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Abstract

This paper presents a learning theory pertinent to dynamic decision making (DDM) called instance-
based learning theory (IBLT). IBLT proposes five learning mechanisms in the context of a
decision-making process: instance-based knowledge, recognition-based retrieval, adaptive strategies,
necessity-based choice, and feedback updates. IBLT suggests in DDM people learn with the accu-
mulation and refinement of instances, containing the decision-making situation, action, and utility of
decisions. As decision makers interact with a dynamic task, they recognize a situation according to its
similarity to past instances, adapt their judgment strategies from heuristic-based to instance-based, and
refine the accumulated knowledge according to feedback on the result of their actions. The IBLT s learn-
ing mechanisms have been implemented in an ACT-R cognitive model. Through a series of experiments,
this paper shows how the IBL.T"s learning mechanisms closely approximate the relative trend magni-
tude and performance of human data. Although the cognitive model is bounded within the context of a
dynamic task, the IBLT is a general theory of decision making applicable to other dynamic environments,
© 2003 Cognitive Science Society, Inc Al rights reserved

Keywords: Dynamic decision making; Instance-based learning; Cognitive modeling; Decision making;
Water purification plant

1. Introduction

Dynamic decision making (DDM) has been characterized by multiple, interdependent, and
real-time decisions, occurring in an environment that changes independently and as a function
of a sequence of actions (Brehmer, 1990; Edwards, 1962). Kersthold and Raaijmakers (1997)
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review laboratory swudies m DDM and summanze the main findings. Most previous research 1s
devoted to understanding why peopte perform poorly 1n dynamic tasks rather than understand-
g the process of decssion making. Fo fearn the cousal and temporal relatonskips of decisions
and outcomes, dynarmic (asks should allow decision makers lengthy practice. However, most
research does not allow extended practice. We have performed several behavioral studies to un-
derstand how decision-making skiils are developed overiume in dynasuc suuations {(Gonzalez.
subsmtted for publication). In these studies, we nave measured the decision maker s actions
agamst heunsucs overime. We have found that decision makers improve thesr performance by
foltowing heunsucs fess closely and more inconsisteatly. Expenenced decision makers show
a lower fit to heunstics and higher standard deviauon compared io thew own behavior at the
beginning of their practice. Qur mierpretation 1s that overtime decision makers ncreasingly use
ther accumsutated knowledge 1o make decisions and take advantage of thetr prior knowiedge.
Based on these results, we have proposed that the most likely learming mechanism tn DDM is
the acquisition and retneval of decision snstancas or exampies. This proposition 15 supporiea
by theones of deciston making under uncertamty (Giboa & Schmeidier, 19935, 20003 as well
as by observauions of decision makers actng on ime-constrmned real world siuanons (Klein,
Orasany, Calderwood., & Zsambok, 1993; Pew & Mavor, 1998: Zsambok & Klewmn, 1997). De-
cision makers must become profictent in DDM tasks by taking advantage of domain-specific
knowledge through practice. As decision makers observe situations and make decisions. they
beceme more proficient at determning which decisions work best under specific suuations.

In this paper, we propose a set of lesrming mechanisms applicable to dyaamic decision
environments. The mstance-based learming theory (IBLT) proposes that in DDM sitwations
peopie leam by accamalation, recognition, and refinement of instances. Instarces contam
mformation on the decision-making situation. the action, and the result of a decision, Then. we
present the IBLY implementation tnto the cognitive model, CogiBLT, i a dynamuc decision
task. Through a senes of expeniments the mechanisms proposed by IBLT are compared to
human gata, presennng an analysis of model and human data at 2 mucro fevel, and exptonng
how the moda! and presumably humans learn 1n dysanie environments. Finally, we presant a
discusston of the results and our conciusions.

2. Learning and skill acquisition in dynamic decision making

Psyehology s full of learming theories. These theones have been developed under different
views, such as, implicit and explient learming {e.g., Berry & Broadbent, 1984; Merrill, Sun. &
Pelterson, 2001), learning from examples and by doing (e.g.. Anderson et al., 1981: Simon
& Anazai, 1979; Simon & Zhu, 1988), and deducuve and inductive learning (e.g.. Media.
Wattenmaker, & Michalski, 1987}. Simon and Langley (1981} defined learming as “a process
that modifies a system as o umprove, more or less wreversibly, is subsequent parformance
of the same task or of tasks dvawn from the same poputation.” Since there are many ways 1n
which the human cogaitive system may be modified, they suggested that 1t 15 more realistic
to have theones of learmng mechamsns rather than theones of learming. Simoa and Langtey
provided a taxonomy of learming mechamsms m complex tasks including: the “Knowledge
base.” characienzed by the sccumulation of knowiedge 1n declarative form: “Recogmition,”
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presented as the ability to discrimmate among familiar classes of abjects; “Straregies.” refernng
1o adapuive production systems; ang “Evaluanon Functions]” related to the assessmeni of
different alternatives to control the continuation of search 1n problem solving. In this secton,
we focus our review on mstance-based learming theones. and present evidence of the relevance
of these theores 1o real world and complex tasks. The research imtroduced next coniribuses 0
the knowledge base mechanism as well as to other learning mechamsms towards an integrated
theory (1BLT) for decision making in dynzmc environments,

The chunking theory ongmally proposed by Chase and Simon (1973) and denved from
EPAM! suggests that learming occurs by the accumuiation of chunks in iong-term memory
and that experts mn a parncuizr doman recogmze chunks and held finks to them in short-term
memory. This theory appiied 1o chess playing, suggests that skill devetops mainly through
recognition of features and familiarity of chunks. Experts scarch very selectively, using en-
vironmental cies 1o guide thewr attention and achieving great computationai efficiency, while
novices eagage 1 more exhaustive search (Chase & Simon, 1973; Simon & Gobet, 1996).
Heurisucs or rutes of thumb allow a skilled ptayer 1o be restzicted 1o 2 small ree of possibili-
ties. Those heunstics are determined by the recognition of familiar patterns of chunks, giving
access to information stered in memory about possible good actions. More recently, this theory
has been revised (o suggest that highiy skiiled people use otner long-term memory structures
(templates) in addition to chunks 1n shon-term memery (Simon & Gobet, 1996). Experts then,
may not oniy retrneve larger chunks, but templates fitled with chunks in the slots. Simon and
Gobet {1996} use the concept of templates to explain the ability of cress masters 1o recall
the man features of many of the games they have played. Chess playing 15 a complex task.
and it ¢an be dynamece if it 15 played under ime constrains. Seen from the perspective of one
payer exogenous and independent environment are formed by the actions of the opponent.
The chunking theory contributes to the recogmizion and strategtes mechanisms within IBLT.

Hinezman {1984, 1986) proposes an instance-based recogattion model where he defings a
memory trace as a kst of task features within the record of an expenience. This theory explores
the acquisition of apstract concepts from cxamples. Knowledge accumulates i secondary
memory (SM), and traces are retnieved from SM by the communication of a prove.! This theory
was implemented iato a computational system called MINERVA 2. Learung 1in MINERVA 2
consists of copying the features of an experience into the trace structure using a probabilistic
method. Despite Hintzman's focus on sumple tasks (paired-associate tearmng of lists) the
recognition mechanism proposed in memory trace theory may be relevant to dynaruc decision
tasks. In contrast to the chunking theory, in Hintzman's theory there s no need for a separate
genernc memory structure, but retneval from SM is based on tse similanty to the probe ang
SM traces at the time of retseval.

Medin and Schaffer (1978) propose a theory of classification and context, based on stored
examples, 10 deat with ifi-structured natural environments. This model s1aies that people tearn
to ciassify objects based on the retneval of stored examptes. The theory assumes that clnssi-
fication of a stumuius 15 cetermned on the basts of its similanty o stored calegory examptes.
Nosofsky (1984} extends the coatext model to modeling choiwce and similanty. In paricutar,
he mtegrates the concept of similarity mio the literature of shmulus similanty and proposes
a mathemaucat funcion o represent the computation of sumilarity. Similanty 15 a concent
on which many nstance-based learming theones rely. Medin, Goldstone, and Genter (1993)
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review the concept of similanty and its use both theoretically Ewm empirically. They propose
that similangy vanes with expenence and with context. and m,_._.:_unc. sudgments depend on
the details of the comparison process. This 1s a construct used in many other models of cat-
ezornization and instance-based learnina (Cohen & Nosofsky, 2000. mawcmm.. Genner, & Law,
mwm..r Palmen, 1997). We believe that sunilarity plays a key role i recogmiion, strategies, and
evaliation functions iearnng mechamsms @ reat world and complex tasks. .

The Instance Theory of Automauzanon, proposed by Logan (1988), provides 2 Ba.n_mm of
skilf acquisition based on retrieval of examples from memory. A key charactensuc of this the-
oryisa transition from algorithm-based 1o stance-based performances. L.eamers move from
general algorithms to specific solutions as they gain expenence 1n a task. Hrmmm solutions E“m
mﬂu_:nn in memory and retneved when the same problems are confroated. Logan proposes
shat retneval of previous instances 18 based on a race hetween memory retrieval and algorithm
execution: whichever fimshes first. controls the response. He assumes that mnoEn switch to
memory retneval over nules because of the accumulanon of instances and the higher proda-
bility of instances wianng the race. Another important characteristic o.m.mma theary 1s that the
_umcn.nmm of encoding examples ts a conseguence of attention. The acquisition of experuse ts .umﬁ
1o the increasing reliance on memory retnneval rather than nomm,u:m:_.omu_ methods. Muttipte
teboratory studies support the notion that automatic performance relies on memory retrieval
rather thin on rule application (Lassaline & Logan, 1993; Logan. 1890, 1992; Logan & Klapp,
1991; Sehneider & Shiffrin, 1977). Logan’s theery, however, does not rely o:._:n concepr ‘om
similarity as part of memory retnievat, but rather suggests that onty instances idennical (¢ E.a
present siems can be retreved from memory. Nosofsky and Palmen (1997} aﬁn,.._m Logan's
modet 10 propose that memory retrieval is sumilanty based. Responses are determined by the
sumilanty of a case to a previous sel of responses (Paimen, 1997). Nosofsky and ,maam: pro-
pose Emmxmam_n?mummm Random Walk {EBRW), This mechanism assumes a sumifanty-based
race of exemplarss 1o be remeaved. Wcﬁu::_..,m theory and its extenstons contribute to the strategres
and the gvaluanon function learning mechantsms. )

Fields other than psychology also invesngate the use of eXperience in the mumd:om instances
or exampies to understand and plan for novel siuasions. In the decision seiences, ﬁmmm-wuwmm
Deciston Theory” (CBDT) presents & very elegant matnematical theory of decision Emwmﬂm
under sncertasty (Githon & Schmeidler, 1995, 2000). CBDT proposes that decision-making
situasions are stored in the form of exampies where peopie choose m:nnnwmmz._ acts 1 cases sum-
ilar to those they recall from past expenence. However, this theory :ﬁ‘wm::m_. Un.mz verified
nor validated with human data. In artificial intelligence (Al} a targe number 2. studies, mamiy
based upon compuiational modeling, mvesugate the process of case acquisition msmu. retrieval
1n comptex wsks. Case-Based Reasomng (CBR) proposes that skills in complex tasks are de-
veloped by the accumulation of cases contaning the mformation .%.E charactenzes the state
of the world, the solution to that problem, and the outcome {describing the st of the world
after the case occurred) (Ressbeck & Schank, 1989). CBR nnw.._o:mu.ﬁwm that a way to solve

novel problems is to zdapt previousty successful solutions to similar problems (Ram, 1993). Al
research also studies hybrid approaches o learming. For example, m.ucz.:mmom {1996) attempts
to combine rale induction and instance-based approaches generalizing rules from instances
m a gradual process of classification. Also, reinforcement learming mam._,mmmnw how compu-
tationat apents discover acuons that vield most reward by interacting with the eaviroament.
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Computanenal research of reinforcement leaming 1s now an IMpOrtant yesearch opie m Al
{Sutton & Barto, 1998). All learming research in AL from CBR to remforcement learming, pro-
vides great insight sto how human tearming mught occur i complex enviroaments, However, Al
is concerned with the computanionat accuracy and funchionat utility of the algorithms produced.
Most Al studies are not concerned with how well they represent and reproduce human iearming.

Instance-based learning theories bang together the following charactenstics: sccumulanen
of exampies 1 memery through trumna and sk repetition, development of patiern recogm-
ucn and selective alternative search, similanty-based memory retstevai, gradual withdrawat of
attennon while mereasing memory retrieval, and transition from rule-based o exempiar-based
perfarmance. These theories, however, have been tested in simple and stac tasks, some fo-
cusing more on avtomate rather than deliberate actions. Despite the Tack of real world vali-
datton of these instance-basad theones, we believe they are all refevant 1o real world complex
tasks tike DDM. In many real world situatnions. researchers have observed and suggested
wstance-based behavior. For example, in military and war decision making, it hras been sug-
gested that instance-based methods are wnportant components of leammg (Pew & Mavor,
1598}, In military conditions, cues for making decisions are uncertam ana confliceig, the re-
sults of taking different alternatives are difficult 1o tmagine and little 15 known about the current
state of the world. Frequently, military commanders subsiantiate thewr decisions on expenence,
comparing previous suuations o the present case (Pew & Mavor, 1998). In other real world
tasks, it has been suggested that complex cognitive skills are acquired by the traasition from
analytcal to 1ntitive thinking (Dreyfus, H. L., 1997, Dreyfus, H. L. & Dreyfus, S. E.. 1986).
in Nawralistic Becision Making (NDM), researchers examine what people do i real world
sitwations such as heaktheare, aviation. and fire fighting (Kle et al., 1993: Zsambok & Kiein,
1997). Tt has been observed that experts use recognition and sausficing instead of anatyncal
and oplmuzing strategies 1o make decisions.

In summary, very litife 15 known about how decision skills develop m dynamic and com-
plex tasks. We believe that instance-based leaming theories have characteristics that apply
well to DDM. Research suggests that in DDM people accumulate knowiedge  the form of
examptes, retnieve those examples by selecung among familiar categornes, and evoive from
computanonal-based strategies to instance-based retrieval. Presentad next 1§ the mitial devel-
opmen: of an IBLT compiling several learnmg mechamsms 1nto a framework for gecssion
making in dynasuc environments,

3. Instance-based learning in dynamic decision making

This section presents a theory contmning the learning mechamisms suggested by Simoen and
Langley (1981} i the context of dynamuc decision processes, It 1s called IBET because the
main knowledge element of IBLT is an instance and because decsion making i dynamc
environments involves learning,

Stmilar te a case in CBR, in IBLT an msrance 1s defined as a taplet with situation, decision,
and utility (SDU) slots, A situarion 15 described as a set of environmental cues; a decision
represents the setof actions applicable to a siuation; and wrifiry 1s the evaluation of the goodness
of & decision mn that particular situaton. To illustrate the concept of SDU. imagine yourself
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Fig. 1. The IBLT procass iliusirates the mun steps e DDM: recognition. wudgment, choice, execution. and feedbaek.
Decision making starts with recognition and search of alternanves and it 18 a contnuous. closed leammng icop.

m the following decision-making condition: Some time ago, you punted your room with oii
paint in a pastel color {Product A). Sitwanon for Product A may be described as: {Produer A,
oil, pastel}. The decision for Product A s represented by the set: (to buy/not to buy) and the
arifite 15 high, stnce you iiked the product. In your memory there 1s one SDU deseribed as:
SDU: ({Product A, oil, pastet}, bought, liked it} Today vou are 1n a supermarket looking for
patne for your room agmn. Store closes v 3 min and the choces before you are numerous.
[BLT predicts that given this stored SDU, 1t 15 likely you will decide to buy Product A agan
{or something similar) since you liked it, and a good evatuanon of other products would net
be possible at this hme.

IBLT is not only avout accumulanon of instances (SDUs). but it s a compilation of learming
mechamsms as proposed by Simon and Langley (1981). The IBLT mechanisms are:

¢ Instance-based knowiedge. The accumulanion of knowledge 1n the form of instances
contatning the SDU.

» Recognition-based retneval. Memory retneval of SDUs according to the similanity be-
tween the siuation being evaluated and instances stored in memory.

» Adaptive strategles. Adapiation from heuristic-based to instance-based decisions accord-

Ing ﬂ.o the amount of interactive practice 1n the dynam:c {ask.

Necessity. Method to control the continuation of alternanive search.

Feedback updaies. Method to update the utility of SDUs and maintam the causal astribution

of resulis to acnons.

- @

These mechantsms ocour 13 the consext of a decision-making process as cutlined in Fig. 1.

The mam steps 1 the decision-making process proposed by IBLT are: recogmition, judg-
ment, chowce, and feedback. Decision making starts with the search for alternatives and the
ciassification of those atternasives as npical or ervpreal. A siteation 15 typical if there are
memones of simitar situations, while alternatives are judged using either a heunsuc or the
aggregated utility vaiue from past expenences. Next, a decision pomnt comes mnto place: to
search for mere alternatives or (e execute the current best alternative. The answer to this choice
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15 getermened by the decision maker s “aspiranon level,” similar to Simon and March satisfic-
mig straegy (Simon, 1957; Simon & March, 1958). More atternatives are evatuated while the
deciston maker ts “unsatisfied” with the current best atternative. In DDM, a major determinme
factor of "satisfaction” is the tme remaiming to make a deciston. If there is no ume left, the
deciston maker wili execute the current best alternotive. After the execstion of an sction, the
environment and the memory of decisions change. $DUs are accumulated as more alternanves
and more decision situations are confronted. Al some point, feedback 1s provided, indicating
the results from previous decisions. At that moment, SOUs are modified. and the new utility
of the SDUs provides a beuter representauon of the “goodness” of an action, Below are the
expianations of each of these steps in detail.

3.1, Recogmirion

Decision makers begin by searching for altematives 1n the environment. In DDM. decs-
ston aiternatives are not explicitly given and are not obvious. IBLT proposes that recognition
abiiities devetop overtime from a heunstic-based solunion to a direct remeval of a sofution
inggered by the current suuatien. Inexpernienced decision makers perform an uncrganized and
aimost random search of aiternatives, but overtime they recogmze a situation and retreve the
associated solution. Experimental datz from chess studies shows that experts search very se-
iectively using recogmition cues 10 geide thewr attention and achieving greater computanonal
efficieacy. Novices, however, must engage 1n a more thorough search 10 determne the prin-
ciples that are applicable to the problem siuation (Chase & Simon, 1973; de Groot. 1978:
Simon & Ciobet, 1996). Similar paterns of novice and expent behaviors have been observed
m ether “naturalistic™ reat world swuanons (Chase & Simon, 1973; Klewm, 1998; Klemn et al.,
1993). Other instance-based learning theones suggest expert/novice differences are due 1o the
gracual increase of reliance on memory and decrease oa attention (Carr, MeCauley, Sperber.
& Parmalee. 1982; Mazcet, 1983).

The development of decrsion effectiveness in DDM involves pradual focus of attention while
increasing memory size. Overnme, decssion makers learn to focus on task-reievant factors while
fearning 10 1gnore uelevant factors. This proposal is supported by both, the chunking/template
theones (Chase & Simon, 1973; Simon & Gobet, 1896} and the mfonnanon-reduction jy-
pothiesis by Haider and Frensch (1996). The informanon-reduction hypothesss staies that with
practice, people pecome selective 1 their use of information. This selectivity has direct ef-
fects on the speed and guality of task performance. Unfortunately, this hypothests has been
only pastially tested with two eye-tracking expeniments 1 a stanc task (Haider & Frensch,
1996). IBLT aiso proposes that this selectivity and focus of attent:on 1s based on the similar
iy between previous SDU instances and the cument environment. As discussed before, this
similarty-based retrieval mechanssm 1s very common n instance-based learmng theones, In
the field of decision seiences, Gilboa and Sehmeidler {1997) also extended their onginal CBDT
to ke mto account evaluaiion of acts depending on past effectiveness of sunilar ncis.

In IBLY similanity 15 a function of the refationship between situations determined by task
attributes. [BLT suggesss that decision makers recogmze a situanion as typical when previous
similar sttuations closely match the cues of the current situation. Important cues from the
environment stand out 11t the recogmition process because they resemble cues m previous
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instances. This guides autenuen and produces seiective behavior. Recogmition 15 based on
attennion, guided by previous knowledge and determined by mstance similanty. Similanty may
melude both objecuve and subjective factors. It 1s ealculated from the companson of a current
siuanon (o the past experience based on either objective faciors, subjecuve factors or both.
A suuation may be considered atypical when no similar situations can be retneved from
memary, for exampie, when novices start to learn a task. In atypical situations decision makers
do not know what cues of the task are important, therefore, predefined goals, non-contextual
knowledge, and heuristics may guide attention focus. Decision makers confronted with atypical
situations take longer to complese the recognition process because they have to pay attention
to different parts of the environment with no coniext-pased guidance. Recognition of typicat
situanons s faster because previous knowledge s used to perceive the important cues and te
ignore urelevant factors. Finally, with practice, and after seemng similar situations, decision
makers retrieve previous knowledge of situations simidar to the current one and abstract the
commen features from the past to direct the attention to the wnporant cues 1k the present.

3.2, Judgment

Afrer recogmzing a situanon as typical or atypicat. decision makers evaluate the accuracy of
apossible action 1 a pariicular situation (e.g., determine utility}. IBLT proposes two procedures
for judgment: for atypieal siteations decision makers use heurnsstics while for typical siuations
they use previous knowledge (accumutated SDU instances). IBLT also proposes that decision
makers adapt their strategies from heunstic-based judgments to instance-based judgments,

in arypical situanons. decision makers use heuristics to evaiuale a decision’s potental suc-
cess. Judgments may be based on the given instructions, the geal, environmental cues, or
even randam heunstics. In complex tasks such as DDM, people use heunstics that are very
information setective (Gigerenzer & Todd, 1999; Payae, Betman, & Johason, 1993} Also,
by praciceng the sk, decision makers rake advaniage of their expenence and learn from the
outcomes of previces decisions (Logan, 1992; Nosofsky & Patmen. 1997}, Most directly in
DDM, decision makers decide when to intervene according to the changing siuation self,
The ume heunstic recornmends making a deciston according to the tme left. This heunistic 1s
basteally the earliest ime rule s operations management and can be applicable to any dynamic
stuaton. In DDM, decision makers should learn to adjust the moment of intervention to the
ume lefz (Kersthold & Raaijmakers, 1997).

In typical suuanions, IBLT proposes that decision makers determine the wiility of an achion
by combinirg the utility from sunilar wmstances generated in the past. Remeval of memory
gnowledge according to the probe similarty 15 well supported by :astance-based tearming
theones. Likewise m CBR, a common retneval aigorithm, the “aearest neighbor™ approach
relneves the past istance thar 15 most similar o the current situation {Watson, 1993). In the
field of decision sciences, Gilboa and Schmeidler (1993, 1997) argue that the evaluation of an
act 15 a weighted sum of the similanity between problems, current problems and those stored
i memery, and acts, both current and past. They indicate that retneval utility evaluation 15
dertved from all relevant cases to the decision at hand ratker than from the nearest neighbor
alone. In IBLT, we rely on the concept of “activation” associated with each SDU to determine
which of the similar mstances will be combined to calcutate the vility of the current simation.
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Activauon. defined by Anderson and Lebiere (1998}, 1s the reflection of the mstance usefulness
m the past and the relevance of that instance to the current context. IBLT proposes that all active
mstances similar to the current sttuation are retrieved from memory. Next, the utility values
from all those past similar suuations are combined into a new evaluaton of the current sitnation.
New SDU instances are produced and the utility 15 the accumutation of previous knowledge.

3.3. Choice

After the judgment process, decision makers determine the vest course of acuen. Rano-
nai theories of chosce assume that all atternatives relevant to the choice are known, precise,
consistent, and stabie while the best of all alternatives 15 determined by the decision maker
{March, 1994). This 15 clearly not how DDM works. IBLT suggests an miermediate strategy
between the oprimizing and the sansficing strategies of choice. IBLT proposes that aiteraatives
are evaluated one by one and after each evaluation a choice 15 made between searching for
more aHernatives and execubing the current best aiternative. Similar to the satisficing strategy
proposed by Simon, IBLT suggests that the evaluation of more alternauves 5 determined by
the decision maker's necessity fevel, In Simon’s sansficing stratey, the alternanve executed
15 the first option that works {based on an aspiration level), regardiess of wme or events m
the environment. In IBLT, the necessity tevel indicates the need to make a decision, measured
by subjective or objective factors such as preferences, or ume left. In DDM, a major deter-
muning factor of “sansfaction” is the me l2ft to make a decision and the interuptions due to
exogenous events. As suggested from expenmentat studies of DDM, peopie fail to determine
and adjust the moment of interventon 1 a dynamic task because accurate Bming requires
extensive knowledge about the causal and temporal retations between situations and outcomas
(Kersthold & Raaijmakers, 1997), IBLT suggests the perception of ime ieft {or sense of ur-
gency) evolves overtime. In a dyname environment, unexpenenced decision makers might see
every siualion as urgent, reactng too early. With practice in the task, decision makers shouid
leamn the temporal retationship of events and outputs and react more closely to the moment
that would produce best performance,

The necessity level determines the aumber of alternatives evaluated before a decision s
execated. If there 15 no time left. the decision maker will execute the current best alternative.
IBLT predicts thai, if there 15 enougn time, decision makers will foliow an exhaustive evaiuation
of alternatives, selecting n fact the best one of al (opumzmg strategy). Dunng the evaluation
process decision makers keep m mund the SDU with the best wility vatue, so that they may
Interrupt the evaluation process ar any moient and execule the current best option.

The recognition—judgment cycles continue until an alternative s seiected. The execunon pro-
¢ess simpty 1ndicates the actual impiementation of the decision mvolved in the SDU selected.
Execuning a deciston modifies the environment and modifies the SDU's stored in memory 1o
indicate the alternative selected.

3.4, Feedback

To wmprove performance, the decision maker must be able o detect the results from the
decisions made and feedback provides this knowledge. However, 1n DDM feedback 1s usually




600 C. Gonzales of af. /Cognitive Science 27 (2003) 381-635

delayed and it 35 hard 10 make a connecton with the actions that produced such feedback.
Interesungty. instance-based leaning models provide fitle if any mformation on how feedback
might be accounted for 1n learmng.

IBLT suggests that decision makers use feedback 10 refine the SDU instances. When an SDU
i created, the utility value 15 a predicuon of the result of an action m the current conditions,
but the output from the action 1s unknown until feedback 15 received. With knowledge of re-
sulls, decision makers may update the utility value on the enginal SDUs, We believe decision
makers re-evaluate how accurate decisions are, according to feedback from the environment,
This upgrading process makes good SDUJ instances more likety 10 pe retneved in the futare.
On the other hand, poor outeomes should result 1n the decision maker downgrading the utility
in the SDU insiances making poor Instances less likely to be retrieved in the future. These
new utifity values will be used in future recognition processes, and overtime the process distin-
gwishes good from bad instances producing improved decisions. In IBLT, expertise 1s achigved
by the acquisition and refinement of SDU instances. Overtime, 1 similar contexts, greater
aumber of new SDU instances would be generated by the accemulation and recombination
of previous SDU instances. Since instances are svaluated according to previous knowiedge
and refined based on task feedback, future nstances are expected 10 have higher probability of
success.

2.5 Sununary

IBLT is atheory inctuding five learming mechamsms: instance-based knowiedge, recognition-
based retnieval, adapuve strategies. necessity, and feedback updates. These mechamsms ap-
ply in a decision-making process composed of the sleps: recogattion, judgment, chowce, and
feedback. We expect that IBLT will account for the devetopment of decision-making skills in
GYIIMIC eavironments.

First, IBLT provides a reafistc account of the use of expenence 1n dynamic, uncertam envi-
ronments. Knoswiedge i the form of instances accemulates with practice and instances capture
the decision made and the aecuracy of the outcome. Second, IBLT Proposes arecognition-based
use of thar instance-based knowledge. The use of previous knrowledge depends on the sims-
fanity of the current situation to past situations. The similarity of twe situations increases with
practice on the task, producing the focus of altention to relevans task cues. The third proposat is
the adaptive selecuion of strategies. Heuristics are used if the situation 1s not similar encugh to
past experzences, With practice in the same task context, semilanty will increase, reducing the
use of heunstics and increasing the use of instances overume. The fourth proposal is a necessiy
mechamsm to make a choice between searching for more altarnatives and executing the current
best apuion. This 1s a combination of opumizing and satisficing steategies i decision making.
Finally, the fifth praposal is the knowtedge of resuits to refine and upgrade the SDU's utility
slot. resulting i an improved use of expenence.

A ey charactensuc of IBLT s sts implementation within the principles of cognition n the
ACT-R cognitive architecture (Anderson & Lebiere, 1998). IBLT's mechanisms supported
by this cogmitive architecture are umque efforts capwunng the instance-based process of
learning m & dynamuc, real-time dectsion-making environment. The implementation of IBLT
mto ACT-R is presented next.
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4. CogIBLT: an ACT-R implementation of IBLT

CogIBLT is a cogmtive madei of leaming developed from IBLY and framed by the ACT-R
4.0 principles (Anderson, 1993; Anderson & Lebiere, 1998). CogIBLT interacts m reai-time
with a simulation of a dynamic task. ACT-R is a cognitive moceling architecture built on prin-
aiples of cognrtion and supported by a large namber of emperical sudies 1n memory, fearning
and problem solving. In ACT-R it1s possible to represent knowiedge in two forms: (1) procedsu.
ral, [f-Then rules or productions, and {2} dectaratve, chunks. It 15 also possible to retrieve this
knowtedge according 1o a set of performance/learmng methods. ACT-R isa hybrid architecture
with rules as wel] as chunk-based learnmg mechanisms. Chunks encode small, independent
patterns of information as sets of slots with assaciated vatues. CogIBLT makes use of both
forms of knowledge representations, but learming relies on chunks. According to ACT-R there
are two sources of chunks: encoding from the environment and the action of a production rule.
ACT-R may create a chunk by attending to an object or by selving @ goal. This is similar to the
proposal from: Logan's theory, storing m an mstance the results of computatcns (Logan, 1988).
ACT-R, however, avoids creating duplicate chunks, mstead it merges chunlks and combines
their strength. Declarative knowledge 15 retneved based on the level of activation associated
with a chunik ?

4.4 Dynanne decision-making rask

CogiBLT interacts with a simulabion of a complex DDM task called the Water Purification
Plant (WPP). WPP is an 1somorph of 2 real world-scheduling task w1 an crzanzation with
large-scale logistical aperations, the United States Post Office (Lerch, Ballou, & Harter, 1997),
but WPP is explamable in less than 1 h and a trial can he completed within few minutes (the
expenimenter controls the pace of the simulation). A screen shot of the WPP sumsiation is
provided in Fig. 22

WPP simutates a water distribunon system. The system: is made up of chains of tanks and
each chain is assigned a particular deadiine by which a participant must distribute all the water
aut of the chain. The disuibution of water occurs by parucipant opeming or closing pumps in
e chuin. The simulation 1s a dynamuc ervironment. where cuantities of water in any of tanks
iy meredse {water mput from outside of the system} without the participant’s knowledge.
WPP runs according 1o a scenano that describes the patterns of water arnval 1o the system.
The scenzno defines the ime, the amount of waer, and the destnation tank, WPP is a resource
allocation task, where the maxsmum number of pumps opened is five, The decisions that a
participant makes are mterconnected: 0pening a pump n one chaln may prevent one to open
the water iow 1 ancther cham. The masn performance indicator n this task 1s the tosal nember
of gallons of water mussed. These are the units of water not pumped before their deadlines.
After each deadline, the simulation shows the total number of gailons of water missed (see top
left corner of Fig. 2). The sussed water scare 1s updated after each deadline contimung until the
end of the simutation (10:00 p.m.), when the total number of gallons missed is shown on the
screen. The pest performance 1n the WPP is 0, indicating alt of the water was delivered on time.
An optimal solunion 1s defined by a senes of activations and deactvations of pumps on the basis
of the percerved opportunities. In WPP there mighr be many possible decision sequences for
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Fie. 2, The tayout of the WPP sumulanen, The simulation ume1s 6:48 p.rm., the operater has nussed 30 gal of water,

five pumps. the maxsmum number of pumps. are actvated, Water comes trom outside of the system znd moves
contnuously on the activated pumps from left to nght wowards the deadiines. The operator decides when jo activate
and deactivate purnps white the simulation me 1$ rUNIRE.

activating and deactivanng pumps and achieving the optimal vmmm.cwﬂunnn. d._m sotution to this
task 1s not umque. We have tested the resuits of consistent applicauon of different heuristics
in WPP The results show the me heunistic works better than other more complex heunsucs.
The reason for the success of the time heunsnc is 1n 1ts fit 1o the siructure of the dynasmue fask.
In DDM, decision makers need {o relate enviconmental changes to the Lming of Hwnﬂ owil
decisions (Kersthold & Raaijmakers, 1997). We use the ume heunstic i CogIBLT to calculate
the utility of SDUs 1n atypical suuations.

4.2 Structure of 5DUs and the decision process in CogiBLT

We have implemented SDU instances into ACT-R chuak structures. In WPP, a siuaton 18
defined by the attributes of a tank, for example, ume of evaluation, amount of water, cham

value, and deadhine. Decisions include activation and deactvation of the pumps asseciated :

C. Gonzales er al. /Cognitive Science 27 (2063 5914635 603

ime frank [Waternmt _ |Chain fotkigy Decision |
{38 e | 59 4 182 ¢ Activae

Fig. 3. An example of a 3D for the WPP task. The sstusnon 1s defined by: tme, wank, water amount, and chamn.
The decision 15 te acivate, amd the vility 15 162 mun.

with a tank. A utility measure. called ume heunstsc, 1s the ime to reach a deadline. Fig. 3
represents the structore of SDU instances in CogiBLT.

Fig. 4 shows a flowchart of the decision process and the production rules voived
CogIBLT.?

Productions are organized m the comtext of the proposed decisiwon-making process m a
goal-centered structure. Verbal protocols.” extensive observations of multiple ptayers of WPP,
as wel as the authors’ extensive pracuce :n the task, were the main sources of knowtedge to
shape the productions and thewr orgamzation i CogiBLT. Productions are orzamzed according
to the type of pursued goal. Fhere are seven producnons tn CogiBET. This is a remarkably
simple learming model for such compiex task as WPP The complexity of the modei relies on
the accumulated knowledge 1n the form of SDUs and thewr mampuiauon by both ACT-R and
CogIBLT. The producuons showa in Fig. 4 are presented nexi.

Initiaily, the goat is to meet the first deadline at 5:00 p.m. Prosection ¢ compares the cur-
rent deadline to the environment and updates SDU's utility if 2 deadline has been reacheg,
Depending on the environmental conditions, the model may decide 10 setect a tank o eval-
vate for acuvation {Production 3) or deacuvauoen (Production 2). The recognmion pracess
starts with the selecuon of tanks. We have not yet implemented the dynasucs of attennon
proposed in IBLT, but we have defined two mechanisms for altemanve selection. First, a ran-
dom furct:on selects tanks out of the possible atternatives s random order. Decision makers
are expected to develop focused artenuon on task-retevant factors. In our verbal protocols,
mexpenenced users reporied randeom sirategies, while more expenenced users reported better
understanding of deadline, remuning time, amount of water, and chain. A second funcuon
selects tanks from the most to the least urgent according to the tme remauning to reach a
deadline.

Production 6 deternunes if the situaton 1s typicai by comparmg the attributes of the se-
tected tank to previous similar siuations using ACT-R's part:al matching mechanism. Partial
Matching (PM) allows the retrieval of a chunk even when 1 only partially matches a praduction
condition.” PM is a useful mechanism when the slots’ values of chunks change overtime, siace
1t 15 unlikely to find an exact march to a particular situation. Production & uses PM 1o compare
ume, volume of water, and chan values of a curmreat situation to previous SDUs. 1f there 15
at least one previous astance similar enough to the current environmental situation, then the
siuation 15 classified as typical, otherwise the siuation s atypical. If the situagtoa 1s typical,
Production 6 determnes the utility from the SDU instances stored in memory. To model the
way utilities are combined from past decisions we use ACT-R’s Blending mechanism.? Blend-
ng 15 a vansaton of PM that allows the retneval of an aggregate result set of memory chunks.
Blending 15 described as the vaiue that mumimizes the sum of the sguared similarities with the
vaiues proposed by each chuak, weighted by their probabilities of retrievat. For WPE, Bleading
retneves SDUs produced at approximately the same time with about the same armount of water
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ing he wlilily (o @ newW decision. The current suvanon @ the boitom SDU compares to three SDUs
s e ; 3
Fig. u.wmw:u.:.._w# J:.ﬁ..o: above threshold. The ity of the current stuation cajeuiated by Blending using
troms the past with ach:

the wiility of the previous three sDuUs.

and on 1 tank with the same chan vatue as current situation. .Em. 5 snows an example of a
atwanon evaluared in Trial 10 at 2:08 p.m. (mmate 128) 1 Tank 9. N .
This situation ts sumilar to (aree previous siluations 5.28 in memory. The utility value
for the current siuation 18 ROt the vatue »..9. one @w.:_n:_E. msiasnce _m.mﬁ past, bul a new
agareanied utility vaioe calcutated by Blending. Blending pools the strengths nmm_.wnE.En chunks
mmm_,.m__oa that are similar 10 _‘zn‘ cufrent wsc.ummm. tharefore nmm new SDUJ ﬁmﬁnnm :u”m a
wility value representing the knowiedze of M:::E. wnstances from Ew past. Bieading Is stmilar
o Emnwuz_mam i1 oiher SYstems that can nQ.._._cSn advice from multipie instances (Hintzman,
1984, 1936) but w features an pmportant m_mmwnnmn, The mwmcmmnm of each Emm.uﬂmw mz the
consensus decision 1s weighted by its aelivation, which _mmm_m_.m a factor of not onty its similanty
to the current situation but aiso of its recency (as reflected in memory decay), frequency of
rehearsal, associapve primeng and siochasnc noise. Thus. Blendiag aiso mcorporates many
cognitive phenomena tn a basic anornm:ma 1o combine instances. The similanty and the number
aqfﬁm,.._o;m._mu.mu:nnm used 1 Blending may vary from person to person and overume. in
CogIBLT, we have implemented 2 mechanisi 1o maniputate the percepuon of mmm__unq called
i highest similanty-rate of 1, inplies that m_m.m...::m retrieves B.m::.n& SDU
nslances 1o the n:qmum suuation. In general, with higher Em.w,a:e.i-a_w tess SDU instances
are retrieved and with tower the w_Bzqu-ﬁmm more SDU instances are resneved., ﬁwn.nnmma.
2 high similanty-rate relates 10 1OW .w.mow..&%@ of cenfronting typical situations, while iow
i . tuh probability,
w_Jw_wﬂﬁwwﬂmﬂ“nw.ﬂww. Mnouanmcu 7 cafcuiates the utility of 2 tank using wgmm"_nm. Our
cognitive model allows the tnsertion of any heunstc in the Judgment process, But, as previousty
awmcnawmnm_. the tme heunsug 1§ expacted 10 be successful and applicable 1o oSm.w wUE tasKs.
The tme heunsuc it WPP recommends decision makers to activate pumps with the closest
deadline. The utility of a decision 1 & particuiay SIHALon 15 numn:_mﬁm by subtracting the
deadtine nme of the tank from the current m.mE:_E_o.a ame. For mxm...:wu_a, if the decision maker
intends 1o activate a pump for the tank with the 5:00 p.m. deadline and the curfent time 1s
4:00 p.m., the atility for the curvent situation 15 60 min. For each judgment a new SDU instance
) . ulates m the form of SDUs, the situations confronted will be
causing @ graduat transition from heunstics 1o swmilanty-based

stratlanty-rate, The

15 generated. As knowledge accum
more similar o past SIELICAS,
retrseval,
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The selection of tanks and their evaluaton coniinues usless the necessity level indicates
to stop the aiternative search, A choice 15 made (O ICUvate {Producnion 4) or te deacti-
vate (Producuon 5) a pump. The necessity level i WPP 15 currently mmplemented as the
ume teft to a deadline. This 1s an adjustable threshold beyond which the evaluaner of at-
termnatives needs 1o swop and a decision needs to be made. This threshold may vary from
person to person and overume. For example, we have observed that some decision mak-
ers 11 WPP reduce the number of decisions they make overtime. Apparently, some peaple
learn to watt until the right moment (o react to a siuanon. Hurman data presented in the re-
sults section confirms this observation. The resuit of the choice step is the best akernative
i the evaluanon. The execution of acuens changes the WPP environment by activahing or
deactivating 2 pump and the evalsauon of the deadline ang other aiternatives coniues 1t a
cycle.

Production § refines the utlity value of SDUs according to the performance feedback pro-
vided in WPP? Feedback penalization makes those chunks that produced bad performance
less likety to be chosen 1n the future by incrementiag the wility vaiue 11 proporion to the
number of gallons missed. All SBU instances produced between the previous aad the current
deadline are penalized by a percentage of the galtons missed in time umts. ‘The percentags 10
which the feedback updates the utility of chunks 5 called the learmng-rate. This parameter
allows vanability i the percepuion of feedback. A learnmg-rate of 0 indicates that feedback
1s not used to re-evalunie the decisions made. A learnmg-rate of 1.0 indicates that the utility
of each SDU will be modified by 100% of tire value of the missed buckets 1 ume uaus. For
example, regard the SDU shown in Fig. 3. This SDU indicates that at mimute 138 or 2:30p.m.,
Tank 0 was selectag for acuvauon resulting m a wiility value of 162.'% Assunung that at the
first deadline of 5:00 p.m.. 2 gal of water were mussed, the feedback process will update the
utility value to 166: 100% or 2 gal x 2 mun pumping-raie. This process of SDU refinement
together with the chunk activanion makes “bad” chunks fess itkely 10 be selected in future
aetiens.

4.3, Swmmary

CogIBLT 15 a cogaitive modei based on IBLT. smplemented m ACT-R 4.0, design-
ed to mierct with WPP i real-ume. CoglBLT uses several parameters from the
ACT-R architecture and proposes some other Mechanisms to capture human behavior m
dynanne environments, Table i summarizes the CogIBLT parameters and thew use wmn the
modet,

There are several instance-based models devetoped in ACT-R nciuding tasks such as the
Sugar Factory, Backgammon, Air-Traffic Controt, and estimation of large arthmenc facts
(Lebiere, 1599; Lebiere, Anderson. & Botnell, 2002; Lebiere, Wallach. & Niels, 1998;
Sanner, Anderson. Lebiere, & Lovett, 2000). CogiBLT is, nowever, the only nstance-based
tearmng model that anes several learming mechanisms applied o DDM in addition to the
mechanisms provided by ACT-R. CogiBLT 1s based on a theory of dectsion making n
dynamuc environments that perhaps may extend the current functionality of ACT-R. The
next section reports some simulation expenmenis designed to lest the propositiens from
IBLT.

. Gonzales er ef. / Cognitive Science 37 (2003} 591-035 607
Table §
CogiBLT mechanisms and parameters
IBLT step Mechanismv/parameter Effect
Recognition  CogiBLT Retnevai of
mecharisms atlernatives
Randem Selects alternatives mandomly (tanks in WPP)
rOGEss
Sorted Retneves alternatives based or the prionty
progass determuned by a heunsue (in WPP tank

retrieval based on ime hevaisiic)
Judgmen: CoplBLT Evaluation ot

mechamsms alemmatives
Heunstic Determmunes the utility vajue based on a
heunsue {in WPP ame heunstic)
Bleading Determunes the wizity value based an
remneval of similar suvauons from memory

CogIBLT Simzlanty-rate A pereenzage of linear sintlanty hetween two
pardmeters SIUBHONS
Hizh (1.0 Only 100% matching chunks are used
low i) Any chunk can be used, since no simifanty 15
requured
Choce CoglBLY Necessity A threshold value 1o stop the evalsation of
parameers B alternatves (in WPP is a wime limut over

which no more tanks are evaliated)

Ca Alternauves are evaluated only if the currem
best utifity valug has aot surpassed the
threshold vaiue {in WPP threshold may vary
from | to 980 nun)

off AH sliernatives are evaluated before a
decision 15 made

Feedback CoglBLT Leaming-raie A percentage in which the feedback will
paramelers influznce the utility of a SDU

High(1.8)  Feedback effects are accounted 100% over
the wLtility

fow () Feedback does not modify 1he viility of
SbUs

5. Simulation experiments

We designed four studies to demonstrate each of the thecreticad concepts proposed by IBLT.
In addition, these expeniments show how CogIBLT was mned to match human data. Cur
llentson was nol 1o do a sensiiivity analysis of ACT-R parameters and learmang mechamsms,
but to test tne IBLT proposttions. The order of the computational expenments 15 the order of
1he sieps of IBLT (Fig. 1). Next, we present the process used to cellect human daia and results,
the IBLT experiments, performance comparisons to human data, and process and individual
COMPArISuns.
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3.1. Human data collection

We recruuted 14 students from local universities to rua the WPP simulation, All parncipaats
ran the stmulatcn 18 times using a standard scenano at 1,008 gal capacity six tmes per day
duning 3 consecutive days. Each sumulation tnal lasted 8 mun. The frst day participants were
mém:ramw nstructions using the WPP simulauion at the slowest pace of 30 mun. They were given
the task zoal and instructions on how to perform the task. While rurning the ssmasiation, pantici-
pants pracuced activation and deactivation of pumps. We did not allow participaais 1o finish the
wmstructions iriad (Amshing ume 15 16:00 p.m.), but rather we stopped the stmuiabos at the &rst
deadiine, 5:00 p.m. Buring the mstructions, we made the parmcipants aware of deadiines, simu-
ianon time, and the water travel paths. Particspants were told that different amounts of water may
come from outside of the system to any of the tanks at any ume, bul they were not given 1afor-
mation on the amount of water to process or the time of water arnval. They were instructed to do
their best 1o process all the water that appeared within the system, but a0 particular sirategy was
taught.

Fig. 6 shows the participants’ average performance for each of the 18 runs of the
simulation. A within-subjects analysis of performance for our participants mwaiw. 51801~
ficant learming over the 18 triats, F(1, 17) = 6.871, p < .00l. Table 2 shows descnp-
uve staustics per ial, On average i the first two tnals these participaats performed worse
than the simgiation making random activations of pumps. Also, on average these partic-
ipants did not reach the score predicted by the time heumste {time heunstic score
15 58 gal).!!
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Fig. 6. Parucipants  average performance for 18 inals, The peddormance measure 15 the number of gallons of water
mussed. The eversl! mean 15 13035 and the average standard devianon 15 20,85
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Table 2
Human performance per inak: general stansaes
“Trial N Misrmum Maximum Mean SE 5D
| 14 12 388 208.79 21258 84.49
2 14 97 320 182,71 17.86 66.81
3 4 31 365 163.21 17.27 64.61
+ 5] 76 260 18304 16.68 6243
3 14 87 247 [51.21 i1.85 4434
& I 81 235 148.07 £3.50 5030
? 14 58 218 150.79 14.31 53.54
8 14 a7 239 HHLO7 13.02 487
9 14 83 282 13400 16.24 6078
10 5] 79 240 125.57 1163 43,51
3] 1 73 126 123,07 10.88 4872
12 E 48 ek £313.36 17.68 66,14
13 14 69 203 124.86 HIEY 42,78
14 4 42 238 108.43 ¥2.35 46.20
15 - 52 243 12047 14.01 324
H 1+ 47 243 13567 17.24 64.30
17 14 Jeits 234 181.2% 16.53 61.84
18 1) 25 10 11214 14.09 3273

3.2, Daia collection from CogtBLT

Our methedology was to start with a model that has none of the mechanisms and paramelters

proposed by IBLT, We created simulanon expenments to incorporate cre-by-oae the mech-
anisms ang parameters proposed by IBET. Our imtial state was an ACT-R model with the
productions described in Fig. 4 and the chunks encoding the nitial system state. The ACT-R
default parameters were kap: constant throughous these experimems, ' Each of the models we
present m the expenments ran |4 simulated subjects, 18 tmes per subject using a standard
seenanoe. Ezch simulavon tnal ran at a real-time rate of § min. The feeding heunistic was the
ume heunstic. Notice that human data were the baseline for companson, [t each of the ex-
penments, the averaged model’s performance was corpared to the averaged human data over
the 18 mais.' We used twe measures of goodness of fit as suggested by Schunn and Wallach
{2002). First, Pearson’s ~ was used™ to measure how well the relative trend magnitudes were
cuptured by each modet. Second. the Root Mean Sguared Standard Deviation (RMSSD)'S
measured deviations from exact locauons. With each of the expeniments, we present a table
showing step-by-step calculatons per tnat. These calculations compare humas data to mode)
datz, not moded to model.

5.3, Expermment series 1: recogitition process

Inizially, we ran a model, Model 1, to retnieve alternatives randomiy. The model atso de-
lermined the utility of SDUs based oa the time heunistic throughout the trrals and did not use
Blending. It evaluated all altematives before a decision was made tno stoppmg rule) and had
zero learning-rate which means feedback had zero effect on the modet.
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iaia. Because of the & ) !
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Fig. 7 shows %7 rure 1ne refative direction effects of human oa candy .. Fig. § shows the resalts from this model. Models | and 2 together suggest that rumans
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with an average = 14.67, we modified Mode! 2 and ran the first two mals under a random
seiection of aiternatives.

The results from this modet. Model 3, are shown 1n Fig. 9. The reiauve trend measurs
smproved. = = .46, indicatng a cioser trend to human data, S¢ill, the approximatzon 10 humar
data as measared by RMSSD 1adicates the model was far from capiuning the fuman’s exact
performance vaiues, espectally dunng the first tats of the expenment. Model 3 evatuated
alternatives based exclusively on the tme heunsne. Although Model 3 generated SDUs for
every avaluation 1t performed, evaluations were performmed by time heunsuc only rather than
based on exampies from memory. The next step 1s 1o demonstrate the effects of Blending.

5.4 Experiment series 2. Judgment

In this expenment senes, we tested the effects of Blending and sumilanty-rate. When past
examples are used to evaluate the uiility of an alternative, the similanty-rate determines the
examples used from the past according o how weli they match the corrent sttuation. The
highest similanity-rate, 1,0, retrieves past examptes onty if they maich perfectly the alternative
evaluated. Similanty-rare determines the percentage of lnear sumilarity between bwo tank
stuations. Starang with Model 3, we let CogIBLT use Production 6 (Fig. 4) te acuvate Blending.
If sumilar examples to the current siuation exist, then CogIBLT retnieves all pust sumilar
SDUs and blends them to produce the utility of the current sinzation. Otherwise, the modet
evalugtes the current iternatve using the ume heurisuc. Modet 4 ysed Blending, with highest
simifanty-rate, 1.0, Production 6 activated only if the exact same squanon happened in the
past. Again, 1n DDM i's rare o find two idenucal decision siuancns. We expected that Modet
4 would match human data i a similar way as Model 3. The resuits from Model 4 are shown
i Fig. 10,

Model 4 captured the retative trend of human cata more ciosely than Medel 3, ¥ = 64 The
addition of Biending with the similarity-rate of 1.0, made model’s performance much cioser (o
haman performance n the figst fwo tnais. Modet 4's performance was better than the human
data performance i Trals 3-8, as indicated by the RMSSD.,

Mext, CoglBLT"s behavior was tested with the Jowest similanty-rate, 0.01. This vatue adi-
cates that CogIBLT would blead SDUs from the past if they fit the current situation by at least
155. We expected that many past siuations were similar to the current alternative 1n at ieast
1% because we were using the same scenano troughout the 18 mmals in the same task,

Fig. 11 shows the resubts from this model, Model 5. The effects of Blending with sunilangy-
rate of 0.0t are considerable as Model 3 captures the trend of human data quite closely with
r* = §1. Model 5 also predicts the exact performance within the 95% confidence wnterval in
most of the triats, average RMSSD = 1.71. Blending with the lowest sumilanty-rate made the
model’s performance worse than the humaas” performance for the middle poruon of the tnals.

35.5. Experument sertes 3: choice

Models 1n all previous expenments did not make use of a stopping rufe. This means previ-
ous models evaluated all alteriatves before executing an action, uniess there was an external
event during the evaluauon process, for nstance, mcoming water. Here we explore the effects
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Fig. 11. Modei 5. Rzndom search of afternatives sn the frst swo wials, soned seasch after Trial 3. Lkility determzned
Blending with 0.01 sumilanty-rate, no agcessity valae, and no feedback mechanisms.

of the necessity level in the ciowe step. The necessity fevels are now vaned as: high = 8h,
medigm = 1h, and fow = t mun. High threshold indicates that any utility value lower than
8 15 urzent. CogIBLT will stop the judgment process and the selection of new afternatives
10 execute the most urgent zctson. Medium threshold stops the judgment process 1f the utihity




616 C. Gonzalez et af./ Cogritive Science 27 (2003) 391-635
ow threshold indicates that any util-
A high necessity tevel may ciassify
he totaf length of the

portant io re-

reent OPEONn 15 beiow 1 h. Finally. 1
p the Judgment process.
remarming time will be 1ess wan i
1t 2 dynamic envirenmant s 1
hand, we might atso expect that stoppng
se not enough altermanves are ex-
rmatives might be considered
ng o take action 1n AR urgent

value of the mosi u
iy value below L mm will st0
alf the SDUs as urgent. because the
Insuitivety. we might think that 1
sibte to a suuaton. On the other
might degrade performance pecau
For tow ngcessity levels, more aite
ded as CogiBLT may wif o 1o

sinulaton.
act as fast as pos
the Judgment process
plosed in & decison space.
but performance may be decra
siTuation.

Starting with Modet 5 data. We
kept the same necessity va

The resutts from this manipi
comparng o humans’ learning Curves.
fevel produced a light smprovement i the

. we vaned the necessity level and compaged it to human

jue throughout e 18 nals.

fation are presented in Figs. 12
The results indicate that the nc
relative trend as compared to human data. The
¢ all the three models are higher than the one for Model 5 (Model 6: Model
25, Model 6-Low r* = .50). The average RMSSD
fit to specific performance ponts (average
n average RMSSD =

14, with the respective tables
luston of the necessity

~ mensures fo
§-Hizh r* = .86, Model 6-Medium "=
indicates that high necessity levels produce the lowest
RMSSD == 2.62} compared 10 medium and low necessity jevels {mediu

143, low average RMSSD = 1.26).

5.6. Expertmeny series 4: feedback

d unactivated feedback (0 Jearming-rate parameter). The
ffect of the results, Here we tesiihe effects of feedback
Model 6-Low (the best predicior of humans
hout the 18 trials and, with the parameier
nd the previous deadiine will -

All modets used up 1o this pont ha
models learned without considermg thee
by updanag the fearmng parameter oM g 1.0in
data). The same value of 1.0 was mauntaned throug
col w 1.0, the wility of the SDUs created between the current
he increased by 1060% of the galions missed after the deadline. Fi
wModel 7 with leaming-rae 1.4

This madel shows beuer performance compare
t0 human data. The trend of the Jearning curve reduces to °

mcreases to 1.37.

4 10 other models, but decTeases the mateh

3.7, Swmmary of experohents

e conditions and the vatues of companson 1o human data.

1 with random agternative selechion,
s in bold indicate the experimen
ow how each of the models capture
icate how the each of the maodels caplumns,

Table 3 summanzes th

The base model is Model
stoppiag rule and no feedback. The eell
from the previous model. The # vatues sh
trend magnitudes of human data. RMSSD values tnd
exact vatue points of humas data, The model that best fi
Modei 6-Low {r* = .99). This model is. however, not the one tha
exampie, the MMM Average rumber of gallons musse
i Triat 18, while Mode! 7 shows a sunimunm average of 97.93

{ geves best performance. Fo

zal of water in Trint 1

ig. 15 shows the results from

— 78 and the average RMSSD

1o sumilarity judgments, 187
tal variable modified -
s the relatve::

15 the learmung trend of humans is

din Model 6-Low1s 114.86and DCCLET:
3. Each.

C. Genzalez er al. / Cogritive Science 27 (2005) 391635

280
260
240 ] M =~ Human
- —— ModsalGHigh
5 220
& 200
ot
13
% 180
B
T 160+
@
& 140
120
100
80 Ay
5 - T gy —
2345678 31011121314151647 18
Trial
7
085 ,h..“.ww ,.wm.ub PwB5CE  AMSD RMSSD
Human o - 38 3883 375 262
H
Mebxsed ahsid:
Tl Gellons  HumanSE wﬁ..._“uh Hodofli - aba featz - ao_a”_w. IBHSAD  gea
e AETe T SEE s e g2 mocsuom.
2 127 tres mmm.mw 8.7 2633 119 = umw e mwgu magalidats SE2
3 1am 73 A S oA S a7 i
: : ; 197.92 445 ' 452757 4413
4 163H 1670 19 - garteot0 :
; 823 3.7 1204.79 4.03
5 15121 1190 y ‘08 216 O -
: ; 20477 564 130234 4.67
§ 14807 1350 ) ass amo0 ,
X ] 102,46 455 = 2868.13 2p.25
7 156,75 14,30 =3 44.35 124 2 .
. : 0154 648 5 1570.48 10.81
8 14507 1300 - 50.75 155 y
X , 1977 569 9 25745.84 1250
5 100 . 5570 428 ’
0 e “m.mm 15877 88z 2277 3 .m_ mmwom.mm 18.35
N e 15692 964 3135 270 o g 1%
2 133 770 ueT 734 70 23 0 aoos =
B12486  $1.40 1800 77 2484 138 P06 pe e
b g e S o o 3 v b
6 12507 17.20 ! Bl e : e
! g 13088 335 y P 34388 75
7 11129 2 Jrr 0E X
B 11214 “m.m.m 008 335 2879 174 i e o
. 143.77  4.53 31.63 224 0 muwwmwu 308
: : 5.03

617

Fig. 32 Magz! 6-High. Randem: search of alternatves HIRE Y WO ir; 1ed seared T
it lter w the first two trzals, sorn reh aft i u
3 er Trial 2. Ulidity

tetermmed Blerding with (.01 sim

\iy-rate, ecessty
v-robe. B B aecssiy bevel and ne fesdback mechansms



. e o - .
518 C. Gonzalez et af. f Cognirive Science 27 (2003) 391-633 C. Gonzatez er . /Cognitive Svience 27 {2003) 591-633 619
240 - wT— Humian 240 -
—— HlodalfMadium
2204 220 4 “
) SN
W 200 . b 200 / —S—Human
nw 180 4 : W ——Modal6iow
P = 180 1
5 1504 E
2 = 180 |
m 140 &
a B 140 +
E 120 m o
100 4 2 1204 =
¥
B ey L I s e e B 100
i 2 3456 7 8 5 101112131415 1617 13
Tral 80 ey e ———
i 2 3 4 5 6 7 8 8 101112 13 14 15 16 17 18
2 MAD MSAD PwSsCl RMED RMSSD Triat
0.85 18.10 126  B333 2050 1.43
Hadel 7-
Human MEDIULM abs{dats-
Miseod Mlssed  ModelSM  abe(down-  modely  laMSAD  {duwa- f{dma- 2 MAD MSAD Pw85Ct  RMSD AMSSH
Trial  Goflons  HumanSE  Callons  ediumSE  modely dam SE <196  modei}r?  modefydala SEPR 0.80 14.77 1.03 8333 1178 1.26
1 Z087a 2280 20157 B34 7.21 022 B 52.05 010 Hurman rtodel 6. s
2 18271 1780 22600 599 23.2% 242 0 1873.65 5.85 Klamad LOW Hiseed ModeiElo  ab sisdata-
= gtz - .
3 163.21 17.30 18636  4.98 23.14 1.34 3 535.59 178 T Gofens  MumanSE | Gallona  WEE .nmﬁ“”w Mhuﬂw_m o LMM,.» sagmﬂwwms
4 163,14 1670  189.07  3.55 25.93 1.55 1 §72.29 241 i 20873 2280 2i4.64  30.12 BHE 0.56 3331 [
5 151.23 11.8¢ 18982  7.80 18.71 157 1 350.02 247 2 182.74 17.80 21836 804 33.84 1.88 i 113184 353
3 14807 1350 17162 925 23,54 174 i 554,52 3.04 a 162.21 17.30 18857 740 26.36 1.52 i §34.70 232
ki 18079 1430  1667% 835 15.83 141 i 253.72 1.24 4 18334 1670 18064 561 17.50 1.95 j 306.25 116
B 144087 3300 17093 1006 26.88 207 0 721.31 427 5 151.21 1180  §78.86 6.08 27.64 232 bl 764.13 5.48
g 134.60 1620 14857  9.05 14.57 0.50 s 212.33 a81 § 14807 1350 17243 831 24.36 1.80 i 593.27 3326
10 12557 1180 17t 976 2614 225 o §83.45 5.08 7 150.79 1430 6507 683 1429 1.00 i 204.08 1.08
11 $23.07  10.80 4373 B.9% 20.7% 1.80 i 429.08 361 8 WA07 100 21 643 26.14 2.01 0 683.45 4.04
12 18338 1770 142B6 1034 950 0.54 1 50.25 0.23 g 13300 1820 14643 861 12.43 077 i 154.47 0.58
13 12485 1140 12893 418 507 0.36 1 16.58 0.13 “m Hmmﬂw .80 15200 773 2643 228 0 eod47 519
14 0843 1230 12771 257 1929 1.57 i 571.84 2.46 I _M.Wm 1090 12850 583 643 0.59 i 41.33 0.35
15 12007 1400 19200 353 183 D14 1 372 6.02 s e A A e 0.37
16 12507 1720 13350 335  Bd42 0.49 1 71.04 524 130 lnem s Tea o o2mo sm O a1.84 .25
17 11es 1850 12779 303 1650 .00 i 27295 1.00 5 120 1400 :m.h w.wm ﬂowmmo m.wm i dmom.mm 0.73
i , 1 s A . . . i . a.m
18 11214 1430 13214 283 20.60 i.42 i 400.00 2.01 6 12507 1720 12150 150 gt oot ; et o
. ] N 17 #1129 1650 12184 1.03 10.36 0.63 i 107.27 038
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of the expenmentat vanables adds merementally to the full model, Model 7, contaimng ail
the learming mechamsms proposed in IBET. The tast column in Table 3, r* model compariso,
shows how each of the modets capture the relative trend magmtudes of Model 7. If we nhad
to choose for a restricted model that best fits the full modes, the chowe would be Model
6-Medium.
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Fig, 135, Model 7. Random seareh ol dliermatives w the first two als. sotted search after Trigl 3. Utility determumed
Blending with 0.01 similuniv-rate. | natn necesstiy leved, teedback learmng-rie of .0,

6. Process analysis

casures compared o buman dati These measures

Presented in this section are process mi
Next. the analysis and companson

are the average fit (o decision rules and instance similary.
of human and modet data are presented al the mdividual level.
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6.1, Average fit to decision rules

The fit to a rule 1 a measure of how ciose SDUs are to what a heunsnie preseribes. For each
activation decision made by a parucipant n 2ach trial of the WPP task, we calculated the fitto
the nme heunstic. The same average i measure was calcuiaied using the SDUs of decisions
made by Modet 6-Low since this modet gave the elosest it to human data. The following
analysis ignores pump deactivation.

Fit values are calculated by companag the altemative selected by & participant or by the
maodel to the alternative preseribed by the time heunstic:

actuai decision — worst decisicn

Fit=1-—
best decision — worst decision

The actual decision s the decision made by the participant or the modet. The worst and best

decisions are obained from the alternatives available at the moment of the evatvanon, based
on the ttme heunistie, A ft vatue of zero means the decision was the worst decision that could
be made according to the heunsuc, while a fit vatue of one means that the decision 15 exactly
the same prescribed by the tme hevnisuic. We calcuiated the average fit vaiues for all decisions
in each tnal. This 15 similar 1o the measure used by Payne et at. (1993) for caiculatng refative
accuracy in thesr effort-accuracy framework for statsc decisions, In our task, however, the values
of the decisions (current decssion, best and worst decisions} are dynamue depending upon the
specific suuanon of the system when the decision was made, In Payne et al. studies all accuracy
measures are static because the task consists of setecting among previously defined gambles.

Fig. 16 shows the ruie ft resuits for both humans and Modet 6-Low. The model's decisions
fit the ume heunstc less than the humans decisions, but the average of the absotute values of
rule fit are ciose to those from the human’s average, RMSSD = .65, The average fit to the
ruie shows how ciosely the decisions fit the tume heuristic, however, this measure cannot tell
us if judgments were m fact performed by the tme hesnstic. Afithough we cannot have this
mformaton from humans,'® we know this dat from Cog{BLT.

Fig. 17 shows the average percentage of evaluations performed with the tme heurisuc i
each of the 18 tnals, In the first tnat, 100% of the judgments are performed by the ume heunsuc
{there are no pror examples). Sull, in the first few niats o high percentage of judgments are
done using the ume heunsnic. Note that this does not imply a pacfect nule fit {see Fig. 16}
because not all alternanves are considered. Overume, CogIBLT increases the reliance on past
examples and reduces the use of the tme heunstic. By the end of the expenment, m the 18th
tnial, about 34%6 of the judaments were made by the nme heunstic {about 66% by exampie).
We would expect that humans follow the time heunistic 1 2 patern similar to that of Fig. 17.

6.2, Instance sumilariry

Instance similanty 15 a measure of how closely a situation resembles the circumstances from
past decisions. All the actvation decisions in a triai were sorted by tank and then by the time
at which the decision was made. This produced a seguence of activanon decisions overtime
w each tank and per al. Decisions 1 tnal 1 were compared to decisions 1 tral ¢ — 110
their sequenttal order according to the ame at which the decision was made. Similanty was
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Fig. 16. Average rsle R, compansen besween heman data and Model 6-Low.

caiculated based upen two vanables: the fime of the decision and the amount of water in the
tnk at the bme the decision was made (water was converted o ume unus). The followng
formula was used:

Simijary = 1 -~ [e(decision; - decision—,) + (1 — @)(aceumulated similanty,,_, Bl

This calculation compares tme and water values o those of a previousty made decision in
prior tnals and considers the accumtateg similarity from previous mals. The « value gives
different weights to the similanty of the most recent decisions compared to all previous ones."”
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Fig. 18 shows the average simifanty per ¢rand for both humans and Model 6-Low’s instances

of 0.99. This sumilarity values give 9995 weight to the most recent SDY instance

with ¢ value
the trend

ang 1% werght to all previous instances. These results indicate a good mogel fit o
of human data (-~ = §1), But. poor fit to the axact locauon, average RMSSD = 3.13. The
modef makes decisions that are sncreasingly more similar (o the most recent past decision as
compared to humans.

Fig. 19 shows the average similanty per triai with an o vaiue of 0.5, This o value gives
the same weight to past SDUs and to the most recent pust decision compared to the current
sttuation for each trial, Attribunng less weight to the most recent decisions praduces a tower
stmilanty value that 18 very stable after the first five or six wials. The medet &ts human data

wend at. * = .84

6.3, Expiormg mdividual dara

Individual learning curves and perfermuance are expiored and compared to Modet 6-Low’s
wdividual runs. The error bars skown in previous learmng curves as weli as rule fit and similar-
ties suggest more vanability in human parncipants than m sunulated ones. We have investigated
the varability allowed by CogIBLT's parameters at the 1ndividual levei. keeping ACT-R pa-
rameters constant. These analyses can be found in the Supplemenial Matersis section through
the Cognitive Science on-line Annex at Eﬁ&nommnru&..:Hzﬁ.ma&mzvm_mansa\. From thase

analyses we conclude that, with siandard ACT-R parameters and within the same expenmentat
condition (Model 6-Low) CogIBLT can produce different leaming curves. CogIBLT, however,
fits the human fast leamers bette
surprsing, considenng that Model 6-Low inciudes most of the
Thus, the differences in learning-rate between made! runs may

subject differences,

r than slow izarners 1n the Modei 6-Low condition. This 15 nol
jeamning propositions by IBLT.
provide a petter fit to ndividual
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7. Discussion of resnits

. CogIBLT learns oy accumutating SDU instances, by recognition-based retnevai, adapuive
; rategies, necessity level and feedback updates. Althongh CogiBLT refers 1o the tmpiemen-
2uon of IBLT prninciples in the context of WPP, we believe IBLT learning mechanisms are
applicable to other DDM tasks. )
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Fig, 19. Average sumitansy with o = .5.

Results from the first senes of expertments suggest that, a.numzmmn%a amMMHMMnHM”wJ%H
es according to the relevance of task cues to thesr decisy ey
e xpenencsd 4 Bmﬂma follow a random allernative selection pracess. oth m :
e da anwm“w WEM overume SDU instances are increasingly similar to the most H%M_n
uwmmmwm““_:omwﬂmﬁma of environmental coaditions, ¥ Similarly to the chunking theory an
pa

g i gl s of instances.
\nstance-based recoention model, 1n IBLT skills develop through the accumulalo
- =
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and the recognition of features sumilar to the probe (Hintzman,

1584; Simon & Gober, £006).
Hewever, many 1ssues remarm to ba investigated with respect 10 recognition in DDM. First, our
approuch involved discrete tests of parameters fixed througnout 18 nas. IBLT, however, sug-

gests a gradual upgrade of the parameters overtsme. More empincal data is needed to undersiand
how humans may adapt these mechanisms as they practice m a dynamic task. In most Sikuaitons,
these mechamsms should be modeled as eradual fanctions, For exampie, we do not expect hu-
mans 1o suddenly change their antention paterns from random to soried. We believe thar mn
DDM focused atientson develops gradually, with Practice in the task, as suggested in psychol-
ogy (Haider & Frensch, 1996; Logan, 1988). This gradual wansiion of the model's parameters
was nol impiemented in the current CogIBLT. Second, the role of similanty in decision making
needs to be studied further, The importance of sunilanty 1 decision making was highlighted by
Tversky {1977). But since then, only a few studies have addressed this topic 1n the behavioral
deciston-making literanure (Lejand, 2000; Rubinstein, 1988}, Psyenotogica research has iden-
tified the relatonships between decision-making and high level cognitive processes such as
stmilanty and ealegonzation (Markman & Medin, 1995; Medin, Goldstone, & Markman, 14993)
but their connections to dyramic ard complex tasks is not clear, We believe that, in DDM, sim-
larity 1s essentiat te learnung by practicing tnteractively with a dyaamic environment. Similanty

infiuences the recognition process, and the use of heunsties and instances 1 judmng the urility of
choces.

Results from the second experimentat series mdicate a reduction 1n the use of heunsucs
and incresse of memory retmevat Gvertime, supporting Logan's (1988) propositions. How-
aver, very little 15 known abour the adaptation of judgment strategies and therr reiatzonship
to memory retneval. IBLT suggests judgment in DDM is of two flavors: heunstic-based and
instance-based. Based on the similarnty of the situations to which the decision malker 15 ex-
posed, Judgment tums from heunsuc-based 1o instance-based. in the current study, we ssed

the same pattern of exogenous events throushout the 18 nals. Having the same exogenous

events at the same tmes increases the probability of finding similar eurrent sisuatons to past
expeniences, [BLT predicts heunstic-based Jjudgments 1 siwations with more diverse envi-
renmental events, but st aise prediets a switch towards instance-based judgments as more
Useractive practice 1s zcquired within the same task context. In this study, we used the hme
heuriste for our models, We believe that ime heunistic 15 unrversat to DDM, but osher heurns-
tics may also fead to good performance. Research 1n the use of heuristics for decision making
15 tzking an mteresting twrn since the proposal of the “adaptive tootbox™ by Gigerenzer and
Tedd (1999). The study of thewr proposed heunstics 1 the context of DDM is a chailenge
worth pursiing. Also, resuits from this experumental senes provide support to the concept
of Blerding. IBLT suggests decision makers “blend” their past knowledge 1o come up with
the utility of & suuation—decision conditios, rather than using one specific example from the
past. A similanty-rate of § (reineving examples identical to past unstances) resuited in almost
Immediate 1mprovement of performance but not much learming overtime. Thus, the model's
learning curve was distant from humans learning curves. Retnigvat of past solution to the
same problem may be an effecuve probiem soiving strategy,'®
fot what humans do mn dynamuc eavironments. This may be b
fis rare that the same exact problem will occur more than onc
lag made model performance closer to human performance.

but the results suggast this 15
ecause In dyramic siuations
e. The itroduction of Blend-
This sunilarity-based memory
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retrieval is comparable to nuany other fearnimg theones (Hinzman, 1984 Medin & Schaffer.
1978: Medin et al.. 1903; Nosofsky, 1984 Simon & Gobat, 1996). The concept of Blending
is. however. a recent ACT-R proposition (l.ehiere. 1998). This mechanism may explan the
process of “intuition” frequentdy suggested in nawralisnc decision-making research (Klemn,
1993).

Resuls from the third expenment seres demonsirate better it 1 human data when the
mede! waits unti] the kst mnute [o react o ar urgent siustion (Le., low necessuy levels
IBLT predicts decisior makers vmprove therr nme of intervention with practice  the task.
Therefore, we expect a percepuion of high wrgency for mexperienced decision. With prac-
uce i the task, the decision maker's necessiy level lowers gradually with learning o wait
untit the right moment to execute a decision, Emprrical research suggzesis that humans ave
nol very good w selecung the mght ume of intervenuon i dynamic tasks (Kersthold &
Raaijmakers. 1997). Buwt more empirical studies are aecessary (o understand the issues in-
votved in amiag of decisions and thew relatinnship te practice m a ask. IBLT suggests that
there are individual differeaces i the feeling of urgency and thot decision makers learn 10
adapt therr aume of intervention according 1o the similanty of the siuations they experence.
The analysis of specific individuals indicated best mode} fit for fast learners compared to
slow learners. More research 1s needed on individual differences as related to DDM. In pre-
vious research, we have [ound that the affects of workload on fearming are modulated by the
mdividuals’ cognitive capacity (Gonzalez. submitted for publication; Gonzalez, Qudrat-Utlah,
& Eerch, subnutted for publication). Smith. Pataluno, and Jonides {1998) suggested that WM
determines the use of rules rather than exemplars. Theiwr ranonale 55 that rule application
may involve serial processing requring multiple acts of attenbion while the use of exem-
plars may reuare paraliel processing and one-time retnieval from fong-term memory, The
ssmilanty-rate mechanism proposed in IBLT can be o WM capacity indicater, singe 1t deter-
nunes the number of SDUs used in the recognition and judgment processes. Also, ACT-R
provides forgeting and spraading of acuvetion mecharnsms that pave been propesed as a
source of individual differences and we need 1o explore further (Loven. Reder, & Lebiere,
1999).

Results from the fourth series of experniments showed improved performance and iearmng
when accounting for results to upgrade the utility of instances, compared to 1gnonng feed-
back. The results also showed that humans don 't account for feedback to upgrade insiances.
Determsning the causal relations from outcomes to decisions 1s @ major research topic m DDM
{Brehmer, 1990, 1992: Diehl & Sterman, 1993). Ir the past, it has been shown that humans
musperceive feedback due lo delays inherent to dynasc situations (Kersthold & Raaijmakers,
1997). Our resuits sugges: that humans may not be able 1o auribute an outcome to the nght
set of decisions thal produced 1. in DDM, outcomes must be auributed to a sequence of
decistons rather than to just one decssion, Another possibility 1s that the knowledge of the
results may not affect all the decisions i the same way. as we have assasmed m Cogh
BLT. Some decisions may have a greater effect on the outcomes than others. In general,
CoglBLT parameters need 0 be tested further with sensitivity anatyses that could help us
understand how umque the fearnsag curves are to the modeling decisions. Also, more empir-
ical research is needed o understand how decision makers account for feedback in dynarmuc
envIFoInants.
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8. Concluding remarks

. DDM posts a set of challenges to our understanding of hurman cogattion capabilitics, and
_::_m:.omm.. DDM requires recognition, Judgment, nzm_nm. and qn,n,.._wEE_cr af nro_mmv_. .

nm:m_ncomm_% changing eavironment. Decision making 12 DDM is thherentty time nanmmw _Jau
m.:mwm.‘,_ uncertam due {0 mamnly the exogenous eavironmentai events, w?w.a. cemplex a”_zw .
muitipte and interdependen: decisions, In this paper we proposed taat, nnn_wmo: mﬁﬁna,ﬁ _um.u.”o_
occuts by the acqussition. retneval, and refinement of decision-situation-utility _=m_m.=nmm c_..

E.mmm:"ma a set of learming mecharesms that aceount for nstance-based Euw:,:w n the no_..: 3 ;
of a decision-making process. The use of a computaiional model based on Mﬂﬁ.w Buwum
Cog[BLT z precise, predictive wol to expernment with IBLT propositions. We expect wms. Mv
be athecry provocative enough o instigate psychology and behaviora deciston research so as .o
advance the study of decision making i complex, dynarmc situations. mczrnmmn.ﬁn we ex .mno
CogIBLT to be of interest to researchers 1n Af and computaitenat modeling c?:mﬁz. nmnz._ho:H
Researchers developimg human-like decision systems should aim 5t a better :wcmmmﬂﬁa;m
and accurale representations of human tearning. Computational models of decision Emﬁwm

should reproduce the vanability i preferences within single mdividuais, the adaptabilicy and

:n«&m:mm that humans 2xhibit in dynamic situatons, and the interretation between decisions
and the influence of resuits 1n future choices.

Neates

. N_MMM:EQ Percewver and Memanizer, ongmally proposed by Simos and Feigenbaum

2. Refer to Appendix A and see Anderson and Lebiere { 1998). Chapters 3 and 4

3. We added numbers (o the tanks to be able to make references to the preture ﬁ.Em text
These are mnvisible to the end-user. .

4. A detailed description of WPP and performance rests of different heunstics can be
feund ia the Suppiemental Matenals section throush the Cosmtive Secience on-line

A Annex ar ::u”\\nommnruww.Enapm.wmm.ﬁcﬁw_msa:ﬁ.: )

3

A n_mmn.:umo: of the model’s production mn an algorithmie form 15 available w the
Cognitive Seience on-line Annex at http:/leogscy.psy.utexas.edu/supplements/
6. See the on-line Annex for more mformation on the verbal Brotocois. .
7. Refer wo Appendix A for a detailed exptanation of Blending.
8. mn.*.mq to Appendix A for a detailed explananion of Blending.
9. This update process nas not been impiemented as a production by mself. IL1s a LISP
process activated in Production 1. ,
1. A1 2:30 the next deadiine 15 5:00 or 300 mem, resulting 1 Lime left of 300 — 138 = 162
i, See the Supplemental Materats section througn the Coznitive Science on-fing }E:W.
at :mmm&nommn_.mu&r:mmxam.nams.m:muw_mﬁm=~m\. ) . .
il mwnxpvvmn&a A for the defaul values of ACT-R parameters used in Cog]BLT
13. Both model and hurman data avernges are over 14 subjects. - .
14. The average RMSSD for human data oniy 15 9.24.
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15. The average RMSSD for human data only 1§ 9.24. ) 4 inseructed them muktiptied by the scaling parameter MP. That parameter can be used to trade off mm:.ﬁ:om and

- arttespants to follow any rute. Ana even if we ha . degree of match. If it 1s equal 10 0, then e degree of match to production condition 15 wrelevant

16. We never asked our paricip re way of knowing that parncipants are 1n fact following and one sumply retrieves the most active chunk that comes to mund. If the parameter gets very

to follow a rule, there 15 no su Y - large, then degres of match becomes paramcunt and this becomes the siandard symbolic exact

a rule. f the ume ruie fit and similanty for these two participants can matehing. For mtermediate vatues, the chunk with the highest mateh score will be retnevee

v Mcﬂ:ﬁ%mhﬁ”mmww_wammsm Matenals section E.B:m: the Cogmtive Soience on-line from memory if its score 15 above the activation threshold 1. Ctherwise, the chunk retrieval
e found i lements/. fails.

Annex at :zw“_:nommn_.sz.:"nwum.whwxwwwuﬂmwwhzuzJ. for these two participants €an Blending 15 a generalizanion of PM that atlows the retrieval of an aggregate resuit of g sot

18. Further nmﬁ_oawoa of the Jqﬂw terials secnion through the Cogmitive Science on-hine of memory chunks rather than only one chunk (Lebiere, 1998). Instead of retrieving a single

be found in the Suppiemental ﬁmac\mw erments/. = chunk from declarative memory, the aggregate resutt of a set of memory chunks 15 retrieved,

o M:"”_mxuw"”HM&MM“%WWM&W“W_. of nmw_aﬁonu:nm. \where aggregate 1s defined in terms of the match scores and similarities of the Phg mechamsm.

. ifalte

The idea 1s that each chunk Proposes a vaiue (o be retneved with g strength reflecting the match
score of the chunk, The aggregale angwer V is defined as the valve that minimizes the sum
. of the squared dissunilarities with the answer V; proposed by each chunk. weighted by the
Acknowiedgments chunk’s probabitity of retrievai 2.

i 49620-97-1-
“This research: was supported by the Air Force Office of Scientific Research (F496

i ; red by e . . - -
(368). the Advanced Decision Architectures Collaboratve Technolegy 2:3“4%%%%&& Ve ZSMETwmwmx V) Blending Equation
the cw Army Research Laboratory (DAAD19-01-2-0009), and the Office o -
AZanEamm.m-oum@. As i the Partial Matching Equation, Sim(V, V;) 1s the similarity between value compromise

value V and actual value V; retumed by chunk 1. P; 1s the probability of retneving chunk 1 as

a function of its match score M; and the maich scores M; of all other chunks ;, given by the
Appendix A. ACT-R mechanisms and parameters Beltzmaan (aka. softmax) equation (Andersen & Lebiere, 1998):
. : A
Actvation 1t ACT-R 15 caleulated according to Bayesian methods as p = 4w _“ ] Retreval Probabiliy Equation
A Bt MU,_.ﬁ\_,rn..m P
i | i level actvation, an estimate of how likely a chunk will match o 2 nnwn__u_w_w ‘erman fis a measure of the activation noise. dﬁ .._as.m.. En noise, the more the system will
where B; 15 the base £ nd latest chunk usage. W 1s the atiention given behave determimstically 1n retrieving the chuak with the highest match score. The higher the
ton, The B value depends on the frequency a fromacue;ioa chun t. notse, the more the system will randomiy retneve any chunk that partiaily matches.
w0 source y and S;7 15 the swrength of ummon"umom it only partally masches a production con- For instance, for the values i Fig. 5, the sumilanty between the current tme deadline {128}
PM allows the remeal oL o mfmmu.s 5 Mwmﬁn over the range of possible values. This and water amount (3.19) and the corresponding values m the three mal chunks 1s combined with
dition. The pasic idea 1s o define a similanty or discrete. In the case of discrate values,. their activanons to compute thesr match score according to the Partsal Matching Equation. The
can be done whether those values are nomﬂzcomwzmmm petween pairs of values. For conlin . match scores are then cambined to yield each chunk's remeval probability using the Retnevat
this can be done by simple enumeration o Sim: ilarity funchon over that domain. O:.n -} Probability Equation. The utility vaiues proposed by those chunks {306, 308, and 293) are then
uous values (e.g., real numbers), ong can define a sumilanty ndi-- . : :

. non of a chunk with 1ts degree of match o the Eoﬂa:n:oa co g combined using the Bilending mm:u:m:._ to yield a composite answer, mow..mw. Blending uvncmm
can then combing the activat lied the match score M;, of chunk [ 10 proguct oot enually well to contsnuous and to diserere domans. At the discrete end of the spectrum, if
tion to yield a composite measure of fit calied the %73 no similarities are defined betweea vaiues, then each chunk proposes its own answer and the
condition p: 5| strongest wins, This 1s equivalent to the current retrieval mechamism, with the exception that
;- ?HMUMU: — Simtv, d)) Parnal Marching Equanon $eparate chunks proposing the same answer can now pool their strengths mstead of compenng

] iple 1 Separately, providing a dynamic generalization of the ACT-R chuni MErging mechanism
tne maximum POSSE b which iantica) chunks are merged together and therr activation strengths are combined. At the
fled in the E.eaunno?. 1 tontmuous end of the spectrum, the answer is the average of the values proposed by each chunk,
puted by MM ¥eighted by thetr probabilities of retneval. Intermediatz pomts atong the spectrum include
due - integers, coarse scales, and domains with some similantes but no regular scale. Blending can

My, =

The degree of mismatch for a production condition is nmmuma‘um M _m.mmﬂ
mmEmE.ME. minus the sumilarty Simiv, ) between awmﬂmn value ¢ D o
condition and the actuat value v present m the chunk. Hwn.ﬂﬂn e by fho pro
tracting from the chunk's activation the sum of all the conditions sp Y
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be viewed as a geperalization of well-known Al techmques. Neural networks have a sumilar
abilicy to learn in their connection weights a number of irnsung patterns and produce an cutput
that reflect the constramts of the entire trarmng set rather than any specific pattern. The Bayes
Opumal Classifier produces the most likely outcome weighted over afl Eﬂﬁ?ﬁﬁ (ACT-R
chunks). rather than simply the most likely hypothesss imest active chunk). Linear weightad-
regression is an mstance-based machine learning algorithm that produces the answer that
mumizes the squared error between a fitted function and a set of data potats, with each dain
poinis bemng _.,..m_.mswnm by s distance to the query point. The Blending mechanism combines
attributes of all these techniques.

The following list shows the ACT-R purameter values used as defuult values in CoglBET
throughout the experiments.

Enable rauonal anatys:s tera): 1
Gle): 20.0

Expected gain S fegs): nil
Enabile randomness (er): ni
Uility threshold (ut): 0

Goal acuvatios {ga): 0
Base-leve] constan: (ble)y: 2.3
Activation soise S {ansy 0.23
Permanent activation S {pas): nil

Latency factor (If): 1.0
Latency exponent (le): 1.0
Default act:on me {dat): 0.035

Purtial Matching (PM}): ¢
Mismaich penalty (mp); 1.5
Retneval threshold (rt): 0

Optimized learning {ol): £
Base-level learning {bll}: nit
Associative learming {al) nil
Strength learaing {sl): nil
Parameters fearmag (pl): nil

Appendix B. Similarity calculation

Coasider for example the decisions made by parucipant x m Tank 0. The sumilanmy of the
SDUs 1n Trial 1 will be Q. This participant made three decssions i Trial 2 on Tank €, four
decisions on Toial 3, etc. The sumilanty of the first SDU in Trial 2 results 11 3 value of @.‘m Y
folows: | = (0.99 = ({172 + 15 x 2) - {390 + 27 x 2}) + 0.0} x 0). The table shows how
the similanty vatue 15 calcubisted for severad SDUs.

C. Gonrales ot al /Coguitive Seience 27 (2003 139635

=3
T
i

Userid Tank Teial Order Time Warer Similunzy  Similaruy caleulanon

X ] H i 300 27 0

% n 2 I 17213 0.30 t— (099 x ABSUIT2 + |5 x 2) —
(390 + 27 < 211480 + 0.01 x

X G 2 2 224 2 i}

3 O 2 3 285 3 0

X f) 3 | 147 10 092 P (.99 « ABS{{[47 + 10 x 2)
=172 4 1201480 + 0.01 = 0.5)

X 0 3 2 232 2 .5y E— {099 x ABS{227 + 2 23—
226 + 2 x 211480 + D01 x Oy

% 0 3 3 248 2 0.90 } {099 x ABS((248 42 x 2} —
(285 + 8 x 211480 + 0.01 = 0}

X 0 2 4 269 2 {
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