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Categorization and Sensitivity to Correlation
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Three categorization experiments were run in which participants saw a set of stimuli that varied on
4 continuous dimensions. Participants first categorized the stimuli and tried to predict some of the
dimensions, given the values of others, Experiment 1 used iris-like stimuli based on the descriptions
of R. A. Fisher's (1936) taxonromic descriptions. It showed that having participants cateporize the
stimuli was essential to being able to perform the prediction task and that merely observing the
stimuli was not sufficient. Tt also indicated that participants could use within-category as well as
between-category correlations for predictions Experiments 2 and 3 used stimuli with artificial
variations of values. Participants processed categories that had different within-category correla-
tions. Participants' behavior could be predicted as & combination of sensitivity to within-category
correlation and bias about the sign of the correlations These results were fit to the rational model
of categorization (J. R. Anderson, 1991) and to an exemplar model (R. M. Naosofsky, 1988).

In this article, we present research concerned with the
sensitivity participants have to within-category correlations of
features and try to relate the results to the rational analysis of
categorization (Anderson, 1991). Most research on categoriza-
tion is concerned with the correlation among features that
occurs across categories. Billman (1989) argued that such
across-category correlations are what drive the learning of
categories. There has been some research on the learning of
within-category correlation. Malt and Smith (1984) showed
that participants are sensitive to the correlations that exist
within natural categories. Wattenmaker (1991} showed that
participants can learn such correlational structures, at least in
implicit learning conditions. These studies were concerned
with learning of correlations between discrete dimensions
{e.g, birds that are small also sing, but birds that are large do
not). There has also been a fair amount of research about how
participants use the correlational structure among a set of
continuous features to make predictions (multiple-cue probabil-
ity learning; e.g., Hammond, McClelland, & Mumpower, 1980;
Klayman, 1988). However, the role of category structure in
making these predictions was not examined in the studies
mentioned. Our research is concerned with learning of within-
category correlations among continuous dimensions. This
research originated as a test of the rational analysis of
categorization and its application to a set of material described
by Fisher (1936). Therefore, we next describe that theory and
then the Fisher stimulus set.
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The Rational Theory of Categorization

Anderson (1990, 1991; Anderson & Matessa, 1992) pro-
posed that human categorization could be understood as if it
served the function of making optimal predictions, in a
Bayesian statistical sense, about the unseen features of objects.
An algorithm was developed that assumed participants would
create categories and assign objects to them so as to maximize
the probability of the feature structure of the objects. In
particular, it is proposed that a new object with feature
structure F is assipned to a category k that maximizes the
probability p(k| F), which is to be read as the probability that
the object comes from category k given that it has feature
structure F. A new category will be created if the object is not
sufficiently probable given any other category. The theory
treats this probability as a Bayesian posterior probability and
proposes that it can be calculated according to the following
formula:

_ p)p(FIk)
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where p(k) is the prior probability that the object comes from
category k and p(F|k) is the conditional probability it would
display feature structure F if it did come from category k&
Anderson (1990) can be consulted for a derivation of the prior
probability. Our focus in this article is on the conditional
probability p(F 1k}, which turns out to be basically a measure of
the similarity of the object to the category. The feature set F
can be considered to be a set of separate features y,. Given the
assumption that the features within categories are indepen-
dent, Anderson proposed the following formula for the caleu-
lation of p(F |k):

pFIky =TT piyilk), @)
WEF

where the py(y;]k) are the probabilities or densities associated
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with displaying value y; on dimension i.! Thus if F included the
continuous feature of size y; and the discrete feature of sings
and if k were the category bird, then p;( ;| k) would include the
density of size y; for birds and the probabilities that birds sing.
Basically, what this equation does is calculate the probability
of the feature bundle as a product of the probabilities of each
feature separately. It is this independence assumption that is
the focus of this article, because we consider effects of
within-category correlations that violate this assumption.

We have described how categories are formed in the theory,
but according to the rational theory, category formation is only
a means to a prediction. Thus, the critical assumption in the
theory concerns how categories formed will relate to predic-
tions made. In particular, if one sees an object with observed
feature structure F with a missing value y;, how does one po
about predicting the value of y,7 The assumption is that the
following probability is calculated:

E(y) = ; PR )y k), (3)

where y;(k) is the value of y; in category k. Thus, if one hears an
animal singing, Equation 3 could be used to estimate its size.
That is, the value on the missing dimension (i.e., whether it
sings) for each catepory (including birds) is taken and a
weighted average is formed over the categories where the
weights are the probabilities that the object comes from each
category. Because these weights, p{k| F), are calculated accord-
ing to Equations 1 and 2, the assumption of independence
comes in again in the prediction process.

Note that the assumption of independence does not imply
that two dimensions are independent over all objects. It only
implies independence over the objects within a category. Thus,
there may be an overall correlation across animals between
size and ferocity. However, the assumption of independence
only requires that there be no correlation within a particular
species or category. Indeed, one can think of categories as
capturing those regions of the object space where indepen-
dence holds. They can be viewed as an attempt to convert an
overall correlated relationship into a set of independent
relationships. Thus, by creating multiple categories of objects
one captures the potential correlations that exist in the data.
There is a parallel here to latent class analysis (Lazarsfeld &
Henry, 1968) that secks to partition a set of stimuli in order to
maximize correlation between sets and minimize it within sets.

The rational theory is characteristic of many theories of
categorization in that it assumes within-category feature inde-
pendence. Prototype theories {e.g, Reed, 1972) measure an
instance in terms of its distance from a single average proto-
type. They do not allow for the possibility that certain patterns
of features go together. However, instance-based theories
(Medin & Schaffer, 1978; Nosofsky, 1988) measure a new
instance in terms of its distance from other instances. Al-
though they do not try to extract an overall relationship among
features, they can nonetheless capture some correlational
structure because they classify instances largely in terms of
their nearest neighbors. To the extent that those nearest
neighbors participate in the correlation, the predictions about
a target instance will reflect this correlation,

Fisher's (1936) Iris Data Set

Fisher (1936) published a description of a set of 150 irises
that came from three species. There are 50 irises from each of
the species Iris setosa, Iris versicolor, and Iris virginica Figure 1
illustrates an [ versicolor. Fisher published the measures of
the width and length of the sepals and petals of these flowers.
Table 1 displays the average values of these three species on
these four dimensions. This data set has provided material for
a great many efforts at cateporization and clustering (eg,
Cheeseman et al.,, 1988). Anderson and Matessa (1992) re-
ported the application of the categorization program based on
the rational analysis to this data set. The most typical way this
data set has been used is to present a categorization program
with the descriptions of the 150 instances and have it try to
induce a categorization of the instances The typical result of
such categorization efforts (including our own programy} is that
the program forms a category that corresponds to the I sefosa
but has great difficulty in separating out the [ versicolor from
the I virginica. A frequent behavior is that a category is formed
that corresponds to the I versicolor and the smaller I virginica
and that a separate category is formed for the larger [
virginica. Another frequent outcome is that the [ versicolor and
I virginica are merged into a single category.

Anderson and Matessa {1992) created caricatures of these
flowers, such as the exampie in Figure 2, and asked partici-
pants to sort them into categories. These stimuli only varied in
the length and width of their artificial sepals and petals.
Participants displayed the same behavior as the program,
separating out the I setosa but showing similar confusions
between I versicolor and [ _virginica. Interestingly, botanists
{Mathew, 1981) are not totally in agreement as to whether [
versicolor and [, virginica should be treated as separate species.
As we will see, if participants are told what categories the
flowers come from, they can learn to reproduce the conven-
tional botanist categorization. It is also the case that Anderson
and Matessa’s program, given the category's labels, will also
reproduce the botanist categories. This is because the labels
are another dimension to predict, and greater predictability is
now achieved if the internal categories correspond to the
botanist’s categories. So, in essence, the labeling can deter-
mine the categories with which a participant or the program
will perceive the world.

The principal purpose of the rational theory is not to extract
botanists’ current theory of the species structure of irises.
Rather, it {5 to be able to predict unseen dimensions given seen
dimensions. For instance, if the program is given petal length
and width as well as sepal width, how well can it do at
predicting sepal length? It turns out that the ability of our
rational program to do this prediction was only affected a little
by whether it used its own categories or those of the botanists
(Anderson & Matessa, 1992). Also, its predictions were much
better than chance, The average squared error of prediction of
the program was 0.26 cm?, whereas if the average value was
chosen it would have been 120 cm? Thus, the category
structure that the program induced was captucing a lot of the

! Anderson and Matessa (1992) can be consulted for a Bayesian
analysis of how these conditional probabilities should be estimated.
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predictable variance. The program did somewhat better if it
used the botanist categorization (0.20 cm? error), which can
be seen as some validation of the conventional categories.
However, it turns out that a more accurate approach to
categorization is simply to calculate lincar regression equa-
tions over all catepories, predicting the values of a fourth
dimension given the other three. The mean error of this
prediction scheme was 0.09 cm? The reason for this is that
there were strong correlations among the dimensions, not only
between categories but within categories. Table 2 displays the
overall corrclation matrices as well as the within-category
correlation matrices. As can be seen overall, there were fairly
high intercorrefations among petal width, petal length, and
sepal length but correlations with sepal width were weak. The
within-category correlations were similar but not identical. For

An example of Iris versicolor from Dana (1893).

Figure 1

Table 1
Average Values (in Centimeters) and Standard Errors of the
Three Species of Irises

Iris Iris Iris
Dimension setosa versicolor virginica
Petal width 025 =011 133 +200 203+ 028
Petal iength 146 % 0.17 4.26 = 0.47 555+ 055
Sepal width 343038 297 % 0.31 297 %032
Sepal length 501 035 594 + 052 6.59 = 0.64

instance, although sepal width did not appear to enter into any
positive correlations overall, it generally had positive correla-
tions within categories. The existence of these within-category
correlations is a direct violation of the assumptions of the
original rational model. To correct for this problem, Anderson
and Matessa (1992) created a rational algorithm that calcu-
lated Bayesian estimates of intracategory correlations and
used these for prediction. This algorithm slightly outper-
formed the regression algorithm, with a mean error of (.0B
cm?,

This raises the question of how well participants do at
learning the correlational structure of such stimulus sets. As
noted in the introduction, past research has indicated that at
least in some circumstances, participants can pick up on
correlations between discrete features. It turns out that our
rational algorithm does this also. For instance, the rational
madel (Anderson, 1991) was able to simulate the research of
Medin, Altom, Edelson, and Freko (1982), which showed that
participants could pick up a correlation between a pair of
binary features (if there was a 0 on one dimension there woultd
be a ( on the other; if there was a 1 on one dimension there
would be a 1 on the other). Our rational categorization
program (Anderson, 1991) also picked up on this correlation
because it created separate categories to record the two
possible values of the correlation (i.e., a 0-0 category and a 11
category). The general strategy of a separate category for each
feature pair is not practical in the case of continuocusly varying
dimensions because one would need a separate category for
each stimulus (reducing the rational model to the exemplar
model—see Nosofsky, 1991). Thus, the continuous stimmuli in
the iris set offer an opportunity to test whether participants are
sensitive to within-category correlations in a way that the
discrete stimuli of past experiments did not. The basic purpose
of the first experiment was to see if humans are sensitive to the
within-category correlations in Fisher's (1936) material,

Experiment 1

We wanted to contrast various conditions of exposure to the
original Fisher (1936) dimensions presented in our format (see
Figure 2). In one condition, participants were trained to
categorize the stimuli according to the official botanist catego-
rization. However, our earlier pilot work showed that partici-
pants did not naturally identify the botanist categories but
rather created categories more like those identified by the
machine learning programs, We were interested in whether
there would be differential sensitivity to carrelations when
participants were trained on categories or were free to make
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Please choose the correct category:

< PETAL

()

Figure 2 Schematic iris used in Experiment i.

up their own categories. Therefore, we created a second
condition in which participants created their own categories.
Wattenmaker (1991) found that participants were sensitive to
correlations only when they were not explicitly categorizing the
stimuli. Therefore, we created a third condition in which
participants were exposed to the stimuli but did not have to
learn to make category assignments and instead had to rate
how much they liked the stimuli. Finally, to have a reference
condition, we created a fourth condition in which participants
had no prior exposure to the stimuli. In all conditions,
participants transferred to a test phase where they saw our
irises with one or two dimensions missing and had to repro-
duce the missing dimension(s). Because sepal width did not
vary much, we did not require participants to reproduce it, but

we tested all combinations that had one or two of the
remaining features missing.

Method

Participants.  There were 10 participants in each of the following
four groups: botanist categorization, self-cateporization, likeability
ratings, and no prior exposure. Participants were recruited from the
Carnegie Metlon University undergraduate population and were paid
$5.00 for their involvement (which lasted less than an hour).

Materials. The materials were the caricature irises based on the
Fisher (1936) dimensions (see Figure 2). The sepals and petals were
ovals drawn to have the width and length of the original Fisher stimuli.
To fulfill the structure of the experimental design, we only needed 48
stimuli from each category. Therefore, 48 members were randomly
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Table 2
Intercorrelation Matrixes for Fisher’s (1936) Stimuli
Dimension
Pimension X PY 5X SY
Qverall
PX _—
FY 96 -
sX - 37 —43 —
SY 82 87 - 12 —_—
Within Iris setosa
PX —
PY 33 —
§X 23 18 —
SY 28 27 T4 —
Within Iris versicolor
PX —
PY 79 —
SX .65 56 _
SY .55 75 .53 ——
‘Within Iris virginica

PX e
PY 32 —_
X 54 40 —
5Y .28 .86 48 —

Note. PX = petal width; PY = petal length; SX = sepal width; SY =
sepal length,

chosen from the 50 for each species. A random 24 from each category
were presented during study, bul all 48 were used during test. At study,
the stimuli were presented with all dimensions present. At test, the
stitnuli were presented with one or two of the dimensions set to zero
length. Figure 3 shows a test stimulus with the sepal length and petal
width zerced out. Pressing the + key associated with the sepal length
would increase it in the vertical dimension and the horizontal would
stay fixed; pressing the + key associated with the petal width would
fatten it but keep it at a fixed length, There were six possible ways of
zeroing out one or two of the dimensions of sepal length, petal length,
and petal width. To instantiate each of these six test types, 4 studied
stimuli and 4 nonstudied stimyli were randomly chosen from each
species. Thus, the test consisted of 144 items: 6 (ways of testing) X 3
(species) X 4 (instances) X 2 (studied vs. nonstudied). All materials
were presented by means of a Macintosh I1 computer.

Procedure.  In the botanist categorization condition {which is illus-
trated in Figure 2), participants were given three categories (a, b, and
¢) and were required to assign objects to these categories in a way such
that one of the letters would correspond to I setosa, one to ] virginica,
and one to [ versicolor. Participants’ initial placement of stimuli
determined which of a, b, or ¢ corresponded to the categories. After
that, they were given feedback after every error as to the correct
categorization of the flower. Participants made as many passes through
the material as wers necessary for them to correctly categorize at least
80% of the stimuli. In the self-categorization condition, participants
were allowed lo use up to five categories denoted by the letters a
through e They made however many passes through the stimuli as
were required so that their assignments in the final pass averlapped at
least B0% with their assignments in the previous pass. In the likeability
talings condition, participants had to decide whether they found the
particular flower pleasing, displeasing, or neutral. They made however
many passes through the stimuli as were required so that the
evaluations in the final pass overlapped 80% with the evaluations in
the previous pass. In the no prior exposure condition, there was no

study phase. In the other three conditions, participants were not
warned of the upcoming test phase and presumably had no reason to
suspect that such a test phase would occur,

In the test phase, participants were instructed to size the stimuli so
that they were like the stimuli they had studied. The stimuli were
presented and the participants pressed a + key associated with that
dimension to increase it and a — key to decrease it. The keys
associated with fixed dimensions were shaded gray and could not be
used. When participants were satisfied with their reproduction, they
pressed an “OK” button. The order of the stimuli in all phases was
randomly determined. All of the participants’ choices were recorded
for later analysis.

Results

The mean number of passes through the study stimuli to
reach criterion was 3.9 in the botanist categorization condition,
2.3 in the sclf-categorization condition, and 2 8 in the likeabil-
ity rating condition. An overall test for significance among the
conditions was only marginally significant, F(2, 27) = 2.8%,p <
1, MSE = 2.32, but a specific contrast that asked if the botanist
categorization condition was longer than the average of the
other two was significant, 1(27) = 2.08,p < .05.

For the data from the test phase, the absolute deviations of
the participants’ reproductions from the true values were
measured. These data were subjected to an analysis of variance
(ANOVA) in which the variables were study condition (four
Jevels), dimension to be predicted (three levels), dimensions
available for predicting those dimensions (three levels), spe-
cies of iris (three levels), and whether the iris had been studied
or not. With respect to dimensions availablc for predicting, we
classified these as either three dimensions or two dimensions.
In the two-dimension case, we classified these according to
whether the hiphest correlate of the to-be-predicted dimen-
sion was present (on the basis of Table 2). When predicting
petal length, the higher correlate was petal width and the
lower correlate was sepal length. When predicting petal width,
the higher correlate was petal length and the lower correlate
was scpal Jength. When predicting sepal length, the higher
correlate was petal length and the lower correlate was petal
width. So, the three levels for the available dimensions variable
were three dimensions, two dimensions including the higher
correlate, and two dimensions including the lower correlate.

All main effects were significant, except whether the items
were old or new. Some of the main effects simply reflected
differences in materials. Participants were more accurate in
predicting petal width (mean error 0.73 cm) than petal length
(mean error 1.53 cm) or sepal length (mean error 1.56
cm)—F(2, 72) = 2996, p < 0001, MSE = 2.69. Participants
were most accurate with I seiose (mean error 1.07 cm), next
most accurate with I versicolor (mean error 1.22 cm), and least
accurate with [, virginica (mean error 153 em)—F(2, 54) =
2167, p < 0001, MSE = 0.94. Both the dimension and
category effects were such that participants made larger errors
in reproducing larger objects.

Figure 4 shows the effect of prior exposure. Participants
were equally accurate whether they were trained with the
experimenter’s categories or used their own, but they were
much less accurate when they had given likeability ratings or
had no prior exposure, F(3, 36) = 8.67,p < 001, MSE = B.58,
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Figure 3. Example test stimulus. The participant had to reproduce width of the petal and length of the

sepal.

The difference between likeability ratings and no prior expo-
sure was not significant, 1(36) = (1.55. Thus, participants were
able to do much better than chance (no prior exposure) at
predicting the dimensions given a categorization task but not
given an exposure task, This shows that even though partici-
pants were not explicitly predicting widths and lengths and
were not expecting to be so tested, there was something about
forming a category structure that enabled them to make such
predictions. This is certainly in keeping with the rational
analysis of categorization behavior,

Overall, there was a significant effect of available dimen-
sions, F(2, 72) = 1536, p < .0001, MSE = 031, and an
interaction with study condition, F(6, 72) = 324, p < 01,
MSE = (.31, such that the effect of the dimensions showed

only in the self-categorization and botanist categorization
conditions. Figure 5 displays the effect of dimensions available
averaged over the botanist categorization condition and the
self-categorization condition. Participants were more accurate
in the presence of the high correlate than in the presence of
just the low correlate. Further, adding the low correlate to
get the three-dimension condition did little to enhance pre-
diction,

Rational model for the botanist category condition. The
effect of available dimensions indicates that participants were
sensitive to the correlational structure of the stimuli. However,
it is unclear how much sensitivity there was to within-category
correlation. Tt could just be that having available the high
correlate increased the accuracy of categorization and that
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participants were simply using category averages to predict the
target dimensions. To determine within-category effects, we
have to know where the category boundaries are. We only
know this precisely and consistently for the participants in the
botanist categorization condition. Therefore, subsequent analy-
ses focus on that condition.

We broke the Howers in each species into large and small
sizes on the basis of the sum of the four dimensions. This gave
us six subcategories that ranged from small /. setosa to large 1.
virginica. Figure 6 compares the mean participant reproduc-
tions with the true values and with the predictions of two
madels to be deseribed. In this figure, we are averaging over
the three conditions of available correlates but we do present
the values for cach of the three predicted dimensions. As can
be seen, participants were sensitive to the within-category size
variation as well as to the between-category size variation,
although participants tended to underproduce the true varia-
tion everywhere. Averaged over the three dimensions, the true
values varied from 2.13 cm for small L setosa to 5.04 em for
large I. virginica, but the reproduced values varied from 240
cm to 4.53 cm. The actual correlation between the participant
averages and the true values in Figure 6 was 987. So, even
though participants had no expectation that they would be
tested on their ability to reproduce the values in the irises, the
categorization training led to quite high accuracy in mean
reproduction,

We tried to fit the rational model to the data in the botanist
categorization condition based on Equations 1-3. The data fit
were the 54 averages defined by crossing the 18 conditions in
Figure 6 with the three possibilitics for available correlates.

2.0

1.5

1.0

Deviation {(in cm)

0.5

0.0 No Prior

Exposure

Likeability
Ratings

Botanist's Self
Calegorles  Categorias

Figure 4. Mean centimeters of error in reproduction as a function of
the training condition.

1.2

Deviation {ln cm}

0.0-

Three Two-High Two-l.ow

Corralates Available

Figure 5. Mean centimeters of error as a function of the correlates
available, These means are just from participants in the training
conditions of botanists categories and self-categories.

Equation 2 was used to assign an overall measure of similarity
of each average stimulus to each category. Thus, for each
condition of available correlates, we calculated the product of
the similarities to the category means of the values y; on the
two or three dimensions available. According to the rational
model, the p;{y;{k) are probability densities calculated accord-
ing to a Bayesian analysis assuming a normal prior distribution
for the mean and an inverse chi-square distribution for the
variance of the y; (see Anderson, 1991; Anderson & Matessa,
1992). In the model we fit, we estimated the mean of the prior
distribution of the mean and the mean of the prior distribution
of the variance. The Bayesian analysis involves developing a
posterior distribution of the mean and the variance as a
weighted average of the prior and the empirically observed
mean and variance for that dimension and that category. The
empirical means and variances are weighted by their numbers
(24) of observations, but the Bayesian analysis requires estimat-
ing a weighting of the priors. This parameter is essentially a
measure of the number of observations a prior is worth. Thus,
we estimated three parameters: a single prior mean, ., for all
dimensions and categories; a single prior variance, o2, for all
dimensions and categories; and a single weighting, A, of this
prior mean and variance. If p, is the weighted mean for
category k and if o,? is the weighted variance for the category,
the p(y;|&) are calculated according to a normal distribution:?

¢ =i~ wiy g (4)

P(yi Ek) = \/2-"";(.')'_2
k

2 As discussed by Anderson and Matessa (1992}, the more accurate
Bayestan mode! assumes a ¢ distribution, but the difference with the
normal is very minor,
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& Participant's Data --0-~ Trus Values
~—8— Exemplar Model

—{+—  Rational Model

Centimeters

Small Large Small Large Small Large
Iris setoBR  yris versicolor fis virginiea

Category and Size of Flower

Figure 6. Absolute size of dimensions as a function of the size of the
category from which the flower was taken. Separate functions are
plotted for the three dimensions to be predicted For each dimension
the figure compares the true values, the participant values (in the
condition of botanist categories}, and the predictions of the rational
medel and the exemplar model.

To be totally precise, we would have had to make predic-
tions for the 40 {10 participants X 4 observations) stimuli in
each condition and then average them. However, we simply
made predictions for average stimuli that were defined by the
average values over the 40 stimuli. These predictions were
made by weighting the category means according to Equation
3, using weights calculated by Equations 2 and 4 and using
category means that were the posterior means of the Bayesian
estimates 3

The best fitting values of these parameters were i = 2.4 cm,
o = 499 cm? and A = 2.75 observations. With these
parameters we achieved a total squared deviation between the
34 predictions and observations of 6.80 cm?, which is equiva-
lent to an R? of .966. However, with a mean square error of the
means of 0.051 cm?, this is a significant difference, F(51,477) =
2.61, p < 001 One dimension of the problem is that this
model is not capturing enough of participants’ sensitivity to
within-category variance. The difference between participants’
reproductions for larger and smaller members of a category
was 0.40 cm (the actual difference in the flowers was 0.45 cm).
The model predicts some sensitivity because, when it is
predicting for the larger half of a category, it will tend to give
larger categories higher weightings in Equation 3. However, it
only predicts a 0.13-cm difference. Also, recent research by
Murphy and Ross (1994) has suggested that participants do
not weight multiple categories in making a prediction but
simply select the dominant category. This casts doubt on the

validity of using category weightings as a basis for predicting
sensitivity to within-category correlation.

As mentioned earlier, Anderson and Matessa (1992) devel-
oped a version of the rational model that used within-category
correlations, We tried a reduced version of this model that just
used the largest correlation to adjust its prediction. So the
mean for dimension { for category k was

flyilky =m + o by d, (5)

where m; was the posterior mean for the to-be-predicted
dimension / (calculated as above), d; was the deviation of the
subcategory mean from the category mean for the predicting
dimension j (negative for small, positive for large}, b; was the
estimated slope of the predicted dimension i against the
predicting dimension j derived from the within-category corre-
lation,* and « was an attenuation factor. The attenuation
factor can be interpreted as refiecting the outcome of weight-
ing a prior of no correlation with the observed correlation. This
model is a four-parameter model because it has one additional
parameter to reflect the attenuation factor. (If the attenuation
factor were zero, this would be the same as in the previous
model.) The best fitting values of these parameters were p =
2.45 cm, o = 438 cm?, A = 2.94 observations, and o = (.67,
These are all reasonable values with the mean and variance
within the range of the stimuli, the prior weight within the
magnitude of the observations, and the attenuation factor
positive and less than one. With these parameters, we achieved
a total squared deviation between predicted and observed
values of 5.83 cm?, which is equivalent to an R? of .971, With
the mean square error of the means of 0.051 cm?, this is still a
significant difference, F(50, 477) = 2.29, p < .005. The
reduction in deviation is also quite significant, F(1, 477) =
1902, p < .001. This model predicts a 035-cm difference
between the reproductions of the small and large members of a
category, which is close to the participants’ difference of 0.40
cm. It is this four-parameter model that is plotted in Figure 6.

Exemplar model for the botanist category condition. Elliott
and Anderson (1995) have developed an application of the
exemplar model of Nosofsky {1986; Nosofsky, Clark, and Shin,
1989) for predicting the data in such an experiment. This
model predicts that participants use the actual exemplars to
make predictions. The predicted value is

E(y}) = ; S,ixi,i/;:fjr (6)

where the summations are over the individual study instances},
5; is the similarity of the study instance to the test stimuius, and

3The rational model allows for a “coupling” parameter that
determines whether a stimulus gets placed into a new category. For
simplicity, we ignored this parameter and so only considered the
possibility that the instances came from one of the existing categories.
The effect of this approximation was minor because there were many
instances seen per category, which would make the probability of a
new category low.

4 The b; are simply the empirical slopes manifested in the Fisher
{1936) stimuli and do not involve estimating any free parameters,
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x; is the value of that study instance on dimension i This is
similar to Equation 3 for the rational model except that
individual instances (rather than category means) are being
weighted by their similarities to the test item. Similarity is
caleulated as a product of similarities on each dimension
{(similar to Equation 2 for the rational model}:

s = [lemnrn, ™
1

where the product is over the observed dimensions, w; is the
attentional weight given to dimension i, y; is the observed value
on dimension §, and x; is the value of study instance j on
dimension i This model is similar in many ways to the rational
model except that it uses individual study instances rather than
categories. It uses an exponential function to weight the
differences rather than the sigmoidal function in the rational
analysis (Equation 4), but this is a minor difference for current
purposes. The significant differences come from use of specific
instances. The lack of any categories implies that it is not
possible to calculate within-category correlations as in the
extended rational model. It is an open question whether
correlations are necessary. In particular, as noted in the
introduction, by recording cach example the model allows
itself to empirically represent the correlation.

We fit the model using all 150 Fisher (1936) irises as past
instances but, as in the rational model, predicted the 54
apgregate test stimuli. As is typically done, we allowed our-
selves to fit the model estimating separate attentional param-
eters w; for each of the dimensions. The values estimated were
1.48 for petal width, 3.60 for petal length, 0 for sepal width, and
1.32 for sepal length. With these parameters we achieved a
total squared deviation between prediction and observed of
7.96 cm?, which is equivalent to an R? of .960. With the mean
square error of the means of 0.051 cm?, this is still a significant
difference, F(50, 477) = 312, p < 001 It is the Nosofsky
(1986) four-parameter exemplar mode] that is plotted in
Figure 6. The model's predictions are slightly worse than the
rational model. Its major deficit is that it is not able to
reproduce the average values generated by participants for the
three dimensions. It underpredicts the values of the partici-
pants’ reproductions for the petal width by an average of 0.26
cm, and it overpredicts the petal and sepal lenpth reproduc-
tions by an average of 0.30 cm. kt does not have the advantage
of the rational model of weighting the empirical mean by a
prior value. It would be easy to extend the exemplar model to
have such priors® We did not do so because our main concern
was whether the exemplar model could produce the sensitivity
to within-category correlation. On this score, the model has
little difficulty with the within-category correlation. It predicts
participants will produce a 0.30-cm difference between the
small and large members of the category, whereas they
produced a 0.40-cm difference.

Conclusions

The rational model needed to be extended to estimate
within-category correlations to be able to capture participants’
sensitivity to within-category correlations. This is something
that the exemplar model does naturally. Later experiments

provide data for discriminating between the extended rational
mode! and the exemplar model.

The results involving the training conditions are informative.
The fact that the likeability condition was no different than the
nto prior exposure condition and that both were much worse
than either of the categorization conditions seems to indicate
that mere exposure is not enough to get participants to encode
the dimensional relationships and that there is something
special about categorization. The fact that there was no
difference between the botanist categorization condition and
the self-categorization condition might seem problematical for
the rational model because participants tended to collapse the
I versicolor and I virginica together. Flowever, if they were
storing within-category correlations, their ability to predict
stimulus dimensions would not bave been nearly so dependent
on their coming up with a particular categorization. Indeed, by
adding within-category correlation monitoring, we make the
model much less dependent on coming up with a good
categorization.

Curiously, Wattenmaker (1991) found different results. His
participants were able to detect the correlation between
discrete values (e.g., has a dog and drinks carbonated soda)
much better when they just studied the stimuli and did not
categorize them. Wattenmaker argued that there were too
many dimensions to monitor when participants were con-
sciously forming categorics. Perhaps the difference in our case
turns on the relative naturalness of the correlations involved,
or perhaps it has to do with the fact that we were using
continuous dimensions. In any case, Wattenmaker’s research
establishes that it is not always necessary to categorize in order
to pick up on within-category correlations.

Experiment 2

Experiment 1 provided evidence that participants are sensi-
tive to within-category correlations in naturally occurring
categories. We noted that the original rationa! model (without
correlation monitoring) showed some sensitivity. This is be-
cause it produced different weightings of the three categories
(see Equation 3) when predicting small versus large members
of any category. Although the rational model did not produce
enough sensitivity, the possibility remains that some weighting
scheme could We also noted in the introduction that a
multiple-regression scheme that did not use categories at all
did a good job of predicting the dimensions. This second
experiment was designed to produce better evidence that
participants were using both a category structure and within-
category correlation. This experiment offers the possibilities of
ruling out the weighted-category approach or the multiple-
regression approach. As will be shown, it also yields data that
discriminate against the exemplar model.

We abandoned the pseudonatural stimuli of the first experi-
ment and went to vsing truly artificial materials that were

5 Indeed, Elliott and Anderson (1995) describe a version of the
exemplar model that involves the use of prior means We also did not
use this extension just to keep the number of parameters the same
between the rational and exemplar model
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based loosely on the Fisher (1936) stimuli. One potential
criticism of Experiment 1 was that participants may not have
treated width and length as independent dimensions. Indeed,
some participants reported processing the stimuli in terms of
shape and size. To deal with this, we decided to transform the
dimensions into size and shading. All petals had the same
shape and varied in size (area) and shading.

Figure 7 illustrates the design of the experiment, which
involved training participants to classify the stimuli into two
categories. Two of the dimensions were designated as defining
dimensions, and their use is illustrated in Figure 7a. Two
categories were defined by conjunctions of values on these
dimensions. All instances on cne end of the scale for the two
dimensions were in one category, and all instances on the other
end of the scale were in another category. Note that, overall,
there was a strong correlation between the two dimensions but
that within cach category there was no correlation between the
dimensions. Figure 7b illustrates the structure of the two
nondefining dimensions. Overall, there was no correlation
between the dimensions, but within one category there was a
positive correlation, and within the other category there was a
negative correlation. Thus, if participants were able to predict
anything about these two dimensions it would be because they
were sensitive to the within-category correlation.

Method

Participants.  Forty-nine Carnegte Mellon University undergradu-
ales were paid $6.00 each to participate in an experiment that lasted
less than 2 hr. In addition, participants received benus pay of up
to $6 .00, depending on performance. There were 24 participants in the
self-categorization condition and 25 in the trained-categorization
condition.
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Materials. The stimuli were constructed as in the previous experi-
ment. However, the combinations of values for each dimension were
completely antificial The distributions of values over the dimensions
were perfectly uniform. The range of shading for both sepals and
petals was from 3 to 127 in the Macintosh gray scale (near white to
black). The range of size values was 2.6 to 7.2 cm long, and width was
one half of the lenpth. We generated 144 values each for shading of
petal, shading of sepal, size of petal, and size of sepal uniformly on
these dimensions. The defining dimensions could be either the size
dimensions or the shading dimensions. When size was the defining
dimension, we combined the sepal and petal size to create either a
positive correlation or a negative correlation. In the case of a positive
correlation, the two categories would be (a) large sepals and Jarge
petals and (b) small sepals and smail petals. In the case of a negative
correlation, there would be (a) large sepals and small petals and (b)
small sepals and large petals Similarly, when shading was the defining
dimension, the correlations conld be positive or negative. Thus, there
were four possible coaditions of defining dimensions. For the nondefin-
ing dimensions, there was one perfect positive correlation and one
petfect negative correlation. There were two ways to assign these to
the two categories. Crossing these two ways with the four ways of
creating defining dimensions yielded eight stimulus conditions.

Procedure  1n the trained categorization condition, the participant
was trained to categorize the stimuli into one of two categeries
according to the same procedure as that used in the previous
experiment In the self-categorization condition, participants were
free to develop their own category structure using from one to five
categories, Participants were trained to categorize one set of 36 stipuli
and then another set of 36 stimuli. Each set of 36 contained 18 stimuli
randomly selected from each category, After selecting the category for
a stimulus, the participant was presented with a new window that
contained a prototype iris—that is, an iris that had the overall median
value on all dimensions Participants were required to adjust the value
on each dimension in order to reproduce the flower they had
categorized immediately before. The participant was instructed to
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Figure 7. Example stimulus structure in Experiment 2: (a) two defining dimensions and (b} two
nondefining dimensions. Open circles represent one category, and filled squares represent another

condition.
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perform this task well in order to maximize accuracy. In this experi-
ment, a point score was displayed at the top of the screen. The greater
the accuracy of the reproduction, the more the point score was
increased Participants were told that the final point score would be
used to determine the number of bonus dollars they would receive
upon completion of the experiment This reproduction procedure was
added o get participants to pay attention to all dimensions (which they
had not been doing in a pilot experiment).® After reaching a eriterion
of B0% correct classification on the 36 stimuli, participants had to
achieve a similar level of aecuracy on another 36 stimuli.

After completing the training phase of the experiment, participants
were transferred to the prediction phase. They were presented with
three of the dimensions and had to predict the fourth. They were
tested with all 144 stimuli divided into eight conditions defined by
category ard dimension to be predicted.

Resulis

To make shading and size comparable, we recoded them on
a 0-1 scale. If M was the maximum value on the scale and m
was the minimum, and x was the value reproduced by the
participant, we coded this as (x — m)/(M — m). We classified
the participant’s response according to the value of the
correlated or cue dimension. If the participant was reproduc-
ing a defining dimension, the cue dimension was the other
defining dimension. Similarly, if the participant was reproduc-
ing a nondefining dimension, the cue dimension was the other
nondefining dimension. This cue dimension was divided into
quintiles and we aggregated the data from each quintile; that
is, we averaged the values reproduced for the stimuli with the
smallest fifth of cue dimension, the next smallest fifth, and so
on.
We performed an ANOVA on the recoded values in which
the variables were training (experimenter categories vs. self
categories), dimension that defined the categories {size or
shading), direction of correlation in the case of the defining
dimension (positive or negative), predicted dimension {defin-
ing, nondefining with positive correlation, nondefining with
negative correlation), and quintile of the cue dimension. There
were no significant effects of training or defining dimension
(size or shading) allowing us to collapse over these two
variables There was a highly significant interaction of the
three remaining variables (Direction of Defining
Correlation X Predicted Dimension X Quintile), F(8, 376) =
18.08, p < 0001, MSE = 0023, as well as numerous lower-
order effects: predicted dimension, F(2, 94) = 3.95,p < .05,
MSE = 0017, quintile, F(4, 188} = 3.92,p < 01; MSE =
0.032; Quintile x Defining Correlation, F(4, 188) = 26.25,p <
0001, MSE = 0032; and Predicted x Quintile, F(8, 376) =
13.17,p < 0001, MSE = 0.023.

Figure 8 provides the relevant display of these effects. Here
we have broken up the dimensions being predicted into four
conditions. For the nondefining dimensions, there were the
positive and negative correlations again. However, we have
also divided up the predictions on the defining conditions.
Thase participants for whom the defining dimensions were
positively correlated are plotted separately from those partici-
pants for whom the dimensions were negatively correlated. We
have plotted the standardized values as a function of quintile.
As can be seen, we have positive functions in the presence of
positive correlations and negative functions in the presence of

negative correlations. For the nondefining dimensions, the
positive function was much steeper than the negative function.

The dimension of experimenter-defined versus participant-
defined categories did not interact with anything. However,
none of the 24 participants who did self-cateporization used
two categories, let alone the experimenter’s categories. Two
participants used one category, 10 used three categories, 4
used four categories, and B used five categories. It was not
always possible to sec a basis for the participant’s categoriza-
tion. Ten participants had one category that corresponded to
the experimenter’s category in which there was & positive
within-category correlation. These 10 participants broke the
experimenter’s category with a negative correlation into two—
one reflecting the positive-negative values on the nondefining
dimensions and the other the negative-positive values. We call
these the three-way participants. Five participants had four
categories that broke both of the experimenter’s categories in
half according to the extremity of the values on nondefining
dimensions. We call these the four-way participants. Then
there were the 2 one-way participants with just one category.
Finally, there were 7 participants whose classification defied
description in terms of the experimenter’s categorics. The
three-way and four-way participants sometimes had additional
categories that also defied description. We did analyses of
whether there were any interactions between these four types
of participants and performance but failed to get any signifi-
cant interactions. So, once again we had 4 failure of the nature
of categorization training to have an impact on the prediction
results.

Analysis of experimenter’s category condition.  Although the
data did not seem to vary as & function of condition, we
decided to focus on the data in the experimenter’s category
condition because in this condition all 25 participants used the
same categorization. Again we tried to fit the rational model to
the data (i.e., the 20 data points in Figure 8, but only for
participants using the experimenter's categories). We fit the
same model to the data as in Experiment 1, except that instead
of using the attenuation factor to convert the empirical
correlations into the posterior correlations, we used the
following Bayesian formula from Anderson and Matessa
{1992, derived from Box & Tiao, 1973) for mixing observed
correlation, r, with prior correlation, o, to estimate a final
correlation, 7

X ) A tanh™! 4 - 18 tanh~!r 8
F = lan T ! (8)

where A, is the weighting of the prior correlation. The
empirical correlation was .9 for the nondefining dimensions
and 0 for the defining dimensions.” The parameters were

& The fact that participants did not naturally encode all dimensions
could be accommodaied by adding a selective attention process as in
Kruschke (1592) or Nosofsky {1986, 1988).

7 The actual correlation was perfect, but we used .9 because taph~}
is not defined for 1. This amounts to asserting that there was some
noise in the perception of the correlation.
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Figure & Standardized score as a function of the value on the cue
dimension and type of dimension being predicted.

estimated as p = 0.508, o? = 0.371, A = 3.26 observations, w =
.158, and A, = 146.7 observations. With these parameters, we
achieved a total squared deviation between the 20 predictions
and observations of 0.0141, which is equivalent to an R2of 958,
With a mean square error of the means of .0011, this is not a
significant difference, F(15, 345) = 0.89. Figure 9 illustrates
the fit of the model.

Rather than compare this with a specific alternative model,
we calculated an upper bound on how well any model could do
that did not calculate a cotrelation and adjust this correlation
with a prior bias. Included in this class of models would be the
ariginal rational model and any exemplar model that did not
incorporate some notion of correlation. Because of the symme-
try in the design of the material, any such model must predict
that the positive and negative correlations will be exactly
inverse. Thus, we used the average of the ith positive and
(6 — i)th negative quintiles as the predictions for these values
separately for defining and nondefining dimensions. Thus, we
used the mean of these two numbers, which should be the
same under a nonbiased model, to predict the numbers, This
can be viewed as a 10-parameter mode! (five means for
defining and five for nondefining dimensions). The correlation
between this model and the data was 881, The basic reason for
the greater misfit is that the model cannot predict the
differential slope for pasitive and negative correlations in the
nondefining dimensions. For instance, in an exemplar model
these stimuli have the same number of similar study stimuli the
same distance away and so should yield equal estimates of the
slope. The modified rational model can fit these different

slopes because it incorporates a prior of a positive correlation.
An exemplar model might be modified to accommodate this
data if it adjusted its predictions by some sort of prior bias
about an overall correlation.

Conclusions

This experiment provides further evidence that participants
are sensitive to within-category correlation. By taking advan-
tage of the within-category correlation, participants were able
to gain accuracy in prediction on dimensions when there was
no overali correlation and no difference between the means of
the categories. This experiment again showed little difference
between participants making up their own categories and
participants trained with experimenter categories. Again, this
makes sense if participants use within-category correlations.
Then their predictions would be much less sensitive to the
categories they adopt.

Experiment 3

This experiment was designed to produce even stronger
evidence for use of within-category correlation and as strong
evidence as is possible against the general category of exem-
plar models. The basic nature of exemplar models is that they
use similar examples to predict properties of a test instance,
and what they predict is that the test instance should have
similar values. Thus, they will have difficulties making predic-
tions about unseen regions of the instance space, whereas

0 Defining Dimenslon: Positive

@ Delining Dimanslon: Negative

o Non-Dafining Dimension: Positive
B Non-Defining Dimension: Negative
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Figure 9 Predictions of the rational model (fines) compared to data
{points) for the condition of experimenter categories.
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regression models can make such predictions by extrapolating
trends. Therefore, we decided to do an experiment using the
same basic stimulus structure as the previous experiment, but
in which participants would only study instances from the
ieft-hand sides of the sample spaces in Figure 7b but would be
tested with both instances from the left-hand and right-hand
sides of the space. Thus, they would only see half of the x
dimension but would see all of the y dimension. Consider the
category with the negative correlation in Figure 7b and
suppose the participant is asked to predict an x value given a
smally value. According to the correlation, they should predict
a large x value, despite having only experienced small x values.
However, by any weighting of the experienced values they
should predict smallx values.

In this experiment we decided to change another aspect of
the experiment to avoid participants’ bias for positive correla-
tions in the previous experiment. In this experiment the
defining dimensions were the size and color of the sepal, and
the nondefining dimensions were the size and color of the
petal. There was no reason for participants to have any
expectations about the sign of these correlations. Finally, to
have a reference point to assess the effect of the reduced study
space, we tested some of the participants with the full space.

Method

Participants.  Fifty-three Carnegie Mellon University undergradu-
ates were recruited to participate in this experiment. The experiment
lasted between 90 and 120 min. Participants were paid a flat rate of
$6.00. In addition, they received between $3.00 and 36 00 bonus pay
that was dependent on performance. Sixteen participants were as-
signed to the full-range condition, and the remaining 37 participants
were in the part-range group and studied part of the space of stimuli

Materials. The stimuli were generated from the same range of
values on the same dimensions as in the previous experiment. There
were two categories of flowers. Each category contained 72 instances,
yielding a total of 144 fiowers. The categories were defined by the
values of the sepal features. There were two sepal configurations
{counterbalanced across participants). In one configuration, smaller
sepals (size = [0, 0.5]) that were light {shade ={0, 0 5]} determined
one category, and larger sepals (size = [0.51, 10]) that were dark
(shade = [0.51, 1.0]) determined the other category. Similarly, the
alternative configuration consisted of a category determined by smalter,
dark sepuls and another category was determined by larger, light
sepals. The sepals were constructed such that within a category there
was no correlation between sepal size and sepal shade. Note, however,
that across the space of sepals from both categories, there was an
overal] corretation between sepal size and sepal shade.

In the full-range condition, petals were constructed such that the
petals in one category exhibited the same correlation as the sepal
correlation. That is to say, the within-category correlation of the petals
matched the between-category correlation of the sepals. Thus, if the
catepories were smali light sepals and large dark sepals, the petals in
the congruent category were such that small went with light ard large
went with dark. Petals in the other category exhibited the opposite or
incongruent correlation Petals from a particular category were ran-
domly paired with corresponding sepals such that there were no
correlations between petal features and sepal features. We counterbal-
anced across participants how petal correlations were assigned to sepal
categories. Because there were two ways of creating sepal categories
and two ways of creating petal correlations, there were four conditions
of stimulus construction counterbalanced across participants. There

were 4 participants in each of the four conditions. Table 3 summarizes
the desipn and category pairings for the full-range group.

Withir each category, 36 of the 72 stimuli were randomly selected
for the training phase of the experiment. Half of these from each
category were randomly chosen to appear in the first training pass, and
the remaining haif were used for the second training pass. Thus, there
were 36 (18 -+ 18) assigned to the first training pass and 36 (18 + 18)
assigned to the second training pass. During the testing phase, all 72
stimuli from each category were presented, for a total of 144 trials.
One quarter of these trials involved participants predicting each of the
four missing dimensions.

Stimuli for the part-range group were initially constructed by the
same procedure as for the fuli-range group However, an additional
manipulation was performed During the training portion of the task,
we wanted to expose participamts to only half of the range of one
dimension of the petals. To accomplish this, stimuli were chosen for
study subject to the constraint that they had to have values inside the
allowable range of the restricied dimension. There were four possible
constraints: only Hght petals (shade = [0, 05]), only dark petals
{shade = [0 51, 1.0]), only small petals (size = [0, (¢ 5]), or only large
petals (size = [051, 10]). The constraints were crossed with the
category structures in Table 3, yielding a total of 16 (4 X 4} cells in the
experiment

Figure 10 is a graphical representation of selected stimuli subject to
the constraint of only small petals: The darker lines represent the
correlated petal features that participants would be exposed to during
the training phase. There were 36 stimuli from cach category that were
selected for the training phase. As before, half of these from each
category were randomly chosen 1o appear in the first training pass, and
the remaining half were used for the second training pass Thus, there
were 36 (18 -+ 18) assigned to the first training pass and 36 (18 + 18)
assigned to the second training pass. During the testing phase, all 144
stimuli would be presented (72 from each category).

Procedure.  The participants were trained to categorize the stimuli
into one of two catepories according to the same experimenter-defined
pracedure as that used in Experiment 2 To review, they participated
in at least two training passes During each pass, they were presented
with stimuli for which they had to specify the correct category
Feedback was given after each trial. After they correctly categorized

Table 3
Category Structure for Different Groups of Participants
Group Category | Catepory 2
1 Small light sepals with con-  Large dark sepals with

incongruent petal cor-
relation (e, small
dark petals and large
light petals)

gruent petal correla-
tion (i.c, small light
petals and large dark
petals)

2 Smali tight sepals with
incongruent petal cor-
relation (i e, small

Large dark sepals with con-
gruent petal correla-
tion (i.e, small light

dark petals and large petals and jarge dark
light petals) petals)
3 Small dark sepals with con-  Large light sepals with

gruent petal correla-
tion {i.e., small dark

incongruent petal cor-
refation (ie , small

petals and large light Light petals ard large
petats) dark petals}
4 Small dark sepals with Large light sepals with con-

incongruent petal cor-
relation (ie, small
light petals and large
dark petals)

gruent petal correla-
tion {i e, small dark
petals and large light
petals)
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Figure 10, Tlustration of stimulus structures for the nondefining

dimensions in one part-range condition of the experiment Bold lines
tepresent stimulus range presented Bold and light lines represent
stimulus range tested

over B0% of the stimuli in both passes, they could then continue on to
the testing phase of the experiment. As in Experiment 2, after selecting
the category for a stimulus, participants were preseated with a new
window that contained a prototype iris (that is, an iris that had the
overall median value on all dimensions). They were required to adjust
the value on each dimension in order to reproduce the flower they had
eategorized immediately before. Participants were instructed to per-
form this task well in order to maximize their accuracy. A point score
was displayed at the top of the screen. The greater the accuracy of the
reproduction, the more the point score was increased Participants
were told that the final point score would be used to determine to
number of bonus dollars they would receive upon completion of the
experiment.

Alfter completing the training phase of the experiment, participants
were transferred to the prediction phase. They were presented with
three of the dimensions and had to predict the fourth They were
tested with all 144 stimuli divided into eight conditions defined by
category and dimension to be predicted.

Results

The terms we use in analyzing the results in this section are
defined in the Appendix We refer to the target dimension and
the cue dimension. The target dimension is always the dimen-
sion being reproduced. The cue dimension is the one dimen-
siont that has a correlation with the target dimension (either
within or between categories). it offers the basis for predicting
the target dimension. Thus, when predicting a petal dimen-
sion, the cue dimension is the other petal dimension, and when
predicting a sepal dimension, the cue dimension is the other
sepal dimension.

We separately analyzed the data from the defining sepal and
nondefining petal dimensions. As in Experiment 2, we con-
verted the data into standardized scores and aggregated the
data by the quintile of the cue dimension. Let us consider first
the analysis of the defining sepal dimensions We wanted to

assign the cue dimension to quintiles in such a way that we
would unify the condition where small and light sepals go
together with the condition where small and dark sepals go
together. We did this such that the first quintile was always
associated with the smallest sepals and whatever shading was
associated with small sepals. Thus, if small white sepals were
the category and the participant was predicting size (and sepal
shading was the cue dimension), the lightest sepals would be in
the first quintile and the darkest would be in the fifth. If the
participant was predicting shading (and the sepal size was the
cue dimension), the smallest sepals would be in the first
quintile and the largest would be in the fifth. If one category
was small black sepals, the shading assignments were reversed
and size assignments maintained. We also adjusted our scoring
of participants’ shading responses such that dark was consid-
ered a small value if they encountered small dark sepals and a
large value if they encountered large dark sepals,

An ANOVA was performed on the data from the defining
sepal dimensions under this classification. The variables were
quintile, whether shading or size was the target dimension,
whether participants were exposed to the full range of the
nondefining petal dimensions, and the choice for the defining
categories. Figure 11 shows the effects of quintile and exposure
conditions. The only significant main effect was quintile,
F(4, 196) = 5364, p < .001, MSE = 0.013, and there were
significant interactions of this variable with category definition,
F(4, 196) = 10,62, p < .001, MSE = 0.014, and with the target
dimension, F(4, 196} = 324, p < .05, MSE = 0012 The
interaction with category was such that the effects of quintile
were steeper when the categories were large white and small
black sepals rather than large black and small white sepals
(293 vs. .119 standardized units comparing Quintiles 1 and 5).
This may indicate some bias to associate white with large. The
interaction with dimension was such that the effects of quintile
were steeper when size was the target dimension and shading
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Figure 11 Reproduction of the defining dimension as a function of

the value of the cue dimension and exposure to the nondefining
dimensions
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was the cue dimension rather than the reverse (241 vs. 163
standardized units). This may have been due to the fact that it
seemed easier to reproduce size. However, basically the results
replicate the findings of the previous experiment and further
show that with respect to the defining dimensions there was no
effect of whether participants experienced the full range of the
nondefining dimensions or not.

In the case of the nondefining petal dimensions, we also
redefined directions of the dimensions to unify the stimulus
conditions. We achieved this by assigning the first quintile to
values experienced in that category with the result that the
responses involving the extrapolation of the correlation always
appeared in Quintiles 4 and 5. Thus, if a participant were
experiencing only large dark petals in one category, the first
quintile for stimuli in that category would be the darkest
shading if shading were the cue and the Jargest petals if size
were the cue. Similarly, we scored the responses such that the
large petals and dark petals would be assigned low values. This
meant that in all cases a sensitivity to the correlation among
the dimensions would show up as a positive relationship
between quintile and standardized values of the reproduced
scores. Note that when participants experienced the full range
of the nondefining dimension, the assignment of low values to
petal size and shading was arbitrary and depended on what
partial condition they would have been assigned to had they
been in the partial condition.

An ANOVA was done on the nondefining petal dimensions
where the variables were (a) whether participants experienced
the full range of stimuli or only part, (b) quintile, (c) whether
the target dimension or the cue dimension had been exposed
the full range or not (an arbitrary variable in the case where
they saw the full range of stimuli), and (d) whether the
relationship between size and shading for that category corre-
sponded to the relationship in the case of the defining
dimensions {congruent vs, incongruent). Figure 12 displays the
effects of quintile, exposure condition, and congruency. There
was a highly significant effect of whether participants had been
exposed to the full range of stimuli, F(1,51) = 53.95,p < 001,
MSE = 0.092). Participants gave much lower standardized
vakues (0.358 versus 0.507) when they had not experienced the
full range. The mean of the values they had experienced in the
category was 0.25 in the case of having experienced a part
range, and it was 0.50 in the case of the full range. Thus, their
average values were close to experienced average in the case of
the full-range condition but were much larger than what they
experienced in that category in the part-range condition. In the
part-range condition, they experienced the full range of one
dimension across the two categories but only part of the range
of the other dimension across both categories. There was a
slight tendency for them to reproduce larger values for the
dimension for which they had seen the full range of the target
dimension across the two catepories {(0.372 vs. 0.344). This
showed up as a significant interaction between group (full
range vs. part range) and whether the cue dimension or the
target dimension had part range (an arbitrary variable in the
full-range condition), F(1,51) = 4.95,p < .05, MSE = 0.068. It
is important to remember that although participants experi-
enced the full range of one dimension in the part-range condition,
this was across categories, and they only experienced
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Figure 12 Reproduction of the nondefining dimension as a function
of the value of the cue dimension, range of exposure, and congruency
with defining dimensions

part of the range within a category. Thus, participants’ repro-
ductions for this dimension in the part-range condition were a
compromise between the average value experienced within the
category {0.25) and the average value experienced for both
categories (0.50). However, their reproductions for the other
dimension were higher than the mean experienced valoes in
both categories.

The effect of quintile was significant, £(1, 204) = 10.57,p <
001, MSE = 0022, and there was a significant interaction of
this variable with whether the correlation was congruent with
what participants had experienced for the defining sepal
dimensions, F(1, 204) = 10.36, p < .001, MSE = 0.027 The
effect of quintiles was large in the case of a congruemt
rejationship (0.165 standardized units comparing Quintiles 1
and 5) but was essentially nonexistent in the case of an
incongruent relationship {8.002 standardized units).

Model Fitting

For purposes of fitting models to the data, we decided to
display the data separately for the two exposure conditions,
Part a of Figure 13 shows the data in the condition where
participants were exposed to a full range of stimuli. It shows
large effects of quintile both in the case of the defining dimension
and in the case of a2 nondefining dimension congruent with the
defining relationship but shows no systematic effect of quintile
in the case of the incongruent nondefining dimension. All of
these cases are centered around 0.5, which was the mean of the
experienced values. Part a of Figure 14 shows the casc where
participants only experienced a subset of the range of the
stimuli. Again there was a large effect of quintile for the
defining dimension centered around 0.5. For the nondefining
dimensions however, the values were below 0.5. They tended
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Figure 13 Reproduction of the dimension when participants had experienced the full range of the

nondefining dimensions, Part a is participant data, Part b is predictions of the rational model, and Part ¢ is
predictions of the exemplar model (with correlations). Data are plotted separately for the defining
dimension, for the nondefining dimension for the category that is congruent with the defining dimension,
and for the incongruent nondefining dimension. Lines with filled circles represent the defining dimensian,
iines with filled squares represent the congruent correlation, and lines with open squares represent the

incongruent correlation,

to be somewhat lower in the case where the participant
experienced the full range of the cue dimension (triangles in
Figure 14) rather than the target dimension (squares in Figure
14). For both the cue and the target dimension, there was the
same interaction with congruency that is shown in Figure 13a.

Figures 13b and 14b show the outcome of trying to fit the
rational model to the data, The same model was used as for
Experiment 2, except that rather than using the natural
carrelation (i.e., large sepals with large petals and dark sepals
with dark petals) as the prior, we used the correlation
exemplified in the defining dimensions. This can be taken as
reflecting a generalization from one pair of dimensions to
another. We constrained the value of p to be 0.5 because
assignment of values to end of scale was largely arbitrary. The
values of the estimated parameters were o = 0520, A = 824
observations, m = 0.078, and A, = 241,39 observations. These

are similar values to those in the previous experiment. The
large value of A, combined with a small value of 7 corresponds
to a strong belief that the petal correlation will be weakly in the
same direction as the sepals. There are 40 observations
represented in the two figures, and with four parameters, the
chi-square measure® of goodness of fit was 61.80 with 36
deprees of freedom, which, although pood, indicates some
residual problem. The value of R? was 922, A point of
discrepancy is that the model overpredicted the mean differ-
ence between the cue and target curves (triangles vs. squares),

Y Becawse different cells had different standard errors of their
means, we calculated 3 (x; v-fy/sgi, which is a chi-square statistic
rather than the F statistic of the previous experiments, An F statistic is
only appropriate when it is reasonable to assume that all cells have
similar standard error,



CATEGORIES AND CORRELATIONS 275

0.6

0.5

0.4

03

Standardized Value

0.2

01
] 1 2 3 4 5

Cunitile

6.6
o 0.5
e
G
=
T 04
N
B
w
T oad
8
72
0.2
0.1 T T v T T
0 1 2 a 4 5
Guintile
[ o4
0.60
3 oso
]
-
-3
o
L]
T
15
B
g 0.30
W
0.20
0.10
0 1
O
e
L—, S
S
e

Quintlle

Defining Dimenslon
TargetCongruent
Targetflncongrient
Cue/Congruent
Cuefincongruent

Figure 14 Reproduction of the dimension when participants had only experienced part of the range of
the nondefining dimension Part a is participant data, Part b is predictions of the rational maodel, and Par!
¢ is predictions of the exemplar model (with correlation) Data are plotted separately for the defining
dimension, for the nondefining dimension for the category that is congruent with the defining dimension,
and for the incongruent nondefining dimension. Also, the data for the nondefining dimension are further
divided according to whether the participant experienced the full range of the cueing dimension or the
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as shown in Figure 14, It predicted a mean difference of 0.052,
but the observed difference was only 0.028.

We also tried to fit an exemplar model to the data. We
assumed that the participants had exposure in each category to
a stimulus set defined by crossing nine values for the defining
dimensions with four for the nondefining dimensions
(2 X 9 x 4 = 72 stimuli). The defining values for one category
were created by crossing Y, %2, and % for each dimension,
and the values for the other category were created by crossing
Y2, Yz, and V. In the case of the nondefining dimensions, we
used value pairs of (%, %), (%, %), (% %), and (%, %) for the
congruent category and values of (%, %), (%, %), (%, %), and
(%, %) for the incongruent category. In the part-range condi-

tion, participants only had exposure to the first two of these
correlated pairs. We then had the model predict the average
stimulus for each quintile. We estimated three parameters to
reflect the weighting given to the defining dimension, the
nondefining dimension with full range, and the nondefining
dimension with partial range. These values were estimated to
be 1.66, 2.37, and 1.44_ The chi-syuare measure of goodness of
fit was 287.95, which is quite large, and R? = .761. One problem
with this model is that it predicts no effect of congruency. We
tried a variation on the model in which the prediction was
modified by an amount to reflect the effect of congruency. In
the congruent case, if the value on the cue dimension was v,
then afv — 0.5) was added to the prediction, whereas this
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amount was subtracted in the incongruent case. The weighting
parameters estimated for this model were identical, but a value
of o was estimated to be 0.077. The chi-square value in this
case was 26277, which can be compared with the rational
model that had as many degrees of freedom. The R? was 812
Figures 13c and 14c illustrate the fit of this model. One major
discrepancy of the model is that it substantially underpredicted
the values produced when the participant only experienced
part of the target dimension. The mean value experienced on
the target dimension was 0.25, and it was difficult for any
weighting scheme to produce a mean value different than 0.25.
However, the mean value produced by participants was 0.35.
The exemplar model failed to predict that the linear relation
would continue to increase for Quintiles 4 and 5, where there
were no experienced exemplars.

General Discussion

This research started with an attempt to look at human
categorization with a set of stimuli that reflected a naturally
varying dimensional structure. Starting with stimuli derived
from nature rather than testing a theory led us to some rather
unexplored ground in the area of categorization and some
novel results. Although the second and third experiments went
to “controlled” stimuli based on the stimuli of the first
experiment, they confirmed and extended the pattern of
results. In a nutshell, these experiments provide evidence that
participants do create internal categories, do use these to
make predictions, and are sensitive to within-category cotrela-
tions. Unlike in previous research, this sensitivity to correla-
tion cannot be attributed to remembering specific instances or
to breaking official categories down into subcategories. How-
ever, it needs to be acknowledged that Experiments 2 and 3,
which provided the strongest evidence for such correlational
sensitivity, had a feature unlike many other experiments. This
is that participants were required to reproduce all of the
dimensions during training. It is unclear whether such sensitiv-
ity would be observed in a paradigm that did not force
participants to encode each dimension.

In Experiment 1 we found that participants were much more
accurate in their predictions when their prior exposure task
caused them to form categories. They were also more sensitive
to the within-category, naturally defined dimensional covaria-
tion than the rational theory would predict without monitoring
of within-category correlation. Also, both Experiments 1 and 2
showed that whether participants identified “true” categories
or not had little effect on their predictions. The ability to still
predict weli given a faulty categorization can be explained if
participants were monitoring within-category correlations.

Experiments 2 and 3 showed that participants were sensitive
to different correlations within categories. It also showed that
they were biased in their expectations about the nature of that
correlation. In Experiment 2 these biases came from prior
sense of what the “natural correlation” was, but in Experiment
3 participants behaved as if they expected the within-category
petal correlation to be the same as the between-category sepal
correlation. However, participants were clearly sensitive to the
actual within-category correlation in addition to these biases.
The sensitivity to different within-category correlations cannot

be predicted by category-based models without representation
of correlations.

Each experiment found effects of prior bias that were not
compatible with published versions of exemplar models. How-
ever, the effect in Experiment 1 could be accommodated by
adding a prior bias about means, and the effects of Experi-
ments 2 and 3 could be accommodated by adding a prior bias
about a sign of an overall correlation. However, it is not so easy
to amend exemplar models to deal with the abilities of
participants in Experiment 3 to extrapolate category-specific
correlations to unexperienced regions of the dimensional
space. The most striking disconfirmation of the exemplar
model could have come from the part-range condition of
Experiment 3 had participants generated values outside of the
range they experienced. Although some participants do, this is
not true of the average data in Figure 14a. In the data plotted
for the cue condition in Figure 14a, participants only gener-
ated values of about (.40 for the highest quintile. However,
Figure 14c shows that the exemplar model has great difficulty
in accounting even for this high a value Because these stimuli
are so unlike any that the participant has seen, the exemplar
model falls back to predicting the overall experienced mean of
0.25. In contrast, the rational model has no difficulty predicting
values in the range of 0.40, because its predictions are based on
a weighting of the observed strong correlation and a prior weak
carrelation.

Although we would not want to make the impossible claim
that these data disprove any class of theory, we do think we
have made the case that they are challenging for certain
versions of various classes of theory. They indicate that when
participants classify, they are acquiring implicitly a powerful
basis for prediction and that this prediction capacity seems
sensitive to both the categorical structure of the stimuli and to
the within-category correlations.
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Appendix

Terms Used in Describing the Results of Experiment 3

Defining dimensions.  The two sepal dimensions of size and shading
that defined the two categories. A specific category would only have
high or low values on these dimensions.

Nondefining dimensions. The two petal dimensions of size and
shading Each category had alt possible values on these dimensions.
However, the two dimensions had different signs of correlation in the
two categories.

Target dimension  The dimension being reprodueed.

Cue dimension.  The dimension correlated with the target dimen-
sipn-—the other petal dimension if the target dimension were a petal
dimension and the other sepal dimension if the target dimension were
a sepal dimension.

Congruent correlation. When the correlation displayed within a
category for the nondefining petal dimension is the same as the
correlation displayed between categories for the defining sepal dimen-
sion.

Incongruent corvelation.  When the correlation displayed within 2
category for the nondefining petal dimension is the opposite of the
correlation displayed between categories for the defining sepal dimen-
sions.

Cintile.  Aggregation of the data by fifth of the cue dimension.

Full-range condition.  Participants experience the full range of the
nondefining petal dimensions in both categories.

Part-range condition  Participants only experience half the range of
the nondefining petal dimensions in both categories
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