An ACT-R/PM Model of Algebra Symbolization

Kevin A. Gluck
Air Force Research Laboratory
Warfighter Training Research Division
Mesa, AZ 85044 USA
(kevin.gluck@williams.af.mil)

Abstract

This paper reports empirical evidence corroborating the presence of an inductive support effect
(Koedinger & Anderson, 1998) in algebra symbolization. Students who solved one or more result-unknown
problems before symbaolizing were faster and more accurate symbolizers than students who completed the
symbolization first. Eye movement data show that the primary process difference is in reading the problem
statement. The second half of the paper describes an ACT-R/PM (Byme & Anderson, 1998) model of correct
symbolization in the inductive support condition. Although it represents only a limited subset of the data, the
model does capture the average completion time and fixation frequency data, and it serves as a starting point
for testing alternative process models that interact directly with the tutoring software.

Introduction

Algebra symbolization is the translation of a word problem into an algebraic
expression that represents the quantities and relationships among quantities in the problem.
For instance, let's say a student were presented with the following problem situation:

“Concert tickets cost 45 dollars a piece. A friend offers to stand in line
for a number of tickets, if you will pay him a fee of 12 dollars to do so0.”

If the student wrote a symbolic expression for that problem situation (e.g., 20-4x), she
would be symbolizing. Symbolization is a skill that is useful in a variety of modemn tasks,
like creating spreadsheets and computer programming. Symbolization also is a skill that has
been receiving a good deal of empirical attention recently (Gluck, 1999; Heffernan &
Koedinger, 1997, 1998; Koedinger & Anderson, 1998).

Koedinger and Anderson (1998) reported a performance advantage in symbolization
when it followed the completion of result-unknown questions. Resulr-unknown questions
are those that provide a value (the given) for the changing quantity (howrs in the problem
above) and require that the student arrive at the resulting solution. An example of a result-
unknown question based on the problem statement above might be: “What will be the total
cost for 3 tickets?” Koedinger and Anderson found that students who symbolized after
solving two result-unknown problems were able to symbolize faster during tutoring and
also showed better overall learning gain from pretest to posttest than students who
symbolized before solving the result-unknown problems. They refer to these positive
findings as resulting from the inducrive support effect. Their interpretation is that students
are able to induce the appropriate algebraic symbolization of the problem statement out of
the arithmetic operators used in solving the result-unknown problems, and this leads to
better performance and better learning.

134

In recently-completed dissertation research (Gluck, 1999), I attempted to replicate
these results. Students were assigned to either the Inductive Support or the Non-Inductive
Support condition in a between-subjects manipulation. This research happened in the
context of an investigation into the instructional opportunities that are available by
combining eye tracking and intelligent tutoring, so eye movement data were collected in
addition to error and latency data. This paper describes both the results related to the
Inductive Support effect and also an ACT-R/PM model of algebra symbolization in the
Inductive Support condition.

Method

Participants

A total of 18 middle-school and high-school students completed this study. Half of
the participants were female and half were male. The students ranged in age from 12 to 15
years old (6™ to 9" grade). All of the participants had progressed at least as far as Pre-
Algebra in their mathematics studies, and 13 were taking or had completed an Algebra
class. One student was currently enrolled in an Algebra 2 class. All participants were paid
$50 for completing the study.

The EPAL Algebra Tutor

EPAL stands for Eye Point-of-regard Analysis Laboratory. The EPAL Algebra Tutor
is a streamlined recreation of the Worksheet tool, as it existed in the Practical Algebra
Tutor (PAT) used in the Koedinger and Anderson (1998) study. The Worksheet is a tabular
spreadsheet interface that holds a problem statement and questions. The student's task is to
fill in the column labels and units, enter a variable and an expression written in terms of
that variable, and then answer two questions. There were 16 different EPAL Algebra Tutor
problems. Completion of the problems proceeded from top to bottom, which was important
for testing for an effect of inductive support. With respect to that manipulation, the
important thing to know is that in the Non-Inductive Support condition, students did the
symbolization before answering result-unknown questions, and in the Inductive Support
condition, students did the symbolization affer answering result-unknown questions.

Design and Procedure

Upon arrival at the laboratory on Day 1, there was a brief eye-tracker calibration test,
to confirm that we would be able to acquire a reasonably accurate and stable image of the
student's eye. With this confirmed, the student completed a short demographic survey, then
a paper-and-pencil pretest. The final activity on Day | was an introduction to the EPAL
Algebra Tutor, by way of an introductory problem, to familiarize the student with the
interface and the type of problems to be encountered on subsequent days. Day 2 started
with the completion of a second introductory problem, then there were four tutor problems
while calibrated on the eye tracker. These were randomly selected without replacement
from the pool of 16 problems. Days 3 and 4 simply involved the completion of four more
problems each day. Day 5 started with the completion of four problems (the last 4 in the set
of 16), followed by the posttest and debriefing.

135

Results

Completion Time

Koedinger and Anderson (1998) reported an effect of inductive support on
symbolization completion time during learning. On two-operator problems similar to those
in the EPAL Algebra Tutor, students in their Inductive Support condition were
considerably faster (M = 28 s) at symbolizing than were students in the Textbook (Non-IS)
condition (M = 48 s). They found no effects of inductive support ont problem solving time
in either result-unknown or start-unknown problems.

This effect is replicated in the EPAL Tutor data, with symbolization time faster in the
IS condition (M = 14.8; SD = 4.2) than in the Non-IS condition (M =25.1; SD = 10.9): F
(1, 16) = 6.95, p < .02. The effect is still significant after controlling for individual
differences in pretest performance. This provides corroborating evidence that during
learning, students in the Inductive Support condition are faster at symbolizing than are
students in the Non-Inductive Support condition.

Errors

Koedinger and Anderson (1998) did not report an effect of the inductive support
manipulation on error rates, In the EPAL Tutor data, I found that symbolization error rates
were lower in the IS condition (M =.10; SD = .20) than in the Non-IS condition (M = 41;
SD = .14). This is consistent with the inductive support effect, and is a statistically
significant performance advantage: F(1, 16) = 14.90, p < .01. The result holds even when
controlling for pretest differences.

Latency Differences During Correct 1* Attempts at Symbolizing

Students in the Inductive Support condition show a lower error rate on expression
symbolization, which could entirely account for their faster latencies. Is there any latency
advantage for the Inductive Support condition in the absence of errors?

This question has been addressed by looking at data just from correct 1* attempts at
symbolizing. An average correct 1" attempt time was computed for each student, and these
18 data points serve as the basis for this analysis. The mean latency for students in the high
formula row condition (Non-Inductive Support) was 21.24 seconds, whereas the mean
latency for students in the Inductive Support condition was 12.81 seconds. This difference
is statistically significant: F(1, 16) = 9.80, p < .01, and holds up when the individual
differences on the pretest are covaried out. So it seems that even in the absence of errors,
there is a latency advantage for the Inductive Support condition,

Fixation Analyses

The data clearly suggest a performance advantage during learning for students in the
Inductive Support condition. The completion time data from correct 1* attempts are
especially convincing with respect to that conclusion. Another revealing source of data are
students’ eye movements. The eye movement data can be used to address the question of
what it is that is giving the Inductive Support students this latency advantage. What are they

136

doing differently? What do the eye movement data tell us about how the solution process
differs depending on the presence of inductive support?

Fixation data were extracted from correct 1* attempt part-tasks in the expression cell,
separately by condition. This provided a fixation frequency for every POR region
(separately for high and low formula row conditions) and these numbers were divided by
the total number of part-tasks to arrive at an average fixation frequency per part-task. There
were 87 part-tasks from the Non-Inductive Support condition and 124 part-tasks from the
Inductive Support condition, reflecting the fact that students in the IS condition generally
found it easier to symbolize. Figure 1 is a generic representation of the worksheet as it
appears in the two conditions. Cells that averaged more than 1.0 fixation per part-task are
labeled with their fixation counts.

In Figure 1a, there is a cluster of fixations around the cell Formula-Right, which is the
cell under edit. This is where the expression is being entered into the spreadsheet. Most
importantly, however, note the average of 16.6 fixations in the problem statement. This
reflects a good deal of reading, and in fact reflects re-reading the problem statement, since
students had to first read it to enter the column labels and units.

Figure 1b is the Inductive Support condition. The most striking difference in the
fixation frequencies is in the reading of the problem statement. Fixations in the problem
statement drop to 3.0 per part-task in the IS condition, meaning that students spend
considerably less time reading the problem statement. The only other POR region to receive
more than 1.0 fixation per part-task is Formula-Right, the cell under edit.

la. No Inductive Support

oo
16.6 Unt 1.3
Formuts 1.3 (3.1

1

2

1b. Inductive Support

o o

3.0 Unit

1

F
Formuls 2.4

Figure 1 Mean fixation counts greater than 1 during
symbolization in the Non-IS condition.

Modeling Symbolization in the Inductive Support Condition

The cognitive analysis that motivated the Koedinger and Anderson (1998) work was
focused at the strategic level (e.g., arithmetic translation strategy, inductive-support
strategy, algebra translation strategy) and not at the production rule level. Ohlsson (1998)
correctly notes that they do not provide a cognitive model of the symbolization process

137

itself, and this project provides an opportunity to move in the direction of a running
computer model of symbolization.

The model to be presented here is a performance model of symbolization in the
Inductive Support condition. It makes especially good sense to model performance in the
Inductive Support condition because the results from this study and the Koedinger and
Anderson (1998) work suggest that an inductive support design is a better way to teach
symbolization, Given this, it seems the odds are increasingly likely that future versions of
the Algebra tutor will be designed this way, and the production rules used to model
symbolization should reflect that design.

ACT-R/PM

Although a brief summary of the architecture is appropriate here, Byme and
Anderson (1998) should be consulted for more information on the ACT-R/PM architecture.
ACT-R/PM is designed as a group of modules that control cognition, perception, and motor
movements, The cognitive module is ACT-R 4.0 (Anderson & Lebiere, 1998), and the
remaining modules are a re-implementation of the analogous modules in EPIC (Meyer &
Kieras, 1997).

The perceptual modules, vision and audition, take input from the environment (i.e.,
computer) and make it available in the form of either an icon (vision module) or an audicon
(audition module). Only the visual icon is relevant in this symbolization model. Production
rules move attention around the visual icon and attend to its contents. This results in the
creation of declarative chunks representing the objects and locations of the objects that
make up the contents of the visnal field.

Attentional shifts and all motor and speech acts are directed by production firings. A
production that sends a MOVE ATTENTION command results in the updating of a chunk
in declarative memory, whereas a production that calls for a motor or speech act results in
an action that can change the state of the environment (e.g., a mouse click or a key press). If
the environment (computer screen) does change, the change is not reflected in declarative
memory until attention is moved to the portion of the environment that changed and the
new state is encoded.

A Model

The model begins at the point where a student has just entered the ‘x” as the variable
for the left-hand column, and is about to select the expression cell. So to be still more
accurate about exactly what is being modeled here, this is a model of 1* attempt
symbolization among students in the Inductive Support condition. The model is limited to
1* attempts currently because it does not engage in an error recovery process afier it makes
a mistake. Since the model represents a student in the Inductive Support condition, each
time the model is initialized the problem sets up with the result-unknown cell(s) and the
cells for the column labels and units of measure already completed.

Influences and Assumptions in Designing the Model

Heffernan and Koedinger (1997, 1998) have described symbolization as analogous to
translation. This translation is from the familiar language of the problem statement to the
foreign language of algebra. Translation is a two-step process, involving comprehension

138

and production. Students must first comprehend the problem statement, and then take the
representation they have formed and use it to produce an expression.

Because this is a model of students in the Inductive Support condition, the
assumption is made that there already exists in declarative memory an accurate
representation of the problem quantities and relations in the problem statement.
Conceptually, this representation can be thought of as a directed quantitative network like
that described by Tabachneck, Koedinger, and Nathan (1995). Tabachneck et al. propose a
directed quantitative network in which “quantities are represented as nodes and constraints
as 3-part directed relations where the quantity at the arrow is the oufpus and the other two
quantities are inputs that are combined with the arithmetic operation to produce the output”
(p. 398). It is assumed that a representation of the problem statement that is analogous to a
directed quantitative network exists in the student’s knowledge base by the time
symbolization is required in the Inductive Support condition.

Chunks

This sort of a network representation is fine at a conceptual level, but at the
implementation level some additional decisions have to be made regarding how to represent
the network. It is assumed in the model that this network of quantities and relations in the
Tickets problem is stored declaratively. Declarative knowledge in ACT-R is represented in
chunks. A chunk is a single unit of declarative knowledge, and all chunks have their origins
either in perceptual encodings of the environment or in the encoding of past goals. One way
to think about chunks is that they represent a pattern of information in a person’s
declarative knowledge base, and this makes a chunk representation a particularly appealing
one for the pattern of information in the directed quantitative network.

The particular chunk representation used in this model was strongly influenced by the
problem representations that are generated by MacLaren and Koedinger’s (1996) Early
Algebra Problem Solving 2 (EAPS2) model. These chunks provide a linked list structure
that can be used to recall the appropriate values and operators when it is time to symbolize.
By itself, however, declarative knowledge in ACT-R is inert. It needs productions in order
to be of any real service to cognition, and in fact productions are necessary in order for
cognition to take place at all.

Productions

In this model, the locus of control over the order in which the components of the
expression (intercept, operator, slope, x) are typed is in the goal chunks. Through
modifications of the goal chunks, the model dictates which next action will take place.
When it needs to type something, the model sets a subgoal, executes the appropriate motor
commands, and pops the subgoal to move on to the next component of the expression.
Currently, the model is totally deterministic. It always produces the same correct
expression, and it always uses the same procedure.

Process

As mentioned earlier, the model initiates in a state where the variable cell (where the
‘x’ is typed) has just been completed. The model’s hand is now on the mouse (in
anticipation of selecting the next cell). Students typically execute “confirmation” saccades

139

to the cell that has just been completed before selecting the next cell, and the first thing the
model does is move visual attention to the *x’ and confirm that it is there. The model then
moves visual attention to the expression cell, moves the mouse to the expression cell, and
selects the cell with a mouse click. Now the model is ready to begin creating the
expression. It retrieves the intercept out of declarative memory and moves visual attention
to the problem statement to confirm that the retrieved value actually did occur in the
problem. With the confirmation complete, the model looks at the keyboard and types the
intercept. The model then retrieves and types the operator representing the sign of the slope
(+ or -). It retrieves the value for the slope, looks at the problem statement to confirm that
value, shifts visual attention to the keyboard again, and types the slope. The last step in
creating the expression is to type the variable, which the model does, then it moves visual
attention back to the expression cell and hits the return key to enter the answer.

Comparison of Model and Student Performance

In the Inductive Support condition, which is the condition the model is presumed to
be in, 88% of the 1™ attempts at symbolization were correct responses. Since the bulk of the
data are correct responses, the performance comparison will focus on the characteristics of
the correct performance model in comparison with the correct student part-tasks.

Table 1 shows the average symbolization completion time data for all of the correct
student part-tasks and 10 runs of the model.

Table 1
Average Symbolization Completion Time Data for Students and Model

Completion Time (seconds)

M (SD) n
Students 13.2 (7.8) 124
Model 13.1 (.2) 10

As is clear in Table 1, the model is right on with respect to matching the mean
completion time, but there is considerably less variability in the model’s performance times
than there is in the students. This is consistent with the fact that there is considerably less
variability in the model’s completion process than there is in the students.

Regarding fixation frequencies, the number of fixations the model makes to both the
expression cell and the problem statement are in line with the average fixation frequencies
seen in the students. The model looks to the expression cell 2 times (compared to the
students’ 2.4 fixations) and it looks to the problem statement twice (compared to the
students’ 3 fixations).

The two fixations in the expression cell occur when attention first moves to that cell
to initiate symbolization and when the model looks back to the cell again after the
expression is entered (just before hitting the return key). These fixations are labeled “Look
at Exp. Cell” in Figure 3. The fixations in the problem statement come from confirmation
looks to the intercept and slope values. The model is designed to look for those values to
confirm that it retrieved the correct values before typing them in.

140

[do not intend to suggest by this model that all students symbolize in exactly this
way, but the model as it currently is designed does provide a good match to both the latency
and the fixation data from this sample of students. Clearly it is the case that the model could
be expanded to provide opportunities for alternative solution procedures, and this is an
obvious direction for future modeling work in this domain. The current model provides a
solid base from which to begin exploring additional and alternative model designs.

Conclusion

This paper has provided a running model of algebra symbolization. The model uses
the default cognitive and perceptual-motor parameter settings in ACT-R/PM, and these
provide a good match to the completion times displayed by successful students in this
condition. This model assumes that the effect of inductive support is to create an accurate
and retrievable declarative representation of the mathematical structure of the problem,
Thus, the subject no longer has to search the problem to create this representation but only
looks to the problem to confirm the relationships already stored in memory.

Acknowledgements

Sincere thanks to John Anderson and Scott Douglass for their contributions to this work. Funding for
this project has been provided by the Air Force PALACE Knight Program and by NSF grant number CDA-
9720359 to the Center for Interdisciplinary Research on Constructive Learning Environments (CIRCLE)..

References
Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Hillsdale, NJ: Erlbaum.
Byme, M. D., & Anderson, J. R. (1998). Perception and action. In J. R. Anderson & C. Lebiere, The atomic
components of thought (pp. 167-200). Mahwah, NJ: Erlbaum.

Gluck, K. A. (1999). Eve movements and algebra tutoring. Unpublished doctoral dissertation, Camegie
Mellon University, Pittsburgh, PA.

Heffernan, N. & Koedinger, K. R. (1997). The composition effect in symbolizing: The role of symbol
production vs. text comprehension. In Proceedings of the Nineteenth Annual Conference of the
Cognitive Science Society, (pp. 307-312). Hillsdale, NJ: Erlbaum.

Heffernan, N. & Koedinger, K. R. (1998). A developmental model for algebra symbolization: The results of a

difficulty factors assessment. [n Proceedings of the Twenti Conference of the
Science Societv, (pp. 484-489). Hillsdale, NJ: Erlbaum.

Koedinger, K. R., & Anderson, J. R. (1998). Lllustrating principled design: The early evolution of a cognitive
tutor for algebra symbolization, Interactive Leamning Environments, 5, 161-179.

MacLaren, B. A., & Koedinger, K. R. (1996) Toward a dynamic model of early algebra acquisition, In the
Proceedi f Conference on Artificial Intelligence in cation (pp. 38-44). Lisbon,
Portugal: Edicoes Colibri

Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive processes and multiple-
task performance: Part 1. Basic mechanisms. Psychological Review, 104 (1), 3-65.

Ohlsson, S. (1998). Representation and process in leaming environments for mathematics: A commentary on

three systems. Interactive Leamning Environments, 5, 205-215.

Tabachneck, H. J. M., Koedinger, K. R., & Nathan, M. J. (1995). A cognitive analysis of the task demands of

early algebra. In Proceedings of the Seventeenth Annual Conference of the Cognitive Science
Society. Hillsdale, NJ: Erlbaum.

141

