strategy, they still behaved as if they were
using the strategy they were trained on. On the other hand, the different
bug-location strategies had little effect on other aspects of debugging. That is,
the different strategies did not provide subjects with information that could
help or hinder their later performance. The only effect was a change in the
tradeoff between speed and accuracy in judging whether a line of code s
correct. There was no apparent effect in correcting a line of code.

In their task analysis of troubleshooting, Morris and Rouse (1985) claimed
that the ability to use a strategy to locate errors is distinct and separate from
the abilities to perform tests and repair components. This claim is supported
by the results of Experiment 4. We found no substantial interaction between
strategy use, error Judgment (component testing), or error correction (com-
ponent repair).

6. CONCLUSIONS

Recall that when debugging a program (or troubleshooting a system), a
person may perform four distinct actions: (2) understanding the system being
worked on, (b) testing that system, (c) locating the erroneous component of
the system, and (d) repairing that component.

In order to debug a program, a person must have some knowledge about
the program. The type of information a person has about a program clearly
should depend on the method used to gain the knowledge. Experiment 3
suggested two ways in which information about a program might be collected:
(2) by planning and coding the program; and (b) through an explicit
comprehension process, if the program was written by someone else. Under-
standing is an important debugging stage because it is the resulting knowledge
that a person uses to locate the bugs in the program. Depending on what a
person knows about the program, different debugging strategies might be
used. For example, subjects debugging their own programs demonstrated the
knowledge needed to use the program’s output to locate a bug. In contrast,

DEBUGGING STRATEGIES 387

subjects debugging another’s program opted for the strategies that use the
actual, written code to locate bugs.

One explanation for this strategy difference might be the different type of
information contained in authors’ and others’ mental representations of the
programs. For instance, when writing their own program, a person has
knowledge of their intentions (the function of each part of the code) and of the
way the algorithm works (Kant & Newell, 1984). However, for people
comprehending another’s program, Pennington (1987) showed that expert
programmers initially represent the program in therms of its control flow,
which is how the program is executed rather than the reasoning behind the
execution. It may be that, in order to effectively use a backward-reasoning
strategy, knowledge of why an algorithm was implemented in a particular way
is necessary. In contrast, having primarily knowledge of how a program is
executed may lead to a forward-reasoning strategy. Therefore, the reason we
see strategy use changing depending on authorship might be because
programmers use the debugging strategy that reflects their knowledge of the
program.

After understanding the program and if bugs were not found during this
time, the program is usually tested. The information gained from these tests
could be simply that the program doesn’t work or, more specifically, how the
program doesn’t work. For our subjects, however, the decisions about how to
test the programs were simple to make because of two aspects of the debugging
situation; (a) the programs were short (on the order of 10 lines) and not
complex in terms of the different correct behavior possible, and (b) the
problem descriptions for the programs usually contained good examples of test
cases. With longer and more complex programs (or systems of programs), this
debugging stage might become more challenging as the obvious tests might
not reveal the errors in such programs.

Once it has been determined that a program doesn’t work, the bug causing
the incorrect behavior must be found. This stage of debugging, location, is
really the focus of current research. In the exploratory work (Experiment 2),
it was revealed that there were several strategies that subjects used to find
errors. These strategies have also been observed in subjects debugging in
PASCAL (Gugerty & Olson, 1986; Jeffries, 1982), LOGO (Gugerty & Olson,
1986; Klahr & Carver, 1988), as well as in subjects troubleshooting electronic
devices (Morris & Rouse, 1985; Rassmusen, & Jensen, 1974). As stated
previously, the strategies that subjects used seem to depend on what
information the subjects have about the program. For example, subjects
unfamiliar with a program were shown to prefer a forward-reasoning strategy
as compared to the authors of the programs who were more likely to use
strategies that made use of the output of the program (Experiment 3).

The fact that these strategies have been observed in subjects performing
other, more complex, troubleshooting tasks suggests that our other results

388 KATZ AND ANDERSON

may extend to these tasks, even though we investigated subjects working only
in LISP. Not only do we replicate previous debugging work done in other
languages and in electronics troubleshooting, but the type of programs
subjects were working with (simple iterative routines) are quite similar to
corresponding routines in more procedural languages such as PASCAL. The
findings should generalize to other languages because subjects were primarily
using those features of LISP that are shared with many other programming
languages.

Although the understanding stage interacts with the bug-location strategies
used, it was shown in Experiment 4 that the strategies do not provide any
knowledge that would affect either the Judgement of the correctness of a line
of code or the recoding of a buggy line. The only effect found was that subjects
using a backward-reasoning strategy were more careful (i.e., took longer and
made less errors) when Judging lines compared with subjects using a
forward-reasoning strategy or any strategy they wished.

Finally, after finding the buggy line(s) of code, the error must be repaired.
As with the testing stage, the repair stage did not play a major role in the
debugging observed. Usually it was the location of the bug that caused the
subjects difficulty rather than the correction of the bug. The ease with which
errors were fixed is likely due to the nature of the errors involved. Our
subjects usually generated (and, therefore, debugged) unsystematic and
unstable errors; rarely did errors stem from misconceptions about LISP
(Experin;lent 1). Thus, once an error was spotted, it was easily fixed
(Experiment 2). In addition, all of the bugs generated by subjects were local;
no global, algorithm-level bugs were produced. Based on our observations,
the repair stage of debugging seems to consist of a local recoding of the buggy
line. That is, subjects merely regenerate the line of code based on their
original intentions in writing that line. Bug repair might become more
difficult when global errors are generated. If the bugs being sought are
algorithmic in nature, it seems clear that subjects might be able to detect the
incorrect lines, but be unable to see an immediate solution.

Acknowledgments. We thank Sharon Carver, Wayne Gray, Claudius Kessler,
David Klahr, Brian Reiser, and Robert Ward for their comments on various portions
of this work.

Support. This material is based on work supported under a National Science
Foundation Graduate Fellowship to Irvin R. Katz and Contract MDA903-85-K-0343
from the Army Research Institute and the Air Force Human Resources Laboratory to
John R. Anderson.

REFERENCES

Anderson, J. R., Corbett, A. T., & Reiser, B. J. (1987). Essential LISP. Reading, MA:
Addison-Wesley.

DEBUGGING STRATEGIES 389

Anderson, J. R., & Jeffries, R. (1985). Novice LISP errors: Undetected losses of
information from working memory. Human-Computer Interaction, 1, 107-131.

Anderson, J. R., & Reiser, B. J. (1985, April). The LISP tutor. BYTE, pp. 159-175.

Brown, J. S., & Van Lehn, K. (1980). Repair theory: A generative theory of bugs in
procedural skills. Cognitive Science, 4, 379-426.

Ericsson, K. A., & Simon, H. A. (1984). Protocol analysis: Verbal reports as data.
Cambridge, MA: MIT Press.

Gugerty, L., & Olson, G. M. (1986). Comprehension differences in debugging by
skilled and novice programmers. In E. Soloway & S. Iyengar (Ed.), Empirical studies
of programmers (pp. 13-27). Norwood, N]J: Ablex.

Jeffries, R. (1981, November). Computer program debugging by experts. Paper presented at
the meeting of the Psychonomics Society, Philadelphia, PA.

Jeffries, R. (1982, March). A comparison of the debugging behavior of expert and novice
programmers. Paper presented at the annual meeting of the American Educational
Research Association, New York.

Kant, E., & Newell, A.(1984). Problem solving techniques for the design of
algorithms. Information Processing & Management, 20(1-2), 97-118.

Katz, I. R., & Anderson, J. R. (1986, June). An exploratory study of novice programmers’
bugs and debugging behavior. Poster presented at the 1st annual Empirical Studies of
Programmers Workshop, Washington, DC.

Kessler, C. M., & Anderson, J. R. (1986). A model of novice debugging in LISP. In
E. Soloway & S. Iyengar (Eds.), Empirical studies of programmers (pp. 198-212).
Norwood, NJ: Ablex.

Klahr, D., & Carver, S. M. (1988). Cognitive objectives in a LOGO debugging
curriculum: Instruction, learning, and transfer. Cognitive Psychology, 20(3), 362-404.

Morris, N. M., & Rouse, W. B. (1985). Review and evaluation of empirical research
in troubleshooting. Human Factors, 27(5), 503-530.

Pennington, N. (1987). Stimulus structures and mental representations in expert
comprehension of computer programs. Cognitive Psychology, 19(3), 295-341.

Rassmusen, J., & Jensen, A. (1974). Mental procedures in real-life tasks: A case study
of electronic trouble shooting. Ergonomics, 17(3), 293-307.

Reiser, B. J., Anderson, J. R., & Farrell, R. G. (1985, August). Dynamic student
modelling in an intelligent tutor for LISP programming. Paper presented at the meeting of
the International Journal Conference on Artificial Intelligence, Los Angeles, CA.

Rouse, W. B. (1979). A model of human decision making in fault diagnosis tasks that
include feedback and redundancy. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-9, 237-241. A

Siegler, R. S. (1987). The perils of averaging data over strategies: An example from
children’s addition. jJournal of Experimental Psychology: General, 116(3), 250-264.

Spohrer, J. G., & Soloway, E. (1986). Analyzing the high frequency bugs in novice
programs. In E. Soloway & S. Iyengar (Ed.), Empirical studies of programmers (pp.
230-251). Norwood, NJ: Ablex.

Winston, P. H., & Horn, B. K. P. (1981). LISP. Cambridge, MA: Addison-Wesley.

HCI Editorial Record. First manuscript received December 8, 1987. Revision
received July 15, 1988. Accepted by Ruven Brooks. — Editor

e n ey o g Ao et o s v

390 KATZ AND ANDERSON

APPENDIX: SUPPLEMENTARY F IGURES

These figures are for those readers interested in the particular stimulus
programs used in the experiments. Also, Figures 21, 22, and 23 give examples
of all of the bugs mentioned by descriptive name in Figure 3.

Figure 14. Sample basic LISP function problems and solutions.

Write a function call that will take the list (c d e) and returns the first element,
which is c.

Solution:
(car ’(c d e))

Write a functional call that takes the lists (3 2) and (b ¢) and produces the complex
list ((3 2) (b ¢)).

Solution:
(list ’(3 2) ’(b ¢))

Figure 15. Sample list-iteration problem and solutions.

Define a function called list-sum. Given a list of numbers, list-sum returns the sum
of those numbers. For example,

(list-sum (5 10 -4 27)) returns 38.
(list-sum %)) returns 0.

Solution:

(defun list-sum (lis)
(let ((sum 0))
(loop
(cond ((nul lis) (return sum)))
(setq sum (+ (car lis) sum))
(setq lis (cdr lis)))

Figure 16. Sample reading/printing problem and solution.

Write a function called read-check that accepts one argument, which must be a list.
The function should type the prompt (type an expression) and read an input from
the user. The function should return t if the input is a member of the argument
list, and return nil otherwise. For example,

=>(read-check (a b ¢ d))
(type an expression)b
t

Solution:

(defun read-check (lis)
(print '(type an expression))
(and (member (read) lis) t))

Figure 17. Sample input-controlled iteration problem and solution.

Write a function called read-square that does not accept any arguments. The func-
tion should contain a loop that prints the prompt Enter the next number:, reads a
number and prints the square of the number. The function should return the atom
done when the user types something that is not a number. For example,

=>(read-square)

Enter the next number: 5
25

Enter the next number: —11
121

Enter the next number: x
done

Solution:

(defun read-square ()
(let (inp)
(loop
(print “Enter the next number:”)
(setq inp (read))
(cond ((not (numberp inp)) (return 'done)))
(print (* inp inp))))

391

Figure 18. Problem description and ideal solution for BREADTH. The numbers
appearing to the left of the function below are not part of the actual function, but
merely a way of referring to the lines of the program. The same is true for the
numbers shown in PRE-REQUISITE and BEFORE.

Write a function called breadth which takes one argument: a root node in a tree.
The function should perform a breadth-first search of the tree and return the first
node that has the property success with the value t. The function should return nil
if no such node is found. Nodes will be connected to nodes below them by a label
called subnode. Below we have illustrated a simple network.

A
sfonove
B/ \C
N AN

SUBNODE SUBNODE

/ 1\ / 0\

D E F G H
N

SUBNODE SUBNODE

I
/N
(defun breadth (root)
(prog (queue expansion)
. (setq queue (list root))
loop (cond
((null queue) (return nil))
((get (car queue) ’success) (return (car queue))))
(seq expansion (expand (car queue)))
(setq queue(cdr queue))
(setq queue (append queue expansion))

0 (go loop)))
(defun expand (course) (get course ’subnode))

YOV QO N =

= O 003

392

Figure 19. Problem description and ideal solution for PRE-REQUISITE.

Write a function pre-requisite which takes two arguments: a course name (an atom
and a list of courses which are the prerequisites of the first argument). The function
should add each of the prerequisites onto the property list of the given course under
the property has-pre-req and should add the first argument to each of the prerequi-
sites’ property lists under the property pre-req-for. Example:

=> (pre-requisite '’Automata '(Systems CompuFund Complang))
nil
=> (pre-requisite '‘CompuFund ‘(Mathll Writing))

nil

= (pre-requisite 'Systems ‘(CompFund DataStruct))

nil

= (pre-requisite 'Mathll ‘(Mathl))

nil

1 (defun pre-requisite (course prereq-lis)

2 (prog ()

3 (putprop course

4 (append prereq-lis (get course ’has-pre-req))
5 ’has-pre-req)

6 loop (cond

7 ((null prereg-lis) (return nil))

8 (t (putprop (car prereq-lis)

9 (cons course (get (car prereg-lis) 'pre-req-for)
10 ‘pre-reg-for)))

11 (setq prereqg-lis (cdr prereqg-lis))

12 ’ (go loop))

393

Figure 20. Problem description and ideal solution for BEFORE.

Write a function called before which, when given a course name, returns a list con-
sisting of that course’s prerequisites, each of the prerequisites’ prerequisites, and so
on. The function should return a list of unique course names (i.e., there should be
no duplicate course names in the returned list). Also, the order of the courses in the
returned list is not important. Unlike the previous problem, this involves visiting all
the nodes in the tree rather than looking for a particular node. Also, we want to
return a list of all nodes visited rather than a particular node. We will build this list
up as we expand various nodes in the tree.

=> (before 'Automata)

(Systems CompFund ComplLang Mathll Writing Mathl DataStruct)
= (before 'DataStruct)

nil
=> (before 'CompFund)

(Mathll Writing Mathl)

1 (defun before (course)

2 (prog (queue expansion visited)

3 (setq queue (expand course))

4 (setq visited ())

5 loop (cond ((null queue) (return visited)))

6 (cond

7 ((member (car queue) visited)

8 (setq queue (cdr queue)))

9 (t (setq visited (cons (car queue) visited))
10 (setq expansion (expand (car queue))
11 ! (setq queue (cdr queue))

12 (setq queue (append queue expansion))))
13 (go loopy))

(defun expand (course) (get course ’has-pre-req))

394

Figure 21. Examples of BREADTH bugs.

Bug Name

Line Number and Example Code

Goal Errors
argument for function call:
setq
expand
list
missing append step
missing exit test
missing argument to equal

9 (append queue expansion)

7 (setq expansion(car queue))

3 (setq queue root)
<line 9 omitted >
<line 5 omitted >

6 ((equal (get (car queue) 'success))
(return (car queue)))

Intrusion Errors
argument for function call:
return

5 ((null queue) nil)

Misrepresentation Errors

t returned

example for variable
depth-first search
parameter for (car queue)

6 ((get (car queue) 'success) (return t))

3 (setq queue (list 'a))

9 (setq queue (append expansion queue))
6 ((get root ’success) (return root))

Misconceptions
missing quote

extra quote

!

6 ((get (car queue) success)
(return (car queue)))

6 ((get ’(car queue) 'success)
(return (car queue)))

Syntactic Errors

missing)
(following lines become
clauses in the cond)

extra)
(return becomes a clause
in the cond)

6 ((get (car queue) ’success)

(return (car queue)))
7 (setq expansion (expand (car queue)))
8 (setq queue ...)

6 .((.e-qual (get (car queue) ’success)) t)
(return t))

395

Figure 22. Examples of PRE-REQUISITE bugs.

Bug Name

Line Number and Example Code

Goal Errors
argument for function call:
setq
prog
missing (go loop)
missing loop variable update
missing argument to putprop
missing has-pre-req putprop

11 (cdr prerg-lis)
<line 2 omitted >
<line 12 omitted >
<line 11 omitted >
<line 9 omitted >
<lines 3, 4, and 5 omitted >

Intrusion Errors
argument for function call:
return

7 ((null prereg-lis) nil))

Misrepresentation Errors
no loop

’loop’ for variable name
pre-reqg-for for has-pre-req

<line 2 omitted >
6 (cond
<lines 11 and 12 omitted >
7 ((null loop) (return nil))
4 (append prereq-lis
(get course ’pre-reg-for))
5 ’pre-req-for)

Misconceptions

arguments in wrong order:
putprop
(always occured with
not adding pre-req-for)

cons for append

extra quote

putprop has-pre-req separately

9 ’pre-req-for
10 course)

4 (cons prereq-lis
(get ’course ’has-pre-req))
4 (append pre-req-lis
(get ’course ’has-pre-req))
<lines 3, 4, and 5 omitted >
10a (putprop course (car prereg-list)
'pre-req-for)

didn’t add pre-req-for 9 course
Syntactic Errors
missing) 10 'pre-req-for))

(lines 11 and 12 become
clauses in the cond)
missing (
(occurred with argument
for function call: return)
extra (
missing ()

11 (setq prereq-lis (cdr prereg:-lis)

12 (go loop)))
7 (null prerg-list) nil)

8 ((t (putprop (car prereq-lis)
7 ((null prereg-list) return nil)

396

Figure 23. Examples of BEFORE bugs.

missing label

(cond ((null queue) (return visited)))

Bug Name Line Number and Example Code
Goal Errors
argument for function call:
setq 9 (t (cons (car queue) visited)
car 9 (t (setq visited (cons queue) visited)
expand 3 (setq queue course)
cons 9 (t (setq visited (car queue))
5
9

missing result update

missing (go loop)

missing member test

missing queue update
missing cdr step

missing append step

missing argument to member

(t
<line 13 omitted >
<lines 7 and 8 omitted >
<lines 11 and 12 omitted >
<line 11 omitted >
<line 12 omitted >
((member (car queue))

Intrusion E'rrors

list for expand

nil returned

(go loop) inside cond

12
13

(setq queue (list course))

loop (cond ((null queue) (return nil)))
(setq queue (append queue expansion))
(go loop))

Misrepresentation Errors
member test/action mismatch

result initialized as queue
result updated as queue

extra list

((member (car queue) visited)

(setq visited (cons (car queue)
visited))))
(setq expansion (expand (car queue)))
(setq queue ...)

(setq visited (expand course))
(t (setq visited (append (cdr queue)
(expand (car

queue))))
(setq visited (list ()))

Misconceptions
cons arguments in wrong order
cons for append

(t setq visited (cons visited (car queue))
(setq queue (cons queue expansion))

Syntactic Errors
missing)
(go loop becomes a
cond clause)
extra ()

12
13

(setq queue (append queue expansion)))
(go loop)))

(setq queue (expand (course)))

397

Figure 24. LISP functions and problem descriptions of Experiment 3.

Define a function called factorial that has one parameter. This function computes
the factorial of its parameter. The factorial of a number is the product of all the
integers between 1 and the number multiplied together. So, (factorial 5 =1x2
X 3 x 4 x 5120. This function should accept the parameter value 0 in addition
to the positive integers. (The factorial of 0 js defined as 1.)

(defun factorial (num)

(prog (count product)
(setq count 0)
(setq product 1)

loop (cond ((equal count num) (return product)))
(setq count (1+ count))
(setq product (times count product))
(go loop)))

Define a function called create-list that has one parameter. This function returns a
list of all integers between 1 and the value of the parameter, in ascending order.
So, if the value of the parameter is 8, create-list should return (12345678).
You should count DOWN in this loop, rather than up, so the integers are gener-
ated in DESCENDING order. That way you can generate the list conveniently
(without having to flip it.)

(defun create-list (num)

(prog (count result)
(setq count num)
(setq result (list num))

loop (cond ((equal count 1) (return result)))
(setq count (1— count))
(setq result (cons count result))
(go loop)))

Define a function called list-skip that has two parameters. This function returns a
list of EVERY OTHER number between the 1st and 2nd parameter. The list al-
ways includes the first parameter and includes every other number that is less than
or equal to the second parameter. For example, (list-skip 2 8) returns (2 468),
and (list-skip 2 9) returns (2 4 6 8). You should count UP in this function (so you
can handle the bounds conveniently). You should use the lesson 2 function snoc,
that has two arguments. snoc inserts its first argument at the END of jts second
argument (which must be a list).

(defun list-skip (low high)

(prog (count result)
(setq count low)
(setq result (list low)

loop (cond ((greaterp count (difference high 2)) (return low)))
(setq count (plus count 2))
(setq result (snoc count result))
(go loop)))

398

Figure 24. (Continued)

Define a function called num-sum that has one parameter. Num-sum inputs a series
of numbers and returns the sum of the numbers. The parameter indicates how
many numbers to input.

(defun num-sum (num)
(prog (count sum)
~ (setq count 0)
(setq sum 0)
loop (cond ((equal count num) (return sum)))
(setq count (1+ count))
(setq sum (plus (read) sum))
(go loop))

Define a function called next-prime that has one parameter. This function returns
the first prime number that is greater than or equal to the value of the parameter.
For example, (next-prime 24) = 29. A predicate primep has been defined for you
to use in this problem. It takes one argument and returns t if the argument is
prime and nil otherwise. NOTE: When you test next-prime in the LISP window,
use an argument smaller than 1369. The predicate primep does not work correctly
with larger arguments.

(defun next-prime (num)
(prog (count)
(setq count num)
loop (cond ((primep count) (return count)))
(setqg count (1+ count))
: (go loop)))

Define a function called next-prime-bound that has two parameters. This function

returns the first prime number greater than or equal to the first parameter but not
greater than the second parameter. If there is no prime number within that range,
the function returns no-prime. So, (next-prime-bound 54 59) returns 59 and (next-
prime-bound 62 66) returns no-prime. You can use the predicate primep that takes
one argument and returns t if it is prime and ni/ otherwise.

(defun next-prime-bound (start bound)
(prog (count)
(setq count start)
loop (cond ((primep count) (return count))
((equal count bound) (return ’no-prime)))
(setq count (1+ count))
(go loop))

399

