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Abstract 

Research has shown the importance of strategies in guiding 
problem solving behavior. The experiment and model 
presented here provide further specification of how more 
optimal strategies come to be adopted with experience. 
Isomorphs of the Tower of Hanoi were used to allow 
participants to develop a degree of expertise with a novel task. 
In the solutions, evidence for at least two strategies is 
apparent. The results suggest that when strategies are not 
successful in achieving the goal, other strategies may emerge 
and eventually come to dominate performance in a task. The 
ACT-R model of this task captures participant performance 
by using the same strategies to solve the problems and by 
gradually switching to more effective ones as simple 
strategies fail in solving the problems. 

Introduction 
Strategies are ubiquitous in problem solving. Even in novel 
tasks, participants bring general strategies to bare while 
searching for the correct solution. As experience is gained 
with a problem, these strategies often are abandoned in 
favor of strategies that are more particular to the task (Anzai 
& Simon, 1979). As the new strategies are discovered and 
practiced, solving problems within the task becomes easier 
and solutions become more efficient. Eventually, a strategy 
or set of strategies may be developed that can produce a 
correct solution to any problem for a particular task.  

 
Strategic Influences on Problem Solving 
Research on strategies in problem solving has taken two 
general forms. First, some researchers have focussed on the 
impact of particular strategies on solution times and 
accuracy (e.g. Altman and Trafton, 1999; Anderson, 
Kushmerick, and Lebiere, 1993). These researchers 
accurately model the particulars of strategy execution in 
participants. They do not, however, track the shifts in 
strategy use that typically occur as experience is gained with 
a particular task. Others have looked at the use of different 
strategies as individuals learn to solve problems (Lovett and 
Schunn, 1999; Reder & Schunn, 1999; Siegler, 1987). These 
researchers look at how multiple strategies for a task may 
coexist. The experiment presented here looks at the 
evolution of strategy use in solving the Tower of Hanoi 
problem. In addition, an ACT-R model of the task captures 
overall participant performance while closely matching the 
strategies they use and the transitions among them. 

The Tower of Hanoi has served as a useful task in 
problem solving research for a number of years (e.g. 

Anderson, et. al., 1993; Anzai and Simon, 1979). The task 
itself consists of three pegs upon which are placed any 
number of disks. Figure 1 illustrates the elements of the 
Tower of Hanoi task and the two isomorphs that we will be 
studying in our experiments. The goal is to change the disk 
arrangement from some start state into some particular goal 
state. There are three rules to guide movement through the 
problem space for the Tower of Hanoi. The first rule states 
that only one disk may be moved at a time. The second rule 
indicates that if more than one disk is on a particular peg, 
then only the smallest of these disks may be moved. The 
final rule says that a larger disk may not be moved to a peg 
where there is a smaller disk. This results in the necessity 
that the disks form a tower structure at all times, with larger 
disks always being underneath smaller disks. 
 

 

 
Figure 1: Mapping of the elements of the isomorphs used in 

this study to the standard Tower of Hanoi. 



Research on the Tower of Hanoi indicates the importance 
of some variant of a disk subgoaling strategy (Anzai & 
Simon, 1979). In this strategy, subgoals are created to deal 
with the largest disk out of place. When the largest disk is 
placed into its goal state, focus is shifted to the next largest 
disk. This process is repeated until the smallest disk is 
placed. This strategy is quite effective, usually producing an 
optimal solution, regardless of the particular problem 
presented. While disk subgoaling may come to dominate 
participant solutions in the end, it is not usually the case that 
participants initially use this strategy. Rather, it tends to 
emerge as familiarity with the task increasese (Anzai & 
Simon, 1979). This is particularly the case with isomorphs 
(Kotovsky, Hayes, & Simon, 1985) where participants tend 
to start out with some sort of random search or simple hill-
climbing strategy and only gradually evolve a preference for 
subgoaling. Also, subgoaling is not initially as predominant 
if participants are presented with flat-to-flat problems 
(problems with start and goal states where one disk is on 
each peg) rather than with classic tower-to-tower problems. 
Our research will use isomorphs and flat-to-flat problems, 
where other strategies often predominate early. However, 
these are not as effective as subgoaling. We want to study 
and model the process by which participants come to prefer 
the disk subgoaling strategy. 
 

Experiment 
In the three-disk Tower of Hanoi, there is a particular class 
of problem states in which there is one disk on each of the 
three pegs (flat states). There are a total of six of these 
states, and for each there are exactly two other flat states 
that are 5 moves away (minimum number of moves). Based 
on the disk subgoaling strategy, getting to one of these other 
flat states involves deeper subgoaling (hard) than getting to 
the other (easy). The breakdown of the subgoal structure of 
these problem types is illustrated in Figure 2. It shows that 
two subgoals need to be formed in the hard problems before 
making the first move, while a single subgoal is sufficient in 
the easy problems. An important feature of these two 
problem types is that they are otherwise quite similar. They 
both require 5 moves to solve, utilize the same set of start 
and goal states, and can be solved optimally using a similar 
sequence of moves. Because of these interesting 
characteristics, it is these problems that are used in the 
current study. 

Since the superficial features of a task (cover story) can 
exert a strong impact on difficulty (Kotovsky, et. al., 1985), 
two different isomorphs of the Tower of Hanoi are. This is 
to help insure that any differences found are not simply an 
artifact of the cover story, but rather involve something 
more directly related to the task's structure. The Tower of 
Hanoi isomorphs used in this study are the Monster Move 
isomorph (Kotovsky, et. al., 1985) and the Paint Stripping 
isomorph (Gunzelmann & Blessing, 2000). In terms of the 
isomorphs, the pegs in the Tower of Hanoi are synonymous 

with monsters in the Monster Move isomorph and with 
pieces of furniture in the Paint Stripping isomorph. The 
disks are represented by globes held by the monsters and by 
layers of paint on the furniture. The relationships among 
these three isomorphs are illustrated in Figure 1. The 
relationships among elements are a bit easier to describe in 
terms of the standard Tower of Hanoi, so the results will be 
discussed in terms of “disks” and “pegs”. 
 

Easy Problem         Hard Problem 
 
Goal => Solve-Problem                    Goal => Solve-Problem 

S1 => Place Large    S1 => Place-Large 
         S2 =>Move Med. 

Move Small            Move Small 
!pop!             !pop! 

 
 
 
 

!pop!         !pop! 
 
 

S2 => Place Medium 
Move Small        Move Small 
!pop!         !pop! 

 
 

!pop!     !pop! 
 
 

 
Place Small    Place Small 
!pop!     !pop! 

 
 

Figure 2. Breakdown of the easy and hard problem types 
used in this study. 

 
Since these problems all begin and end with flat states 

they tend to encourage a particular kind of problem solving 
strategy in which participants simply transform flat state 
into flat state, looking for the goal state. One flat state can 
be transformed into another flat state using a three-move 
sequence of moving one disk onto a second disk, moving 
the other disk to where the first disk had been, and then 
moving the first disk to where the third disk had been. In 
effect, this switches the location of the first and third disk. 
At best, such a flat-to-flat strategy will solve the problems 
in 6 moves (two disk switches each taking 3 moves) rather 
than the optimal 5. We were interested in seeing how this 
flat-to-flat strategy would evolve in competition with a disk 
subgoaling strategy. 
 
Method 
The participants were 24 undergraduate students from 
Carnegie Mellon University. Participants received either 
course credit (n=7) or were paid (n=17) for their 
participation in the one-hour experiment. 

The entire experiment was completed on a computer. 
Each participant was given a sequence of three tasks, with 
the first and third being the same Tower of Hanoi isomorph. 
The second task was given as a filler task. Before they 
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began solving the problems for each task, participants were 
presented with a problem statement (cover story), a set of 
three rules, and an explanation of how to use the interface. 
Participants were instructed to solve each problem for each 
task by reaching the goal state that was presented on the 
screen. If an error was made while solving any of the 
problems, a message box appeared restating the rule that 
had been violated. After each problem, a message box 
appeared indicating that they had solved it correctly. The 
same procedure was followed for each of the three tasks. 

Participants were randomly assigned to groups based 
upon, (1) The cover story for the Tower of Hanoi isomorph, 
(2) The type of problems they completed in the first set of 
problems (easy vs. hard), and (3) the type of problems for 
the second set. Each participant completed 6 problems in 
each isomorph set. Since the pattern of results was the same 
for both isomorphs, the data presented here is combined 
across them. 
 
Results and Discussion  
Evidence for the use of a strategy like disk subgoaling 
comes from problem solutions and the corresponding move 
latencies. Of all problems, 42% were solved optimally, and 
an additional 30% had solutions that incorporated an 
optimal 5-move final path. The move latencies for these 
solutions support the conclusion that participants were 
planning and executing 2-moves in sequence, similar to the 
data reported by Kotovsky, et. al. (1985). That is, move 
latencies were longer for the first and third moves than for 
the other three (7.2 versus 2.0 seconds on average), 
suggesting that more planning occurs before those moves 
are made. While this does not necessarily mean that 
participants were using the disk subgoaling strategy 
specifically, it is reasonable to conclude that they were 
using a strategy at least quite similar to it. 

The evidence also suggest that flat states were particularly 
attractive to participants as they tried to find a solution. If 
moves were made entirely at random, it would be expected 
that participants would arrive at flat states every 4.5 moves 
(6 of 27 states are flat states). However, the rate was 
actually every 3.33 moves for participants (ignoring flat-to-
flat 5-move final paths), with the minimum distance 
between flat states being 3 moves (see above). In addition, 
of the problems that were not solved using a 5-move final 
path, half had a final path that incorporated only a single 
additional move, which involved moving through an 
intermediate flat state en route to the correct solution. The 
data indicating a preference for flat states is further 
enhanced by the latency data collected. For every 
participant, move latencies were greater for flat states than 
for other states. This provides persuasive evidence that more 
planning occurred in flat states than in other states and that 
participants were implementing a flat-to-flat strategy. That 
is, participants seemed to be planning and executing 
sequences of 3 moves that transformed the problem state 
from one flat state into another. 

There are two explanations for why participants may have 
learned such a strategy. First, as stated above, both the start 
state and the goal state were flat states, immediately 
drawing participants attention to them as somehow 
important in the task. Second, in flat states, rule 2 does not 
apply (if there is more than one disk on a peg, only the 
smallest may be moved), simplifying the evaluation needed 
to plan a move. This would reduce the memory load for 
planning a move, and perhaps allow participants to look 
further ahead in the problem to plan multiple moves. As 
such, these states become a “home base” of sorts where 
participants can regroup and consider alternatives. 

It is important to recall that the participants in this study 
were not given training on strategies for solving any of the 
problems. Thus, the solution strategies were developed by 
the participants as they worked through the problems. Still, 
the hard problems took, on average, 1.1 additional moves to 
solve than the easy problems. Though this effect did not 
reach statistical significance in this experiment, it was fairly 
robust. It was constant across isomorphs and remained fairly 
stable across problem number. The fact that this difference 
did appear, and in the expected direction, lends insight into 
participants’ representations of the problems and how they 
sought to solve them. Combined with the evidence for disk-
subgoaling, these findings suggest that the added level of 
subgoaling made it more difficult for participants to 
successfully plan and execute the moves to solve the hard 
problems optimally. 

There is ample evidence for both a disk-subgoaling and a 
flat-to-flat strategy in participants’ data. In the next section 
on the model, we will provide further analysis of these 
results. Also there is evidence for a shift in these strategies. 
During the first 6 problems, subjects solved 64% of the 
problems in the 5 moves dictated by the disk subgoaling and 
24% of the problems by going through a pair of flat to flat 
transformations. For the second 6 problems these 
percentages were 83% disk-subgoaling and 14% flat-to-flat. 
 

Model 
An ACT-R model (Anderson, 1976; Anderson & Lebiere, 
1998) of participant performance was developed with the 
goal of capturing the overall performance of participants 
while simultaneously matching their strategy use. Based on 
the data presented above, the model was constructed to use 
three different strategies as it went about solving the 
problems presented. These were the disk subgoaling 
strategy, the flat-to-flat strategy, and a random strategy. The 
random strategy allows for the unfocussed meandering 
about the problem space that is particularly characteristic of 
the early stages of problem solving in a novel task 
(Kotovsky, et. al., 1985). 
 
Model Design and Mechanisms 
The ACT-R model evaluates the success of a strategy by 
noting whether or not each use of the strategy leads to a 
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solution to the problem. If the evaluation of one strategy 
becomes increasingly negative, there will be a tendency to 
switch to other, potentially more effective, strategies. Over 
time, the model will come to settle on the strategies that are 
generally more effective. To accomplish this, the model 
goes through a series of iterations of (1) choosing a strategy, 
(2) executing the strategy, (3) evaluating the result (i.e. has 
the problem been solved). The critical stage in this process 
within the model is strategy selection. At the point in the 
problem where a strategy needs to be chosen, there are three 
productions that may fire (one for each of the strategies). 
The choice of which production fires in ACT-R is governed 
by the calculation of the “expected gain” (E) for each 
production. In this process, a quantity is calculated for each 
production to represent how quickly its use is expected to 
result in satisfying the goal. The production producing the 
highest value for this quantity is selected and fires. The 
equation for expected gain (E) in ACT-R is: 
 

E = PG - C 
 
where P is the probability that both the production will 
succeed and the goal eventually will be achieved, C is the 
anticipated cost (in seconds) of achieving the goal using the 
production, and G is a global variable representing the value 
(in seconds) of achieving the goal (i.e. how much time is the 
model willing to spend to solve the problem). The value of 
G was set at 50. While this value is traditionally set at 20 in 
ACT-R, these problems take longer than that for 
participants (and the model) to solve. So, this value was 
raised to accommodate the greater amount of time needed to 
solve them. For this model, the initial values of C were 
equal for all the strategies. But, as the model performs the 
task, it adds the cost incurred in executing each strategy to 
the value of C in the strategy-choice production. In contrast, 
the P values were estimated for each production.  The 
equation for P is: 
 

P = Successes/(Successes + Failures) 
 
where “successes” and “failures” refer to the number of 
eventual successes and eventual failures that occurred when 
this production was used. That is, how often has the goal 
been achieved and how often has the goal not been achieved 
when this production has been used? The initial values for 
the “successes” and “failures” for each of the three strategy 
choice productions were parameters estimated in fitting the 
model. While all these values were set, it is really the 
relative difference in this ratio among the three productions 
that matters most in the model. In addition, the sum of 
successes and failures was made to equal 50 for all three. 
This quantity controls the stability of E by influencing how 
much a single success or failure will affect the calculation of 
P. As the model performs the task, it gains experiences and 
adds to these values. Each time a strategy is executed either 

a success (if the problem is solved during the execution of 
the strategy) or a failure (if the problem is not solved) is 
added to the calculation of P. Thus, as the model gains 
experience, the rapidity of change and the impact of any 
single attempt at using a strategy diminishes. That is, the 
model slowly begins to settle on the most successful 
strategies. The initial values and the values after learning for 
the variables (for a single run of the model in one condition 
of Experiment 1) are presented in Table 2. 
 
Table 1: Initial parameter settings for model and their values 

after learning. 
 

 Successes Failures P E 
Initial     

Disk-subgoal 25 25 .50 23.95 
Flat-toFlat 26 24 .52 24.95 
Random 28 22 .56 26.95 

12 hard trials     
Disk-subgoal 34 29 .54 22.16 
Flat-toFlat 29 31 .49 21.35 
Random 28 36 .44 20.13 

100 hard trials     
Disk-subgoal 121 37 .77 24.89 
Flat-toFlat 30 42 .42 16.62 
Random 28 46 .38 16.76 

 
The values of P are not perfectly correlated with the 

values in E is because E includes the costs incurred for 
executing each strategy (C). Although disk-subgoaling is 
more successful at solving the problems, it is more costly 
(in terms of time) because it involves more planning and 
more moves per attempt than the others. These offsetting 
influences maintain the mixture of strategies over the course 
of the experiment. With more problems, the degree of 
separation increases, leaving the disk-subgoaling strategy as 
the preferred strategy. The values for the variables after the 
model solves 100 hard problems are presented at the bottom 
of Table 2. 

The final parameter of importance is a noise parameter 
that is added to the calculation of E. A noise value is 
produced separately for each production on each cycle of 
the model. In this model, the value is randomly selected 
from a distribution with a mean of 0 and a standard 
deviation of about 1.8. The strategy-choice production 
selected to fire is the one that has the highest value of E 
after noise has been added to the calculation described 
above for each. 

A major assumption of the model is that most participants 
would begin the experiment without a clear idea of how to 
solve the problems. In the model, this is instantiated in the 
initial values of E for the three strategy-choice productions. 
In particular, the “successes” and “failures” were set such 
that the random strategy was initially preferred. This was 
followed by the flat-to-flat strategy, with the disk-
subgoaling strategy least preferred. The reason for this 
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ordering is that the disk-subgoaling strategy is the most 
sophisticated strategy in the model. Thus, the model tends to 
begin with the simplest strategy (i.e. make a move and 
evaluate the result) and moves toward more efficient, 
though more complicated ones. 
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There is one additional mechanism that is critical for the 
fit of the model to the data presented. It is largely 
responsible for the difference in difficulty found between 
the easy and hard training problems and operates similarly 
to the strategy-choice mechanism described above. At the 
point in the disk-subgoaling strategy where a second 
subgoal needs to be formed, there are two productions that 
may fire. One accurately forms the second subgoal and the 
problem is ultimately solved correctly from that point. The 
other gives up on the strategy and goes on to try a different 
approach (perhaps returning to try disk subgoaling at a later 
point). The critical parameter for this mechanism is once 
again the initial difference in the expected gain value for the 
two productions. For the sake of simplicity, the same sum of 
successes and failures (50) was used for these productions 
as for the strategy-choice productions. The estimated 
“successes” and “failures” for the production to give up 
were 40 and 10 respectively (P=.80, E=38). For the 
production that successfully pushed the second subgoal, the 
values were 38 and 12 respectively (P=.76, E=36). These 
impact the value of E for these productions similarly to the 
strategy choice productions presented in Table 2. This 
means that the model tends to give up initially. However, 
since this inevitably means that the strategy will fail to 
achieve the goal (adding a failure to the production that 
gives up), it learns rather quickly to press on, execute the 
additional level of subgoaling, and solve the problem 
successfully (adding a success to the “push-on” production). 
All of these parameters were estimated to fit the aggregate 
move data (Figures 3 and 4; averaged into quartiles). The 
more detailed data on strategy use is examined next. 

 

 
Figure 3: Model fit to moves to solve data where the first set 

consisted of hard problems. 
 

Figure 4: Model fit to moves to solve data where the first set 
of problems was easy problems. 

 
Fit to the Strategy Data (Final Paths) 
The rather good fit to the average move data (r2=.91, mean-
deviation=.798) suggests that the model is capturing human 
performance and learning in the task. However, a more 
compelling argument for the model comes from the fit of 
the model to more detailed accounts of the participants’ 
solutions. The best way to examine strategies that 
participants were using is to look at how they actually 
solved the problems they were given. From Kotovsky, et. al. 
(1985) comes the idea of a 2-stage solution process, an 
initial exploratory phase where no progress is made toward 
the goal followed by the final path, where generally a rapid 
and efficient solution is produced. The final path begins 
when the person is the same number of moves from the goal 
as he or she was at the start of the problem. For the hard and 
easy problems, this means that the final path begins the last 
time the participant is 5 moves from the goal (via the 
shortest path) before actually solving it. 

Previous research has found that the exploratory moves 
relate more closely to problem difficulty than length of the 
final path (e.g. Kotovsky, et. al., 1985). In concert with this 
finding, the difference in final path behavior between the 
easy and hard problems is not large. On the other hand, 
final path length is informative about the strategies being 
used by participants as they solve problems. In particular, 
the final path length of the problems used here can help to 
differentiate among problems solved using a disk-
subgoaling strategy, solutions using a flat-to-flat strategy, 
and solutions involving a more random sequence of moves. 
As stated above, the disk subgoaling strategy, if executed 
correctly, will give rise to perfect solutions and optimal final 
paths. On the other hand, the flat-to-flat strategy will 
produce solutions that are slightly less than optimal. For the 
5-move problems used here, a flat-to-flat solution would 
take 6 moves (2 consecutive flat-to-flat transformations). 
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To examine the fit of the model to the solutions produced 
by participants, the length of the final path was determined 
for each problem solution in both the model and the data. In 
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Table 2, the percentage of problems solved with final paths 
suggestive of each strategy is indicated by condition. The 
remaining problems involved longer final paths that did not 
follow a readily identified pattern. 
 
Table 2: Percentage (%) of problems supporting the disk 
subgoaling and flat-to-flat strategies by condition. 
 

 Data Model
Set One   

Easy   
Disk Subgoal 63 68
Flat-to-Flat 25 22

Hard  
Disk Subgoal 67 68
Flat-to-Flat 24 15

Set Two   
Hard (from Hard)   

Disk Subgoal 86 78
Flat-to-Flat  6 13

Hard (from Easy)  
Disk Subgoal 77 82
Flat-to-Flat 19 15

Easy (from Hard)   
Disk Subgoal 83 81
Flat-to-Flat 14 12

Easy (from Easy)  
Disk Subgoal 83 87
Flat-to-Flat 17 12

 
From the data presented in Table 2, it is clear that the 

model reproduces much of the strategic richness of 
participant performance. To test this assertion, a Chi-square 
test was performed on the participant versus model data. 
This statistic provides a rough indication of the similarity of 
the predicted model data to the obtained empirical data. For 
the data in Table 2, X2(11)=7.59, P>.05. This suggests that 
the model is doing a very good job of modeling the 
strategies used by participants while solving the problems. 
 

Conclusion 
The data and model presented here provide evidence that the 
failure of simple strategies to reach the goal can lead 
individuals to switch to the use of more sophisticated 
strategies for achieving that end. As strategies are 
attempted, they are evaluated in terms of their success in 
achieving the goal, but also in terms of the costs associated 
with executing them. While sophisticated strategies may 
initially fare poorly, due to a greater cost, in the end they are 
likely to emerge as the preferred strategy due to their greater 
likelihood of successfully solving the problem. 

The participants in this study were given no instruction on 
how to solve the problems they were given. Initially, they 
were unsure of how to maneuver through the problem space, 
as suggested by the many apparently random moves that 
were made. But, as they gained experience with the 
isomorphs, their solutions became increasingly organized, 
and clear evidence of the two strategies described here 

emerged. The model accurately captures this aspect of 
participant solutions, showing a gradual and noisy shift 
from completely undirected random moves to optimal 
solutions using a sophisticated strategy. This kind of 
transition in strategies is certain to appear in other tasks, as 
it has already been noted in children solving addition 
problems (Siegler, 1987). The richness of strategy use in 
participants is an important aspect of problem solving 
behavior, and one that warrants careful consideration in 
problem solving research. 
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