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Three experiments were designed to differentiate two models of schema abstrac-
tion. One model, called the generalization model, proposes that category gen-
eralizations, defined as feature combinations that occur frequently across study
items, are abstracted during learning and used to classify transfer items. Ac-
cording to the other model, called the instance-only model, transfer items are
classified according to their similarity to studied items. Study materials were
constructed that either yielded category generalizations (generalize condition)
or did not (control condition). Transfer items differed on whether they were
classifiable by category generalizations and on their similarity to study items.
In Experiments 1 and 3, accuracy and confidence on transfer items were better
in the generalize condition than in the control condition. Experiment 2 manip-
ulated the order in which generalizable study items were presented for study:
Items were either blocked, so that those contributing to a category generalization
occurred close in the study sequence, or randomly ordered. Study items were
learned faster and transfer performance was better with blocked presentation
than with random presentation. In all three experiments, there was an effect for
the similarity of transfer items to study material. There was some evidence
indicating better transfer performance on novel items that partially, rather than
completely, fit a category generalization. The results support a schema abstrac-
tion model in which transfer is a function of similarity both to specific category
instances and to higher order category information abstracted from those in-
stances.

It is a ubiquitous phenomenon that people cess of this inductive process is not limited

are able to detect regularities that charac-
terize a category of stimuli simply from ex-
perience with category members. The suc-
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to well-defined categories, those for which
a single rule or list of defining attributes will
always predict category membership. For
most real-world categories there may be sev-
eral complex rules governing membership,
none of which is singularly predictive. We
will call the process by which people learn
ill-defined categories from experience with
exemplars schema abstraction. We differ-
entiate this process from concept identifi-
cation only because this term has tradition-
ally denoted classification learning situations
in which the categories are defined by a sin-
gle rule, often derived through explicit hy-
pothesis testing. Since the acquired infor-
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mation abstracted from ill-defined categories
does not reduce to a simple, easily specified
rule, the general issue that concerns us is the
nature of that information and how it is sub-
sequently used to differentiate category
members from nonmembers. In the usual
schema abstraction paradigm, subjects first
learn to classify a set of training items into
one or more categories by trial and error.
They are then given a set of transfer items—
items that they had not studied during train-
ing—to assign to one of the categories they
learned, usually without feedback. It is their
performance on these transfer items that
allows us to infer something about the nature
of the category information acquired from
experience with the initial set of training
items.

Models of schema abstraction differ pri-
marily in their conception of the nature of
this information, its representation, and its
utilization to classify new exemplars. Ac-
cording to prototype models (Franks &
Bransford, 1974; Posner & Keele, 1968), a
single representation of the category’s cen-
tral tendency, called a prototype, is ab-
stracted during learning as the average of
the seen exemplars. Instances are catego-
rized according to how close they are to the
prototype. This model accounts for the ab-
straction phenomena that (a) never-studied
category prototypes are more likely to be
recognized and correctly classified than other,
never-studied items (Posner & Keele, 1968),
(b) after delay, never-studied category pro-
totypes are sometimes better classified than
much-studied training exemplars (e.g., Pos-
ner & Keele, 1970), and (c) classification
and recognition of new items is a function
of the number of transformational steps the
item is from its category prototype (Brans-
ford & Franks, 1971; Franks & Bransford,
1971). Given these results, some investiga-
tors have argued that the information ab-
stracted from category exemplars can be
characterized as follows. First, it is ab-
stracted during experience with the exem-
plars, rather than computed at test time,
since it is available after delay, while specific
instance information is not. Second, the
availability of this information after delay
also suggests it is qualitatively different than
instance information.

An alternative theory of schema abstrac.
tion is the view that the abstracted category
information is based on the frequency with
which features and feature combinationg
occur across exemplars of a category (Hayes.
Roth & Hayes-Roth, 1977; Neumann, 1974;
Reitman & Bower, 1973). We will refer to
these as strength or frequency models. Hayes-
Roth and Hayes-Roth (1977) proposed that
the frequency of occurrence of all an ex-
emplar’s single features plus all possible
combinations of these features (called prop-
erty sets) make up the exemplar’s represen-
tation. The frequency with which a property
set occurred among all the encoded exem-
plars of a category determines its associative
strength to that category. They propose that
recognition of an exemplar is governed by
the associative strengths of its property sets
to the category or categories studied. The
diagnosticity of a property set for a given
category was defined as an increasing func-
tion of its associative strength to that cate-
gory and a decreasing function of associative
strength to the alternative categories. Stim-
ulus sets can be created in which instances
that are farther from the central tendency
or prototype have higher property-set diag-
nosticity than instances that are closer to the
prototype. Hayes-Roth and Hayes-Roth
demonstrated with such material that prop-
erty set diagnosticity, not prototypicality,
predicted classification behavior.

As different as these models may seem,
they share the assumption that some infor-
mation, qualitatively different from the rep-
resentation of individual instances, is ab-
stracted, stored, and used in subsequent
recognition and classification judgments. In
contrast, Brooks (1978) and Medin and
Schaffer (1978) have argued that a model
positing only one level of information, in-
stance information, can account for the pre-
vious schema abstraction results. In a series
of experiments, Medin and Schaffer con-
trolled the distance of transfer items to the
prototypes of two categories while manipu-
lating the similarity of the transfer items t0
individual category members. They demon-
strated that the interitem similarity of train-
ing exemplars affected learning time and
that subsequent recognition and classifica-
tion ratings of new instances were a function




of their similarity to individual training ex-
emplars, not of their distance from category
prototypes. They proposed that classification
of a novel item is based on its similarity to
all the stored items; in other words, the prob-
ability it will be classified in Category 1 is
an increasing function of its similarity to all
the stored Category 1 items and a decreasing
function of its similarity to all the stored
Category 2 items. Medin and Schaffer of-
fered a simplified version of this assumption:
The item most similar to a novel instance is
retrieved and its category assignment is used
to classify the novel instance.

Medin and Schaffer noted that the method
of generating stimuli in most classification
learning experiments—creating category ex-
emplars by applying distortion or transfor-
mation rules to the category prototype—
causes the prototype to be the transfer item
most similar to members of its own category
and least similar to members of another cat-
egory. Thus, the similarity-to-stored-in-
stances model can account for superior per-
formance on prototypes and items close to
prototypes without positing an additional,
qualitatively different level of information.
It can also account for the result that pro-
totype classification suffers little with delay,
because even if some specific instances are
forgotten, other instances similar to the pro-
totype will remain. Hintzman and Ludlam
(1980) replicated this phenomenon with a
computer simulation that stores only ex-
emplar information and uses a best-match
rule in conjunction with a forgetting mech-
anism for classifying old instances and pro-
totypic instances at delay.

However, strength models of the feature-
set variety can account for the data offered
as evidence for similarity-to-stored-instances
models because they propose that individual
instances are augmented with, not replaced
by, higher order category information. Al-
though Medin and Schaffer effectively dem-
onstrated the inadequacy of a prototype
model (at least when small categories are
learned), their experiments were not de-
signed to contrast the assumptions of their
similarity-to-stored-instances model with the
assumptions of strength models. The purpose
of the present series of experiments is to dis-
tinguish between an instance-only model
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proposing that transfer performance is a
function of similarity to stored exemplars
and a particular strength model proposing
that some higher level, qualitatively differ-
ent information is abstracted from, and rep-
resented in addition to, specific instances and
used to classify new items.

The model we are contrasting with the
instance-only model is called the ACT gen-
eralization model, based on the ACT theory
(Anderson, 1976; Anderson, Kline & Beas-
ley, 1979), a model and a computer simu-
lation of declarative and procedural knowl-
edge. Using general learning mechanisms
and assumptions not designed specifically for
schema abstraction tasks, the ACT program
successfully replicated the recognition and
classification results of Franks and Brans-
ford (1971), Neumann (1974), Hayes-Roth
and Hayes-Roth (1977), and Medin and
Schaffer (1978), given their respective tasks
and stimuli (Anderson et al., 1979). How-
ever, having the generalization model ac-
count for these results simply contributes
another competing model to the already
large set of alternative schema abstraction
theories. We designed the present experi-
ments not simply to marshal support for the
ACT generalization model but to differen-
tiate the predictions of an instance-only
model and frequency-based strength models,
of which the ACT generalization model is
one version.

The ACT Generalization Model

A generalization is a pattern of frequently
co-occurring features in a set of data. Al-
though less specific than any pattern seen,
a generalization captures the regularities
across specific items. For example, we might
learn that one member of Club 1 is single,
Catholic, plays tennis, and works for the
government. We might subsequently learn
that a second Club 1 member is single, Prot-
estant, plays tennis, and works for the gov-
ernment. While we would store both these
specific feature patterns, the generalization
we would form that accommodates both
these specific descriptions of Club 1 mem-
bers would be Club I members are single,
play tennis, and work for the government.
Since religion differed in the specific de-
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scriptions, it is not a part of the generaliza-
tion about Club 1 members. Note that, in
addition to the original study instances, the
model proposes that only one features set—
the above generalization—is stored. ACT
contrasts with the Hayes-Roth and Hayes-
Roth (1977) model, which predicts all fea-
ture subsets will be stored. It should be ob-
vious that, with only a moderate set of four
or five feature stimuli, the number of pos-
sible feature combinations would be very
large. Thus, one advantage of the general-
ization model is that it greatly reduces the
amount of information that needs to be
stored.

Each time a generalization successfully
classifies a specific feature pattern, its rep-
resentation in memory becomes stronger; for
example, learning that another Club 1 mem-
ber is Jewish, single, plays tennis and works
for the government reinforces the Club I
members are single, play tennis, work for
the government generalization. According to
the model, each time a pattern of features
successfully classifies an item, not only is it
strengthened but any pattern more general
but still consistent with it is also strength-
ened. For example, the first description, sin-
gle, Catholic, plays tennis, works for the
government, could be classified on some later
learning trial by matching the specific fea-
ture pattern one Club 1 member is single,
Catholic, plays tennis, works for the gov-
ernment previously stored for this item. This
specific pattern would be strengthened. In
addition, the generalization consistent with
this pattern, Club 1 members are single,
play tennis, and work for the government,
although not the basis for this particular
classification, would also be strengthened.
Over time, then, such a generalization will
accrue more strength than any of the specific
patterns that generated it. This greater me-
morial strength is reflected in the higher
probability that a generalization rather than
a specific instance will be accessed to classify
instances. In other words, the above Club 1
member descriptions would eventually be
categorized by matching the generalization
about Club 1 members rather than by
matching the specific patterns initially stored
for them. Anderson et al. (1979) offer a
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more detailed description of the mechanisms
we have outlined here.

The various schema abstraction results are
easily accommodated by the generalization
model. The more distant an item is from its
category prototype, the less similar it is to
the majority of items and the less likely it
is to be classifiable by generalizations formed
from more prototypic items. The generaliza-
tion model can also account for the facili-
tative effect of high interitem similarity
among training exemplars (Medin & Schaf-
fer, 1978): If training items from different
categories share a high degree of overlap,
generalizations between them will not only
compete for application but their strength
will be decremented if they miscategorize
items during training. The model can also
accomodate the Rosch and Mervis (1975)
finding that an item’s classification and typ-
icality ratings depend on its family resem-
blance, the degree to which it is similar to
items within its category and dissimilar to
items in alternative categories. The gener-
alization model predicts that classification
performance on transfer items equally sim-
ilar to study items from alternative catego-
ries would be poor, again because general-
izations from different categories would be
equally likely to match such items.

The key factor that distinguishes the ACT
generalization model from previous theories
is that it is the first clear process model for
representing and capturing the consequences
of correlated attributes in the study exem-
plars. The basic prediction of the theory is
that the greater the overlap among study
items in feature sets, the better performance
will be on test items that share this overlap.
The experiments to follow test this basic
prediction by manipulating both the amount
of overlap of test items with the study sets
and the ease with which subjects may notice
this overlap.

Experiment 1

Our general plan for distinguishing the
generalization model and an instance-only
model was to manipulate the likelihood of
forming category generalizations in two dif-
ferent sets of study exemplars while holding
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the similarity of transfer items to the two
study sets as constant as possible. In this
way, any advantage for having studied the
items that yielded generalizations would be
attributed not to a higher degree of interitem
similarity between those items and the trans-
fer set but rather to the availability of gen-
eralizations.

We also manipulated the type of transfer
item. One type of transfer item could be clas-
sified by applying category generalizations
if generalizations had in.fact been formed
from experience with generalizable study
exemplars. The other type of transfer item
was not classifiable by category generaliza-
tions. According to the ACT theory as de-
veloped by Anderson et al. (1979), a cate-
gory generalization formed during study
must completely match a transfer item in
order to classify it. Given this “full match”
view, the generalization Club I members are
single, play tennis, and work for the gov-
ernment fully matches and would assign to
Club 1 a transfer item such as single, Bap-
tist, plays tennis, works for the government,
but not a transfer item such as married,
Baptist, plays tennis, and works for the gov-
ernment. Therefore, performance should be
better on transfer items that match the cat-
egory generalization than on transfer items
that do not.

The manner in which this general design
was realized in Experiment 1 can be illus-
trated best with a small portion of the ex-
perimental materials. Subjects read five-fea-
ture descriptions of people who belonged to
either the “Dolphin Club” or the “Koala
Club.” Subjects in the generalize condition
studied descriptions such as

1. One member of the Dolphin Club is a Baptist, plays
golf, works for the government, is college educated, and
is single.

2. One member of the Dolphin Club is a Baptist, plays
golf, works for a private firm, is college educated, and
is married.

From these exemplars, we anticipated that
they would form the generalization that a
member of the Dolphin Club is a Baptist
who plays golf and is college educated, since
these are the features that these two club
members have in common. After learning to
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classify items like 1 and 2 into the Dolphin
Club (and other items into the Koala Club),
subjects moved to a transfer task in which
they were presented with new items like

3. This person is a Baptist who plays golf, is unem-
ployed, is college educated, and is divorced.

4. This person is a Baptist who plays tennis, is unem-
ployed, is college educated, and is divorced.

Description 3 is an instance of what we
called a three-overlap transfer item. It over-
laps with Study Items 1 and 2 on three fea-
tures and, moreover, on the three features
that form the generalization (Baptist, golf,
college). Therefore, we would expect trans-
fer performance on Item 3 to be quite high,
since the generalization formed from 1 and
2 matches it completely. In contrast, De-
scription 4 only overlaps with the original
study items on the two features Baptist, col-
lege. While both of these features are part
of the generalization, we would expect a
lower probability of classifying this item as
a Dolphin Club member, since a generaliza-
tion must match an item perfectly to be used.
Therefore, a two-feature overlap with a gen-
eralization that requires three features should
not help.

The other study condition was called the
control condition. Rather than studying a
pair of items like 1 and 2 above, subjects
might study

5. One member of the Dolphin Club is a Baptist who
plays golf, works for a private firm, is high school ed-
ucated, and is divorced.

6. One member of the Dolphin Club is a Baptist who
plays golf, works for the government, is college edu-
cated, and is married.

Note that these study pairs only overlap on
two features, Baptist and golf. After learn-
ing to classify these items, subjects in the
control condition were asked to judge the
same transfer items as subjects in the gen-
eralize condition. Note that Transfer Item
3 is still a three-overlap item for subjects
who have studied Items S and 6. It overlaps
with 5 and 6 on three features, but a differ-
ent set of three features for each study item
(with 5 on Baptist, golf, divorced, and with
6 on Baptist, golf, college). According to the
view that interitem similarity governs clas-
sification judgment, performance on 3 should
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not differ depending on whether subjects
studied Items 1 and 2 or 5 and 6, since the
overlap of transfer item with study items is
the same. However, the generalization point
of view predicts an advantage for having
studied Items I and 2, which offered a three
feature generalization for classifying 3, over
studying Items 5 and 6, which only offered
a two-feature generalization. The ACT gen-
eralization theory predicts poorer perfor-
mance having studied S and 6, because the
probability of forming a generalization, the
probability of its applying to a test stimulus
if formed, and the confidence that the sub-
ject will have in its application all increase
with the number of features in the gener-
alization. Note also that Transfer Item 4
overlaps with Items 5 and 6 on two features
(but a different set of two features for each).
Thus Item 4 is a two-overlap item in the
control condition as well as in the generalize
condition.

The other factor manipulated during
learning was whether subjects saw pairs like
Items 1 and 2 or like 5 and 6 close together
in the study sequence of study items or ran-
domly spread apart. This was the blocked
versus random presentation manipulation.
We expected the transfer performance of
generalization subjects to be better in the
blocked condition than in the random con-
dition: If generalizable pairs are close to-
gether, they are more likely to be simulta-
neously available in a working memory for
patterns. In contrast, we did not predict any
particular difference between blocked and
random conditions with control study ma-
terials.

To summarize, the ACT generalization
model predicted performance to be best in
the generalize-blocked condition on three-
overlap transfer items, since these items are
classifiable by category generalizations, and
equally poor on all other types of transfer
items. An instance-only model predicts no
effects of generalize versus control study
material, nor does it predict an advantage
for blocking. Although it would predict an
advantage for three-overlap versus two-
overlap transfer items, it does not predict
that this effect would vary with study ma-
terial (generalize vs. control) or blocking. In
contrast, the generalization model predicts
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an interaction of study material with trans.
fer item type, with the largest efect of three-
overlap versus two-overlap transfer items for
subjects in the generalize-blocked condition.

Method

Subjects. Eighty members of the Carnegie-Mellon
University community served as subjects. They received
psychology course credit and/or $3 an hour for their
participation. Twenty subjects were used in each con-
dition: generalize-blocked, generalize-random, control-
blocked, control-random. Subjects were randomly as-
signed to one of the four experimental conditions. The
experimental session lasted approximately 2 hr.

Materials and design. The stimuli were five-feature
descriptions of people to be classified members of one
of two clubs. Each feature had four possible values. The
five features and their values were job—(1) unem-
ployed, (2) self-employed, (3) government, (4) private
firm; marital status—(1) single, (2) married, (3) di-
vorced, (4) widowed; religion-—(1) Catholic, (2) Jewish,
(3) Episcopalian, (4) Baptist; hobby—(1) tennis, (2)
golf, (3) chess, (4) bowling; education—(1) grammar
school, (2) high school, (3) college, (4) trade school.
Each stimulus item can be described symbolically as
five digits, one for each feature, with each digit ranging
from 1 to 4 to indicate the specific value of each feature.
Given the above assignment of digits to values, for ex-
ample, the item 43211 could correspond to the descrip-
tion private firm, divorced, Jewish, tennis, grammar
school. The design of the study and transfer material,
given in Table 1, was specified by these numbers rather
than the specific feature values. The values of each fea-
ture were randomly reassigned to the digits 1-4 inde-
pendently for each subject. The order of the features
in the description were also randomly determined for
each subject. This means that for one subject, the 11114
item from Table 1 might have meant government, single,
Baptist, high school, chess, whereas for another subject
it might have meant Baptist, golf, private firm, college,
married. Thus, each subject had his or her own ran-
domly generated set of materials. .

Table 1 schematically illustrates the stimuli and de-
sign of the experiment. A 2 (study set) X 3 (test item
type—the two transfer item types plus the originally
studied items) X 2 (presentation order) design was used.
Study set and presentation were varied between sub-
jects. Table | shows items from the two study sets, the
generalize set and the control set. Pairs of items in the
generalize set gave rise to three-feature generalizations.
The four Club 1 generalizations were 11-1-, 1--22,
4-—-11, and 22-4-. The pairs of study items in the con-
trol condition shared only two features. For both study
sets there was no value on any feature that could per-

_ fectly predict club membership. The values 1 and 2 pre-

dicted Club 1, since they occurred more frequently on
each feature than the values 3 and 4. Club 2 items were
constructed by interchanging 1s and 4s with each other
and 2s and 3s with each other, so that the values 3 and
4 predicted Club 2. The third feature was irrelevant
with respect to club membership.

Since the critical aspects of the design rest on the




o RO G b o,

GENERALIZATIONS AND SCHEMA ABSTRACTION 403

Table 1

Generalize and Control Condition Study Items
and Transfer Items, Experiment |

Club Club Club Club
1 2 1 2
Study items

Generalize Control
11114 44441 11112 44443
11212 44343 11223 44332
12122 43433 13122 42433
13222 42333 24222 31333
42311 13244 21311 34244
44411 11144 42411 13144
22343 33212 22444 33111
22441 ) 33114 42342 13213

Transfer items

Three-overlap Two-overlap

11313 44242 12413 43142
11413 44142 12313 43242
14322 41233 41422 14133
14422 41133 41322 14233
41111 14444 13111 42444
41211 14344 13211 42344
22142 33413 12141 43414
22242 33313 12241 43314

relationships between the study item sets and the test
items, it is worthwhile to work through an example. The
two study sets were constructed so that pairs of items
in each set were equated for the amount of overlap they
had with pairs of transfer items. The two types of trans-
fer items were defined with respect to a study pair.
Transfer items can be classified according to their over-
lap relationship to their corresponding study pair. Over-
lap was the number of features for which two items had
the same values. Transfer items could overlap on either
three features (three-overlap) or two features (two-over-
lap) with their corresponding study pair. For example,
the item 14322 has a three-feature overlap (three-over-
lap) with the item 12122 on the first, fourth, and fifth
features, since the values I, 2, and 2, respectively, are
the same for both items.

To help explain the various tranfer conditions, let us
go through an example of each transfer item type in
Table 1. Consider the first Club I generalize study pair,
11114 and 11212. These two items yield a three feature
generalization 11-1-. The two corresponding three-
overlap transfer items (from the first row of transfer
items in Table 1) for this study pair are 11313 and
11413. Each of these transfer items overlaps the gen-
eralize study pair on three features that also constitute
the 11-1- generalization (11313 and 11413). Of the two
transfer item types, only the three-overlap transfer items
were classifiable by category generalizations. In the two-
overlap transfer items, the 11-1- generalization does
not completely match these items: They overlap on only
two features (the first and the fourth) with the 11-1-
generalization.

The overlap characteristics of the transfer items are

also true with respect to the control study set. For ex-
ample, the three-overlap transfer items, 11313 and
11413, overlap the first control study item, 11112, on
the first, second, and fourth features and with the second
control study item, 11223, on the first, second, and fifth
features. Thus, these two transfer items share three fea-
tures with both items in their respective control study
pair as they did with both items in their corresponding
generalize study pair. The critical difference is that the
three-overlap with the generalize study pair matched a
category generalization, whereas the three-overlap with
the control study pair did not. A comparison of this
control study pair with its other transfer items will in-
dicate that the same relations described above for the
generalize study set hold for the control study set.

There were 16 items in each study set and in each
transfer item type, half Club 1 members and half Club
2 members. For blocked presentation, the 16 study items
were divided into four groups of four items each. Each
group consisted of one Club 1 study pair and one Club
2 study pair. The order of presentation within each
group of four items was permuted and the final se-
quencing of the four groups for study was randomly
determined. This method assured that, in the generalize
condition, generalizable items were separated by at most
two intervening items. Random presentation was real-
ized as a pseudorandom ordering of the items using a
method similar to the one described above for blocking.
The difference was that the Club 1 items and the Club
2 items combined into a group of four were selected
from different study pairs. The actual ordering of the
items differed from trial to trial within the constraints
of the blocking and random ordering algorithms.

Apparatus. The experiment was controlled by a PDP
11/34 computer. Subjects were seated in individual
rooms, each of which contained a CRT screen on which
the stimuli were displayed.

Procedure. The experiment was divided into two
phases, a study phase and a test phase. For the study
phase, subiects were told that their task was to learn to
classify 16 people as either Dolphin Club or Koala Club
members on the basis of their description (club names
were chosen to correspond to the terminal response keys
“d” and “k”). To encourage subjects to attend to all
five features, they were told that club membership was
determined in a complex fashion and that there was no
bias with respect to membership on the basis of a single
feature. They were also encouraged not to formulate
and test hypotheses during learning, but to concentrate
on memorizing each description with its club assign-
ment. In all the experiments reported here this instruc-
tion was used to induce as little analytic processing as
possible. This was desirable in light of Brooks’ (1978)
distinction between analytic and nonanalytic processing
concerning the nature of the information encoded about
a stimulus item. Specifically, Brooks suggests that a
learner in an analytic mode may not encode all aspects
of the stimulus, but only those dimensions and/or values
that seem relevant to the current hypothesis. It is un-
likely that our subjects would spontaneously generate
and test hypotheses corresponding to the complex rules
that govern category membership in these experiments.
It is important to note the distinction between conscious
rule generation and the automatic generalization mech-
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anism that is part of the ACT model. In order for the
generalization mechanism to be as successful as possible
in detecting feature patterns, the data base on which it
operates (namely, the representation of specific items)
needs to be as veridical as possible. Hence we stressed
item memorization rather than active hypothesis testing.

The study items were presented in blocks of 16. One
pass through all 16 items constituted one trial. The
learning criterion was set at one correct pass through
all the 16 items; that is, one 100% accurate trial. Sub-
jects kept cycling through the 16 items until they
reached this criterion. The study items were presented
one at a time in the middle of the terminal screen. Sub-
jects hit either “d” or “k” to classify a person as a
Dolphin Club member or a Koala Club member, re-
spectively. As soon as a response was entered, feedback
of the form “Right, Dolphin (Koala) Club” or “Wrong,
Dolphin (Koala) Club” appeared on the screen. The
description, the subject’s response, and the feedback
remained on the screen for 10 sec. The screen then
erased and the next item was presented. A 10-sec re-
sponse-time limit was set. If the subject did not classify
the item within 10 sec, the correct club membership
appeared, followed by the 10-sec study time. Subjects
were informed that failure to respond within 10 sec
counted as an error. At the end of each pass through
the 16 items, subjects were told their accuracy for that
trial. There were rest breaks after every fourth trial.

After reaching the learning criterion, subjects began
the test phase. They were told their task was to classify
a new set of people as quickly as possible without sac-
rificing accuracy. Both the study items and the transfer
items were presented during the test phase in a different
random order for each subject. The test items were pre-
sented one at a time in the center of the screen and
subjects hit either “d” or “k” to classify the description.
After the subject classified the item, the word confidence
appeared on the screen. Subjects assigned a confidence
rating to their judgment, ranging from 1 (not at all
confident) to 5 (absolutely confident). Subjects were in-
formed that the confidence rating was not timed and
were encouraged to make sure it accurately reflected
how confident they felt about their judgment. The de-
scription and the subject’s response remained on the
screen until the confidence rating was made. The screen
then erased and the next item was presented. Accuracy
and confidence ratings were recorded for each classifi-
cation.

Results

The mean number of trials to criterion in
the study phase was 12.05 for generalize-
blocked, 13.50 for generalize-random, 16.95
for control-blocked, and 15.85 for control-
random. The effect of study set was signif-
icant, F(1, 76) = 6.3, p =.014. Newman-
Keuls tests indicated that the generalize-
blocked and the control-blocked conditions
differed significantly, but the difference be-
tween the study set conditions with random
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presentation was not significant by this test.!
Although learning in the generalize-blocked
condition was faster than in the generalize-
random condition in the predicted direction,
neither the blocking manipulation nor its in-
teraction with study set was significant,
Fs(1, 76)< 1.0. Since both study sets had
equivalent ratios of diagnostic to nondi-
agnostic values on each feature, faster learn-
ing in the generalize conditions could not be
attributed to the use of independent, diag-
nostic cues.

Confidence scores were computed as the
mean of a subject’s confidence ratings on
correct classifications minus his or her con-
fidence ratings on incorrect classifications
for a given test item type. Thus, confidence

‘scores range from —5 to +5. Accuracy on

the study items at retest for generalize-
blocked was 88%, for generalize-random
was 85%, for control-blocked was 81%, and
for control-random was 79%. The mean con-
fidence ratings of study items in these four
conditions were 3.16, 3.38, 2.73., and 2.84,
respectively. Although suggestive, the vari-
ation among these conditions on accuracy
and confidence was not significant. The less
than perfect performance on study items
after reaching criterion during study prob-
ably reflects both successful guessing to
reach study criterion and the subject’s for-
getting of his or her decision rules in the face
of interfering transfer items.

Table 2 presents the mean accuracy and
confidence rating for each item type within
each condition. Analyses of both the accu-
racy and confidence data for transfer items
revealed a significant advantage for the gen-
eralize condition over the control condition,
Fs(1,76) = 15.4 and 14.3, respectively, p <
.001. For each transfer item type, subjects
in the generalize condition were more ac-
curate and more confident than subjects in
the control conditions. There was a signifi-
cant effect of type of transfer item on ac-
curacy, F(1, 76) = 4.2, p < .001, and con-
fidence, F(3, 76) = 33.4, p < .001. Newman-
Keuls tests on both the accuracy and con-
fidence means revealed that all pairwise
comparisons of item types differed signifi-

' All Newman-Keuls tests reported were significant
at the .05 level.
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Table 2
Mean Accuracy and Confidence Scores on Transfer Items as a Function of Study Material and

Presentation Order, Experiment 1

Generalize Control
Item Blocked Random Blocked Random M
Accuracy®
Three-overlap 79 71 68 69 73
Two-overlap 70 71 56 64 66
M 75 74 62 67 69
Confidence
Three-overlap 2.43 2.53 1.49 1.83 2.07
Two-overlap 1.66 1.77 0.57 1.37 1.34
M 2.05 2.15 1.03 1.60 1.71

@ Percent correct.

cantly. The blocking manipulation had no
appreciable effect on either accuracy or con-
fidence, nor did it enter into any significant
interactions.

Discussion

The results in Experiment 1 indicate that
transfer to new category exemplars is facil-
itated when studied exemplars yield gener-
alizations. In addition, initial learning of the
study items was facilitated when generaliza-
tions existed between items being learned.
An instance-only model cannot account for
the beneficial effects of generalizations on
transfer performance. However, the gener-
alization theory is not unequivocally sup-
ported. For both the generalize and contro!
conditions, classification performance was
also a function of similarity to studied ex-
emplars: The less similar transfer items were
to studied items, the worse classification per-
formance was. Under the view that a gen-
eralization must match a test item perfectly
to apply, the generalization theory would
predict good performance on the three-over-
lap transfer items, to which the category
generalizations apply, and chance perfor-
mance on the two-overlap items. Yet sub-
jects performed well above chance in
classifying transfer items for which gener-
alizations did not completely match (two-
overlap items) and transfer items for which
generalizations did not exist at all {control

condition). Thus, we cannot exclude the im-
portance of similarity to studied items-in this
task.

A careful postexperimental examination
of the stimuli uncovered some unintended
variation. Although the test items had sat-
isfied our overlap constraints with the in-
tended study pairs, they had a number of
spurious overlaps with other study pairs. For
example, although a two-overlap item did in
fact have only two features in common with
each of its corresponding study items, it may
have overlapped on three features with some
other study items. To assess the extent of
these spurious overlaps, we computed an
overlap score for each test item to the gen-
eralize set and to the control set in the fol-
lowing manner. Each transfer item had two
overlap scores. Its positive overlap score rep-
resented how similar it was with study items
in its assigned category. Its negative overlap
score represented how similar it was with
study items in the alternative category. For
each transfer item, we tabulated the fre-
quency of five, four, three, two, and one over-
laps it shared with all the study items in its
assigned club (e.g., each Club 1 transfer was
compared with all the Club 1 study items).
Using a metric similar to the one advocated
by Medin and Schaffer (1978), these fre-
quencies were weighted by the square of the
amount of overlap they represented (e.g., the
number of three overlaps was weighted by
nine, the number of two overlaps by four,
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and so on) and summed. This was the trans-
fer item’s positive overlap score, its similar-
ity to study items in the category to which
it was assigned. A transfer item’s negative
overlap score was computed in the same way,
except that the transfer item was compared
with study items in the alternative club (e.g.,
each Club 1 transfer was compared with all
the Club 2 study items). A transfer item’s
final overlap score was the difference be-
tween its positive and negative overlap scores.
Each transfer item had an overlap score for
both the generalize study materials and the
control study materials.?

Table 3 gives the mean overlap score for
each transfer item type with the generalize
study set and with the control study set. The
means for the study items represent their
interitem similarity. Note that, using this
metric, the control study items, compared
with the generalize items, had the same or
more interitem similarity. Given these equiv-
alent interitem similarity scores for the two
types of study materials, an instance-only
model would be at a loss to explain the sig-
nificantly faster learning of generalize study
items. On the other hand, there is greater
similarity for the transfer items in the gen-
eralize condition than in the control condi-
tions. There are highly significant correla-
tions (p <.001) between accuracy,
confidence, and similarity for transfer items
in both the control and the generalize con-
ditions.

Table Al in the Appendix presents the
performance on individual items in the trans-
fer test. The design of these experiments was
such that for each Club 1 item there was a
Club 2 item that was identical in all respects
(indeed, Club 1 and Club 2 could be switched
by simple redefining the digits 1-4 in Table
1). In Table Al, we present the data aver-
aged over these corresponding pairs of Club
1 and Club 2 items and refer to this average
by the Club 1 numerical notation. Relatively
small numbers of observations contributed
to these individual items, and performance
measures for these individual items are not
particularly stable. Still, some theory might
regard a portion of the variance among in-
dividual items as systematic. Note, for ex-
ample, the difference in accuracy and con-
fidence between Items 14322 and 41111.
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Table 3

Mean Overlap Scores for Study Items and
Transfer Items as a Function of Study
Condition, Experiment 1

Study condition

Test item Generalize Control
Study® 22.6 235
Three-overlap 17.2 15.1
Two-overlap 10.1 2.7

* This score is a measure of the amount of interitem
similarity among the study items themselves.

Both these items have a similarity score of
17 in the generalize condition, but the ac-
curacy and confidence means for Item 14322
are considerably higher than those for Item
41111. Item 14322 can be correctly classi-
fied by virtue of the value 2 on its fourth
dimension; that is, Value 2 on this dimension
never occurs in Club 2 items (and conversely,
Value 3 on this dimension never occurs in
Club 1 items). Item 14422 can also be clas-
sified by this rule. Similarly, Value 2 on Di-
mension 1 is a sufficient predictor of Club
1 membership for items 22142 and 22242.
The accuracy and confidence means in Table
Al for these sufficient-feature items are gen-
erally higher than for other items with com-
parable similarity scores. A theory in which
the search for sufficient features or feature
combinations drives a generalization mech-
anism may be able to account for this vari-
ance in the data.® We will return to this dis-
tinction between sufficient-feature items and
no-sufficient-feature items later in the
article.

We looked at performance on specific
transfer items to determine if similarity to
studied items alone could account for our
results. We paired three-overlap transfer
items from the control and generalize con-
ditions such that the control item had as high

2 There are other ways of calculating similarity or
overlap. We have tried a couple of others, and they yield
substantially the same conclusions. We chose to use a
metric based on the work of Medin and Schaffer because
theirs is the most successful instance-based model.

* The authors wish to acknowledge Doug Medin for
bringing the sufficient-feature aspect of the stimulus set
and its implication to our attention.
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or higher a similarity rating as the generalize
item. For example, we contrasted Item 22142
under the control condition with item 22242
under the generalize condition. Item 22142
had a higher similarity score (23) to the con-
trol study material than Item 22242 had to
the generalize study material (19). If sim-
jarity to study materials was the only factor
of importance, then performance on Item
22142 should be a little better than on Item
22242. 1f Item 22242 in the generalize con-
dition showed better performance than Item
22142 in the control condition, this would
be evidence for the importance of general-
izations. We were able to find eight such
pairs (four pairs of corresponding Club 1 and
Club 2 items). This means we are consid-
ering half of the original set of three-overlap
items. Averaging across blocked and random
presentation, the mean accuracy for the con-
trol items in these pairings was 74% and the
mean accuracy for the generalize items was
82%. The mean confidence for the control
items was 2.26; for the generalize items it
was 2.84. One-tailed t tests on the difference
scores for paired items collapsed across sub-
jects indicated that both accuracy and con-
fidence was higher on the items classifiable
by generalizations, #(7) = 2.41 and 2.33, re-
spectively, p < .05. The difference between
these two subsets of transfer items was also
significantly different across subjects, #(78) =
2.10 and 1.76 for accuracy and confidence,
respectively, p < .05. Thus, it appears that
even when we more than compensate for
item similarity, we get an effect of gener-
alizations.

This advantage holds true when the suf-
ficient-feature items and the no-sufficient-
feature items are considered separately. For
sufficient-feature items (14322, 14422,
22142, and 22242), the mean generalize con-
dition accuracy was .86 and the mean con-
trol condition accuracy was .76. The mean
confidence for these items in the generalize
and control conditions was 3.20 and 2.37,
respectively. For the no-sufficient-feature
items (11313, 11413,41111,and 41211), the
mean accuracy was .70 and .62 for the gen-
eralize and control conditions, respectively.
The mean confidence was 1.77 in the gen-
eralize condition and .86 in the control con-
dition.

These item analyses bolster our claim that
transfer performance in Experiment 1 can-
not be accounted for solely by a similarity-
to-stored instances model. We also acknowl-
edge the inadequacy of the generalization
model, in its present form, in accounting for
the similarity effects we found. We will elab-
orate on the inadequacy of the generaliza-
tion model in the face of these similarity
effects and propose certain reformulations
of the model in the General Discussion. The
next experiment focused on the effect of
blocked versus random presentation, and the
third experiment focused on the effect of
generalize versus control study materials. By
examining each of these factors one at a
time, we were able to avoid the design con-
straints that led to the large amount of un-
controlled variation in overlap between study
items and transfer items in Experiment 1.
In addition, by focusing on a single factor
at a time, we were able to perform a more
powerful manipulation of each variable and
also get the added statistical power of a
within-subjects design.

Experiment 2

In Experiment 2, we contrasted two gen-
eralize conditions, one in which forming gen-
eralizations might be facilitated by blocking
and one in which forming generalizations
was hindered by random presentation of in-
stances. To enhance the effect of blocking,
we increased the ratio of items to general-
izations, so that a given generalization ac-
counted for three exemplars per category
rather than just two. The strength of the
resulting generalizations should be greater
than in the previous experiment and the po-
tential for blocking to have an effect should
be greater. To increase the statistical power
of the experiment, we made the presenta-
tion-order manipulation a within-subjects
factor by running a two-phase experiment.
In Phase 1, subjects studied generalizable
items presented either blocked or randomly.
In Phase 2, subjects studied a different set
of generalizable materials in the alternative
presentation order.

Method

Subjects. Forty-three members of the Carnegie-
Mellon University community received psychology course
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credit and/or $3 an hour for their participation in the
2-hr. experiment.

Materials and design. Two sets of stimulus items
were used to create five-feature descriptions of people
to be classified as Dolphin or Koala Club members and
of “space invaders” to be classified as “friendly” or
*“hostile.” Two sets were constructed to be used in the
two phases of the experiment so that the form of the
generalizations (i.e., which of the five features made up
the generalizations) would be different in each of the
two phases (see Table 4 for Stimulus Set A and Table
A2 in the Appendix for Stimulus Set B).

Each feature had six values. The club member fea-
tures and values were job—unemployed, self-employed,
government, private firm, military, retired; religion—
Catholic, Jewish, Episcopalian, Baptist, Mormon, Lu-
theran; hobby—stamps, coins, painting, gardening, chess,
reading; musical raste—classical, jazz, rock, disco, folk,
country; sport—volleyball, basketball, bowling, squash,
racquetball, handball. The space invader features and
values were color—purple, red, blue, green, yellow,
brown; skin—metallic, furry, spiny, scaly, translucent,
luminescent; appendage—claws, antennae, horns, wings,
tentacles, tail; home planet atmosphere—radon, neon,
helium, xenon, argon, krypton; base of operations—
Venus, Mars, Jupiter, Saturn, Uranus, Pluto. As in
Experiment 1, the ordering of features in the description
and the assignment of descriptive values to numeric val-
ues were randomly determined for each subject. There
were nine items in each category. Study items were gen-
erated in sets of three. The three items in a set shared
three features in common. Thus, there were three gen-
eralizations per category. The three Category 1 gen-
eralizations were 111-—, -4-12, and --223. The cor-
responding Category 2 generalizations were 444,
~1-43, and -~332.

Three types of transfer items were constructed: four-
overlap, three-overlap, and two-overlap. The four-over-
lap items shared the generalization yielded by one of
the study set triplets plus a fourth feature with some of

Table 4
Set A Generalize Study Items and Transfer Items,

the items in the triplet. For example, the study item
triplet 11144, 11121, and 11132 yields the generaliza-
tion 111--. The four-overlap item 11134 shares the
111—— generalization with each of these three study
items. It also overlaps the first study item on the fifth
feature and the third item on the fourth feature. There
were 18 (9 per category) four-overlap transfer items.

The two-overlap transfers overlapped on only two fea-
tures with any study item in their respective category.
A computer program generated all possible two-overlap
items for each stimulus set. From this set, we selected
the items that had a relatively high (four or more) num-
ber of positive two-overlaps and a relatively low (two
or fewer) number of negative two-overlaps. Some of
these two-overlap transfers had the property that the
two features they shared with a study item matched part
of a category generalization. For example, the three
study items 11144, 11121, and 11132 have the gener-
alization 111--, and the two-overlap transfer item
12113 overlaps on the first and third features of each
of these items and with the generalization as well. Two-
overlap items that had this property were designated as
two-overlap partial matches—two(PM) overlaps—since
they matched two thirds of a category generalization.
In contrast, a two-overlap item such as 12214 also over-
lapped three study items (11144, 14312, and 32223) on
two features, but none of these two-feature overlaps
partially matched any of the category generalizations.
For stimulus set A, 6 out of 18 two-overlap transfers
were partial matches. For Stimulus Set B, 10 out of 18
two-overlap transfers were partial matches. The partial
matches are starred in Table 4 and in Table A2.

A third type of transfer item, three-overlap transfers,
was also included. These items matched one of the three-
feature category generalizations yielded by one study
item triplet. However, they were qualitatively different
from the other transfer items, since one of their non-
overlapping features had values that were not used in
any of the study items. In other words, the study items
used only four of the six possible values on a given fea-

Experiment 2

Transfer items

Study items Four-overlap

Three-overlap Two-overlap®

Category Category Category Category Category Category Category Category
i 2 1 2 1 2 1 2

11132 44423 11111 44444 11115 44445 *12113 *43442
11144 44411 11114 44441 11116 44446 *13113 *42442
11121 44434 11134 44421 *14224 *41331
14312 41243 14212 41343 54212 51343 12214 43341
24412 31143 24112 31443 54612 51643 13211 42344
44112 11443 24212 31343 22114 33441
32223 23332 22223 33332 15223 45332 23114 32441
43223 12332 12223 43332 26223 36332 24141 31414
21223 34332 13223 42332 23214 32341

* Asterisks indicate items that partimlly match a category generalization.
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ture, but the remaining two values were used to con-
struct the three-overlap transfer items. For example, the
three-overlap item 11115 overlaps each of the study
items 11144, 11121, and 11132 on the 111-- general-
ization, but the value 6 on the fifth feature was never
used in any study item. It was necessary to use new
values in order to construct items that overlapped on
only the three-feature generalization for one category
but did not overlap on three features with an item in
the alternative category. Since three-overlap transfers
contained never-studied values, they were always pre-
sented as the last items in the transfer test. This was
done to ensure that performance on four- and two-over-
lap transfers was uncontaminated by any “surprise”
effects these items might generate. There were 12 (6
per category) three-overlap transfers in each stimulus
set. To summarize, category generalizations could be
used to classify four-overlap and three-overlap transfer
items; according to the full-match view, they would not
be helpful in classifying either two-overlap or two(PM )-
overlap transfer items. -

The presentation factor (blocked vs. random) varied
within subjects. In one phase, a subject’s study items
were blocked, and in the other, the study items were
presented randomly. For blocked presentation, two
study item triplets, one from Category ! and one from
Category 2, were randomly selected to be combined as
a group of six items, whose order was then permuted.
A second pair of study item triplets was selected, com-
bined, and permuted as a group of six. The final pair
of triplets was then permuted. These 18 study items
were presented on one trial in this order. This method
assured that the three items yielding a given general-
ization were clustered relatively close in the presentation
sequence. For random presentation, items were also
sorted into three groups of six, but the items in a given
group of six came from each of the six different triplets.
None of the three Category 1 items in a group of six
were from the same Category 1 triplet, so they did not
yield any category generalizations among themselves.
Thus, there were no generalizable pairs in any block of
six items. The order of the six items in each group was
permuted, and the 18 items were presented in this order.
The actual ordering of items in the blocked and random
conditions varied from trial to trial, within the con-
straints of their respective presentation algorithms.

Apparatus and procedure. The apparatus and pro-
cedure were the same as described for Experiment 2.
The only difference was the learning criterion. To assure
that subjects would complete both phases of the exper-
iment in the allotted time, the learning criterion was set
at two 85% correct passes through the 18 study items.
If a subject did not reach this criterion after 14 passes,
she or he moved on to the transfer test of the phase.

Results

There were 14 cases of failure to reach the
learning criterion. Six of these were three
subjects who did not reach criterion in either
phase of the experiment. Of the remaining
eight cases, five occurred with blocked pre-

sentation and three occurred with random
presentation. The mean number of trials to
criterion for learning was 8.2 in the blocked
phase and 9.5 in the random phase (based
on all subjects, including those failing to
reach the learning criterion in 14 trials). The
advantage of blocked presentation was sig-
nificant, F(1, 41) = 4.4, p = .041. When the
order of phases, blocked-random or ran-
dom-blocked, is considered as a between-
subjects factor, blocked-random subjects
averaged 8.9 trials on their blocked (first)
phase and 9.2 trials on their random (sec-
ond) phase. Random-blocked subjects av-
eraged 9.7 trials in their random (first) phase
and 7.5 trials in their blocked (second)
phase. Although the trends are suggestive,
the effect of phase order was not significant,
nor was the interaction with presentation.
Subjects always learned faster in their
blocked phases than in their random phases.

In the blocked condition, the mean ac-
curacy on study items at retest was 79% and
the mean confidence was 2.58. For random
phases, the scores were 79% and 2.56. These
retest scores were about 7% lower than those
found in Experiment 1. However, none of
the Experiment 2 items had the sufficient-
feature characteristic, which may have
boosted subjects’ initial learning and retest
performance on study items in Experiment
1. The mean accuracy and confidence scores
for transfer items are presented in Table 5.

Analyses of variance on the transfer data
included the order of blocked and random
phases as a between-subjects factor. There
were 21 subjects whose phase order was
blocked-random and 22 subjects whose phase
order was random-blocked. The two-overlap
transfer items were partitioned into two(PM)
overlaps and two overlaps, making a total
of four transfer item types. There was a main
effect of presentation on accuracy, F(Q1,
41) = 5.2, p =.029. Subjects’ mean accu-
racy on transfer items was 73% in blocked
phases but only 67% in random phases. The
means in Table 5 show that accuracy varied
greatly as a function of transfer item type,
an effect that was highly significant, (3,
123) = 31.5, p < .001. Not surprisingly, sub-
jects were most accurate on four-overlap
transfers and least accurate on two-overlap
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transfers. Newman-Keuls tests on the
blocked-phase accuracy means indicated that
accuracy on each of the two types of high
(four and three) overlap transfers was sig-
nificantly higher than accuracy on each of
the two low (two and two(PM)) overlap
transfers. Similarly, random-phase accuracy
means for four- and three-overlap items were
significantly higher than accuracy on all the
two-overlap items. It is interesting to note
that subjects’ accuracy on two(PM )-overlap
items, which partially matched two of the
three features of a category generalization,
was significantly higher than their accuracy
on two-overlap items. Apparently, having a
partial overlap with the generalization led
to an advantage.

Subjects were also more confident in
blocked presentation conditions, but unlike
the accuracy results, this effect did not reach
statistical significance, F(1, 41) =28, p=
.1. There was a significant effect of transfer
item type on confidence scores, F(3, 123) =
39.1, p<.001. Newman-Keuls tests re-
vealed that all pairwise comparisons of con-
fidence means for the transfer item types
were significant, with the exception of the
three-overlap and two(PM)-overlap con-
trast.

Discussion

Support for the proposal that generaliza-
tions are formed during learning and used
during transfer comes from a number of
sources in Experiment 2. First, learning was
faster when generalizable items were blocked
than when they were randomly ordered. Sec-
ond, transfer performance was higher in the
blocked phases than in the random phases.
An exemplar-based model in which similar-
ity determines the acquisition and represen-
tation of the initial study items may be able
to account for these findings. Finally, there
was no interaction of presentation mode with
test item type: The effect of decreasing sim-
ilarity of test items to study items was the
same in both blocked and random condi-
tions. While blocking items may have facil-
itated forming generalizations, the effect of
transfer item type in the random condition
suggests that some category generalizations
were formed even when generalizable items
were randomly ordered. The third piece of
(unexpected) evidence that argues for the
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existence of generalizations is the better
transfer to two(PM)-overlap items relative
to two-overlap items. Subjects were more
accurate on two-overlap transfers that par-
tially matched a generalization than on thoge
that did not, a result the generalization
model would not have predicted.

To better evaluate this advantage for par-
tial matches to generalizations, we computed
an overlap score for each of the two(PM)-
overlap and two-overlap items, using the
method described in Experiment 1. Al-
though each two-overlap and two(PM)-over-
lap transfer had only two and one overlaps
with the study items, this similarity measure
is based on the frequency with which the
overlaps occur. The mean overlap score for
the two(PM)-overlap items, set A and B
combined, was 9.25. For the two-overlap
items, the mean overlap score was 8.0. Al-

" though the differences between the two(PM)-

overlap items and the two-overlap items on
these two measures are small, they could
account for the performance differences we
found. We performed an analysis of covari-
ance using item type, two(PM )-overlap ver-
sus two-overlap, as the random factor and
individual transfer item overlap scores as the
covariate. With this analysis, the effect of
item type on accuracy approached signifi-
cance, F(1, 33) = 3.6, p = .06. This analysis
suggests that the two(PM)-overlap advan-
tage did not occur simply because these
items had more two-feature matches with
study instances than the two-overlap items
did, but because some of those two-feature
matches also partially matched a general-
ization. In other words, there seemed to be
an effect for similarity to feature patterns
that were category generalizations. How-
ever, although the overall performance dif-
ferences on low overlap items that do and
do not partially match category generaliza-
tions are suggestive, the role of partial
matches to generalizations in classification
judgments warrants a more controlled in-
vestigation of its own.

Experiment 3

Experiment 3 was designed as an attempt
to replicate the Experiment 1| result that
transfer to new items was better if studied
items yielded category generalizations than
if they did not. As in Experiment 1, we con-




Table 5

Mean Accuracy and Confidence Scores on
Transfer Items as a Function of Presentation
Order, Experiment 2

Presentation order

Transfer item Blocked ~Random M
Accuracy®
Four-overlap 83 78 81
Three-overlap 78 72 75
Two(PM)-overlap 69 64 67
Two-overlap 61 53 57
M 73 67 70
Confidence
Four-overlap 2.80 2.42 2.61
Three-overlap 1.86 1.63 1.75
Two(PM)-overlap 1.24 1.03 1.14
Two-overlap .87 .36 .62
M 1.69 1.36 1.53

 Percent correct.

trasted a generalize study set whose items
yielded three-feature generalizations with a
control set whose items did not yield cate-
gory generalizations. In Experiment | there
turned out to be some differences between
the two sets of material in the similarity be-
tween study and transfer items. Although
there was still an advantage for the gener-
alize condition when we looked at subsets of
items for which this similarity difference was
not a problem, it would be desirable to show
a generalize advantage for having studied
generalizable materials that were more
equivalent to control materials overall in
terms of interitem similarity of study and
transfer items. We discovered that we could
not generate control and generalize study
material that were equally similar to the
transfer items and that satisfied overlap and
cue validity constraints if we used the same
transfer item set for both generalize and con-
trol study sets as in Experiment 1. Instead,
we alesigned a generalize study set and a
co: rol study set each with its own transfer
ite 1 set and tried to make the relation be-
twezn the transfer set and the study set as
equivalent as possible for both the generalize
and the control materials.

Method

Subjects. Forty members of the Carnegie-Mellon
University community received psychology course credit
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and/or $3 an hour for participation in the 2-hr. exper-
iment.

Materials and design. The club member and space
invader materials described for Experiment 2 were used
in conjunction with the generalize and control items
presented in Table 6.

For both the generalize and control study items, there
were four possible values for each of the first four fea-
tures and five possible values for the fifth feature. Cat-
egory 2 was constructed from category 1 by interchang-
ing Is with 4s and 2s with 3s. The value 1 on any feature
was predictive of Category 1 and the value 4 on any
feature was predictive of Category 2. Except for the
fifth feature, the value 2 was somewhat predictive of
Category 1 and the value 3, of Category 2. The values
2, 3, and S5 on the fifth feature were not predictive of
either category.

There were eight study items per category. For the
generalize condition, pairs of study items were con-
structed to overlap on three features. The four Category
1 generalizations were: 112--, 12-1-, 2-11-, and
_112-. For the control condition, study items were also
constructed in a pairwise manner. The items in a control
study pair shared only one feature in common. Using
the metric described in Experiment 1, the mean overlap
score for the generalize study items, a measure of their
interitem similarity, was 28.8; for control study items,
the mean overlap score was 25.1.

Only one type of transfer item, three-overlap, was
used; there were eight three-overlap transfer items per
category. One pair of transfer items was constructed for
each pair of study items. For the generalize study set,
each of the transfer items in a pair overlapped each of
the items in its corresponding study pair on three fea-
tures. These three features were the generalization
yielded by the study pair. For example, the study pair
11235 and 11241 overlap on the first, second, and third
features, yielding the generalization 112-- The two
transfer items 11213 and 11224 overlap each of the
study items on the first three features and are classifiable
by the 112-- generalization. A transfer item pair over-
lapped on three features only with the items in its cor-
responding study pair; that is, there were no spurious
three-feature overlaps between a transfer item and a
third study item.

Pairs of transfer items were constructed in the same
way for the control study set. Each transfer item in a
pair overlapped with two study items on three features
in its corresponding study pair, but a different three
features for each item. For the control study pair 11235
and 12141, the transfer item 11241 overlaps the first
study item on the first, second, and third features and
overlaps the second study item on the first, fourth, and
fifth features. The second transfer item 12135 overlaps
the first study item on the first, fourth, and fifth features
and the second item on the first, second, and third items.
As in the generalize study set, a control transfer pair
shared three features only with its corresponding study
pair.

An overlap score was computed for each transfer item
by tabulating the frequency of three, two, and one over-
laps with study items in its assigned category (positive
overlap) and with study items in the alternative category
(negative overlap). As in Experiment 1, we mutltiplied
the frequency of each overlap type by the square of the
overlap and summed the results. The positive overlap
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Table 6
Study Items and Transfer Items for Generalize
and Control Conditions, Experiment 3

Generalize Control
Category 1  Category 2 Category | Category 2
Study items
11235 44325 11235 44325
11241 44314 12141 43414
12311 43244 11124 44431
12414 43141 21313 34242
23113 32442 31112 24443
24111 31444 42121 13434
31122 24433 24411 31144
41121 14434 13212 42343
Transfer items
11213 44342 11241 44314
11224 44331 12135 43425
12213 43342 21123 34432
12115 43445 11314 44241
22115 33445 41111 14444
21114 34441 32122 23433
21124 34431 23211 32344
11133 44432 14412 41143

score minus the negative overlap score gave the final
overlap measure. The mean overlap score for the gen-
eralize transfer items was 23.6 and for the control trans-
fer items was 18.6. Since this difference was somewhat
larger than we had hoped to achieve, we will examine
performance on specific items paired in such a way as
to contrast the effect of higher similarity to study ma-
terials without generalizations with the effect of lower
similarity to study materials with generalizations.

Study material, generalize or control, was varied
within subjects. The experiment was run in two phases.
The order of phases, generalize-control or control-gen-
eralize, and the assignment of club member or space
invader descriptions to generalize and control materials
were counterbalanced across subjects.

Apparatus and procedure. The procedure was iden-
tical to that of Experiment 2. Both generalize and con-
trol study items were presented in a blocked order, using
the method described in Experiment 2. After each trans-
fer test, subjects filled in brief questionnaires in which
they described what strategies they used to learn the
study items and their impressions of what determined
category membership.

Results and Discussion

There were 26 cases of failure to reach
learning criterion. Five subjects did not
reach criterion for either their generalize or
control phase. Of the remaining 16 cases, 4
occurred in the generalize phase and 12 oc-
curred in the control phase. Subjects took
9.55 trials to reach learning criterion with
generalize materials and 10.68 trials with

control materials. This effect approached
significance, F(1, 38) = 3.65, p=.06. Learn-
ing was faster in the second phase, regardless
of materials, as revealed by a significant
Study Material X Phase Order interaction
F(1, 38) = 13.01, p = .001. Generalize-con-
trol subjects took 10.3 trials in their first
(generalize) phase and 9.3 trials in their sec-
ond (control) phase. Control-generalize sub-
jects took 12.1 trials in their first (control)
phase and 8.8 trials in their second (gener-
alize) phase. The speedup across phases for
subjects going from generalize to control
materials was one trial, but for subjects
going from control to generalize materials
the decrease’in learning time was more than
three trials. These learning phase data rep-
licate the findings of Experiment 1: Learning
was facilitated when the study items af-
forded category generalizations, even when
the two sets of study materials had approx-
imately equal interitem similarity.

For generalize materials, the mean accu-
racy and confidence on study items at retest
was 82% and 2.87, respectively. For control
materials, these scores were 82% and 2.91.

Table 7 presents the mean accuracy and
confidence scores as a function of phase or-
der and materials for the transfer items.
There was a main effect of item type (study
vs. transfer) on accuracy, F(1, 38) = 25.1,
P <.001. Not surprisingly, subjects were less
accurate on new transfer items than on stud-
ied items, indicating some effect of memory
for specific instances. Although subjects
were equally accurate on generalize and con-
trol study items, they differed significantly
in accuracy on the three-overlap transfer
items as a function of study material (p <
.05). With generalize materials, subjects
were 78% accurate on transfer items, whereas
with control materials, they were 71% ac-
curate on transfer items. Phase order did not
significantly affect accuracy, but the Phase
Order X Study Materials interaction* ap-
proached significance, F(1, 38) = 3.5, ,1)<
.06. This reflected the trend that control-
generalize subjects were 12% more accurate
in their second (generalize) transfer test
than they were in their first (control) trans-
fer test, whereas generalize-control subjects
were 2% more accurate in their second (con-
trol) phase than in their first (generalize)
phase. At the very least, these data suggest

AT
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that the benefit of practice with the task is
contingent on the nature of the materials.

Similar effects emerged for confidence
ratings. The item effect was significant, F(1,
38) = 30.3, p = .001. The mean confidence
score on transfer items for generalize ma-
terials, 2.50, was significantly higher than
the mean confidence score on these items
given control materials, 1.85 (p < .05). The
interaction of study materials with item type
was significant, F(1, 38) = 8.8, p = .005.
Study material interacted with phase order,
F(1,38) = 6.2, p = .017. The mean increase
in confidence on the second phase relative
to the first was 1.11 for control-generalize
phase order, but only .16 for the generalize~
control phase order.

As in Experiment 1, we examined perfor-
mance on specific items. Table A3 in the
Appendix gives accuracy and confidence
means for individual transfer items collapsed
across subjects and averaged over Clubs 1|
and 2. We found 10 pairs (5 Club 1 pairs
and 5 corresponding Club 2 pairs) such that
the similarity of the control items was nearly
identical to the similarity of the generalize
items. The average similarity of the control
pairs was 21.6 and of the generalize pairs
was 21.2. The average accuracy for the con-
trol items in these pairs was 74% and for the
generalize items was 78%. The average con-
fidence rating for the control items was 2.00;
for the generalize items it was 2.40. The
accuracy effect was not significant, but the
confidence effect was significant across items,
#(9) = 1.86, p <.05, and across subjects,

Table 7

Mean Accuracy and Confidence Scores on
Transfer Items as a Function of Study Set and
Phase Order, Experiment 3

Phase order

Study Generalize- Control-
condition Control Generalize M

Accuracy?®

Generalize 74 82 78

Control 72 70 71
Confidence

Generalize 2.11 2.90 2.50

Control 1.95 1.79 1.85

? Percent correct.

t(19) = 1.98, p < .05.* Thus it appears again
that when we compensate for effects of item
similarity, we still find an advantage for gen-
eralizations.

When we examined the subjects’ postex-
perimental reports, we found little evidence
for awareness of generalizations or parts of
generalizations. There was certainly no case
in which a subject reported all six three-fea-
ture generalizations that occurred in his or
her study items. When asked what deter-
mined category membership, most subjects
listed single features. A few subjects showed
sensitivity to configurations of features or
contingency relationships (e.g., “Dolphin
members were Lutheran and collected
stamps, unless they liked jazz . . . then they
were Koalas”). We checked subjects’ reports
for the generalize phase to see how well their
rules matched the six generalizations that
actually appeared in their study items. Out
of the 30 subjects for which we had proto-
cols, one subject reported two complete gen-
eralizations; another subject mentioned one.
There were seven subjects reporting two
thirds of some of the generalizations. How-
ever, these subjects, like the majority, also
reported feature combinations that did not
correspond at all to the generalizations. In
general, subjects were either unaware of the
category generalizations or unable to artic-
ulate them.

General Discussion

Perhaps the best testimony to the success
of these experiments is that none of the the-
ories we reviewed in the introduction has
emerged unscathed. Experiments 1 and 3
provided ample evidence that the opportu-
nity to form category generalizations leads
to better performance in initial learning and
transfer. While Experiment 2 did not di-
rectly contrast a control versus generalize
condition, the contrast between blocked and
random presentation would only have impact
if subjects were forming generalizations. The

* Since there were significant order effects, scores of
subjects who had the control-first-generalize-second
order were averaged with scores of subjects who had the
generalize-first-control-second order. A given subject’s
scores were averaged with the next subject run in the
alternative order. We then did our subject analysis on
these 20 paired subjects.
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prototype models suppose that central ten-
dencies are extracted and used to categorize
test instances. However, they assume a sin-
gle central tendency that implies that dis-
tance from the central tendency should be
the only relevant variable. Numerous exper-
iments have already disconfirmed this pre-
diction, at least for cases in which verbal
material is used (e.g., Hayes-Roth & Hayes-
Roth, 1977) or for cases in which small cat-
egories are learned (Medin & Schaffer,
1978). Experiment 1 showed that, for our
particular paradigm too, there is an effect
of degree of overlap with individual study
instances, holding number of diagnostic fea-
tures (i.e., central tendency) constant.

Our results also rule out most of the fea-
ture-set models (Hayes-Roth & Hayes-Roth,
1977; Neumann, 1974; Reitman & Bower,
1973) in that they have no role for a gen-
eralization process. Both Neumann’s (1974)
model and Reitman and Bower’s (1973)
model were designed to predict recognition
ratings; neither makes classification predic-
tions. Hayes-Roth and Hayes-Roth’s (1977)
property set model, which is most similar to
the generalization model we tested, does not
predict the differences we found between
generalize and control conditions. Their
model predicts classification on the basis of
a transfer item’s most diagnostic property
set. According to their model, an item’s
property sets are the power set of all its val-
ues. Each of our five-feature items had 31
property sets. To make property set model
predictions for our Experiment 3 task, we
did the following for each property set of
each transfer item: (a) tabulated its fre-
quency of occurrence among Category 1 ex-
emplars and among Category 2 exemplars:
(b) formed two ratios-—the frequency of
Category 1 occurrences over all occurrences
and the frequency of Category 2 occurrences
over all occurrences; and (c) found the larg-
est ratio of all those computed, which sig-
nified the most diagnostic property set. If it
is a Category 1 ratio, the model predicts a
Category 1 classification for the transfer
item. If it is a Category 2 ratio, the model
predicts a Category 2 classification. If there
is a tie for the largest ratio across categories,
classification is not predicted.

In Experiment 3, there are 12 generalize
transfer items with a most diagnostic prop-
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erty set for the correct category. There are
10 such control items. Performance is 81%
accurate on these generalize items and 73%
on these control items. Thus, when we con-
sider only the transfer items for which the
property set model makes a classification
prediction, it still cannot account for the
difference found between generalize and
control conditions.

This leaves only an instance-only model
and the ACT generalization model, the two
alternative views we set out to differentiate.
As indicated by the various problems we
encountered in constructing material to this
end, this was no easy task. Let us first con-
sider the body of evidence from all three
experiments that supports the generalization
model: (a) Generalizable materials were
learned faster than nongeneralizable mate-
rials (Experiments 1 and 3), even when the
nongeneralizable materials had a higher de-
gree of interitem similarity (Experiment 1);
(b) generalizable material was learned faster
when presented so as to facilitate the for-
mation of generalizations (Experiment 2);
(c) transfer performance was better when
generalizable materials were blocked to fa-
cilitate the formation of generalizable ma-
terials than when they were presented ran-
domly (Experiment 2); (d) performance was
higher on items classifiable by generaliza-
tions than on items that had higher similar-
ity to the study material but were not
classifiable by category generalizations
(Experiments 1 and 2).

On the other hand, the data from the ex-
periments gave ample evidence for effects
of similarity between study and transfer
items even when there were applicable gen-
eralizations. These results cannot be ex-
plained by the generalization model as set
forth in Anderson et al. (1979) but can be
explained by an instance-similarity model.

Is there any way in which an instance-
based model can account for the above ev-
idence in favor of a generalization model?
One possibility lies in Medin and Schaffer’s
(1978) model, which includes a selective at-
tention mechanism. The purpose of this
mechanism is to account for the differential
saliency of certain dimensions for different
subjects and the possibility that subjects may
actively engage in some hypothesis testing.
In either case, the final representational out-
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come is that some aspects of a stimulus may
be encoded and others not. It is possible that
the effects attributed to generalizations are
simply due to the fact that some dimensions
were more salient than others, because tri-
plets of features—our generalizations—
tended to occur on them. In other words,
those aspects of the stimulus items that
would prove to be most helpful in classifying
novel items were more salient in the gener-
alize conditions than in the control condi-
tions. Let us consider this possibility for each
of our experiments. In Experiment 1, Di-
mension 3 was never used in any category
generalizations. Dimensions 1 and 4 were
used in all category generalizations, and
Dimensions 2 and 5 were each used in half
of the category generalizations. A subject
could conceivably have classified all transfer
items correctly if he or she attended only to
Dimensions 1 and 4. Recall that the actual
instantiations of Dimensions 1 and 4 (i.e.,
as job, marital status, education, religion, or
hobby) were randomly determined for each
subject. Thus, subjects would have had to
selectively attend to a person’s first and
fourth characteristic per se, regardless of
what they were. Nonetheless, it is possible
that subjects may have done this. In Exper-
iment 2, Dimensions 2, 3, 4, and 5 were used
twice in generalizations; Dimension 1 was
used once. Similarly, in Experiment 3, Di-
mension 5 was irrelevant to category mem-
bership but all other dimensions took part
in three generalizations each. In these last
two experiments, subjects would have had
to attend to four of the five dimensions. Also,
within those four dimensions, subjects in
Experiments 2 and 3 would have had to se-
lectively attend to different combinations of
dimensions for different items. This becomes
indistinguishable from our generalization
model and does not seem to be the sense of
selective attention proposed by Medin and
Schaffer. In their model, selective attention
amounts to weighing more heavily the same
dimension for all items.

Can the generalization model, as proposed
in the introduction, account for the effects
of similarity we found? In its original ver-
sion, the answer is no. A major difficulty is
that the model does not successfully classify
a transfer item unless it is perfectly matched
by some study item or by a generalization
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formed from study items. This leaves the
theory at a loss to explain many results in
the present experiments, such as how sub-
jects could successfully categorize transfer
items at all in the control condition, in which
there were no generalizations, or how they
could categorize test items that only par-
tially overlapped with the generalizations in
the generalize condition. '

It seems that the major inadequacy with
the ACT theory as formulated by Anderson
et al. (1979) is its failure to allow items to
be classified on the basis of partial matches
to generalizations. In response to these re-
sults and other considerations, the pattern
matching assumptions have been reformu-
lated to permit partial matches to both spe-
cific instances and to category generaliza-
tions. This means that there are two ways
in which similarity can aid classification of
novel items. First, interitem similarity can
lead to category generalizations at study. In
addition, similarity between transfer items
and either specific study items or higher or-
der category information (generalizations)
can serve as a direct basis for categorization.
In fact, the current ACT model uses the
same partial matching techniques for de-
tecting similarities between study items to
form generalizations as it uses for catego-
rizing new items.

The reformulation of the model to allow
partial matches is not just a concession to
evidence that similarity determines transfer
performance to a certain extent. A similarity
detecting process can presumably operate on
any stored pattern and we see no reason to
limit it to only specific item representations.
The original issue was, of course, whether
any higher order feature patterns are even
formed and, if so, whether they determine
performance on tasks commonly used to in-
vestigate concept formation. We believe,
given a category with a large number of ex-
emplars, classification of novel items is in
part determined by generalizations formed
from study items. There are just too many
pieces of data across our three experiments
to doubt this. However, there is equally
strong evidence indicating that item simi-
larity also influences item classification.

Thus, the present data suggest that it may
be both unnecessary and inappropriate for
a theory of schema abstraction to choose
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between rule abstraction mechanisms and
analogy (similarity to instances) mecha-
nisms. They need not be mutually exclusive
processes. Given the evidence that people do
recall specific items and use them to classify
novel items plus the evidence that specific
items give rise to category generalizations
that facilitate classification of novel items,
it seems more interesting and perhaps fruit-
ful to regard these processes as complimen-
tary rather than competing and to try to in-
corporate them into a single parsimonious
model. Both specific instance information
and higher order generalizations may be
available for a partial-matching mechanism
to operate in the same way on each type of
information.
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Appendix
Table Al
Similarity Scores, Mean Accuracy, and Mean Confidence for Experiment 1 Transfer Items®
Similarity score Accuracy Confidence
Item Generalize Control Generalize Control Generalize Control
Three-overlap
11313 13 7 76 .56 2.26 . .48
11413 13 5 71 .63 2.00 79
14322 17 18 80 .74 2.94 2.05
14422 19 17 80 .69 2.75 1.88
41111 17 15 .63 .66 1.21 1.31
41211 19 15 .70 .63 1.59 1.23
22142 21 23 93 79 371 2.73
22242 19 21 .89 81 3.38 2.83
Two-overlap
12413 15 —~1 70 .49 2.54 0.03
12313 15 1 .70 .50 1.95 —.06
41422 7 13 .64 .76 1.20 2.29
41322 7 15 .63 .76 .99 2.01
13111 7 -7 .78 .55 2.31 .39
13211 7 -9 78 43 2.26 —.43
12141 12 5 .61 69 1.09 1.58
12241 i1 5 66 71 1.44 1.79

* Averaged over Club 1| and Club 2 items, blocked and random conditions.
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Table A2
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Experiment 2: Set B Generalize Study Items and Transfer Items

Transfer items

Study items Four-overlap Three-overlap Two-overlap®
Category Category Category Category Category Category Category Category
] 2 1 2 1 2 | 2
11321 44234 11111 44444 11151 44454 *13112 *42442
11441 44114 11141 44414 11161 44464 *21112 *34443
11211 44344 11341 44214 *21412 *34143
43121 12434 42121 13434 42125 13435 *22112 *33443
44122 11433 41122 14433 46122 16433 *24212 *31343
41124 14431 42122 13433 22442 33113
22233 33322 22232 33323 52231 53324 13243 42312
32234 23321 22231 33324 62231 63324 21143 34412
12232 43323 32231 23324 23132 32423

* Asterisks indicate items which partially match a category generalization.

Table A3

Similarity Scores, Mean Accuracy, and Mean Confidence for Experiment 3 Transfer Items
Similarity Similarity :

Item score Accuracy Confidence Item score Accuracy Confidence

Generalization condition Control condition

11224 17 .83 3.21 11241 18 .68 1.66

11213 28 .79 2.62 12135 22 .77 2.33

12213 26 .80 2.61 21123 25 17 2.16

12115 27 .79 2.34 11314 19 71 1.55

22115 23 79 2.32 41111 24 17 2.26

21114 21 .72 2.09 32122 18 1 1.55

21124 19 .74 2.27 23211 18 .76 2.22

11123 28 83 2.74 14412 5 .58 97
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