COpYy

Acquisition of LISP Programming Skill'

John R. Anderson and Albert T. Corbett

Departmei t of Psychology
Camegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

The acquisition of a complex skill like writing LISP code can be
decomposed into the learning of an underlying set of production rules. Each
production rule appears to have a simple learming trajectory and its acquisition
is independent of the acquisition of other production rules. These basic results
do not appear to be dependent on the instructional modality under which one
learns. Learning under a more directive modality only reduces the amount of
time students spend debugging their errors.

INTRODUCTION

This chapter provides a review of our work on the acquisition of LISP
programming skill in the context of various intelligent tutoring systems we
have developed. This work can be seen as a general test of the ACT*
(Anderson, 1983) theory of skill acquisition. That theory of skill acquisition is
actually quite simple. It asserts that

(1) The kncwledge underlying a skill begins in declarative form.
Knowledge in this form must be interpreted to produce performance. The
initial declarative knowledge commonly takes the form of an encoding of
illustrative examples of the skill. These examples are used by analogy to
guide the problem solving. For example, when first leaming how to
perform arithmetic in LISP, the student may encode that the sequence:

(*2732)

1This research was supported by contracts NO0014-87-K-0103 and N00014-91-J-1597
from the Office of Naval Research

calculates the product of 27 and 32. The student may proceed to use this as
an analog for determining how to compute the sum of 384 and 492.

(2) As a function of its interpretive use, this knowledge becomes compiled
into a production rule form. In the example above, the following
production might be formed:

IF the goal is to apply an arithmetic operationto X and Y
and OP is the symbol denoting that operation
THEN enter (OP X Y).

(3) Individual production rules, once formed, acquire strength as a
function of practice.

(4) Ultimately, a skill such as programming consists of hundreds of
independent production rules. Performance consists of the sequential
application of these rules.

The simplicity of the ACT* theory of skill acquisition is its most important
theoretical claim. It certainly is a counter-intuitive claim about the nature of
complex skill acquisition which appears anything but simple.

Given the importance of the claim that skill acquisition is simple under a
production rule analysis, it becomes important to provide empirical evidence
for this simplicity. This can be done directly by confirming regularities in the
data predicted by the theory and indirectly by failing to find effects of plausible
complicating factors. In the following sections, we will describe our efforts to
find regularities in superficially complex data and our efforts to find
complicating factors in the structure of exercises and in individual differences.
The analysis of individual differences is particularly interesting. One might
believe that different subjects would display differential success in mastering
clusters of subskills. But while the ACT* theory allows for different rates of
acquisition across subjects, it does not allow for different styles of learning.
Before describing the results, it is necessary to describe the LISP Tutor, the
data it generates and our methods of analyzing the data.

We have been engaged in the study of programming in LISP since 1980.
Around 1983 it seemed that we had a good enough understanding of
programming in LISP (reported ir Anderson, Farrell, & Sauers, 1984) that we
might actually use it as a basis for instruction. The essential idea was to
organize instruction around the individual production rules that we feel the
student should acquire. This set of production rules defines what we call the
ideal student model. We try to match up in real time the student's problem-
solving steps with some solution path that can be generated by this ideal
production system model of the skill. This is called a model-tracing

W

methodology. In the version of tutoring we will first describe, called
immediate-feedback tutoring, whenever the student makes a problem-solving
move that does not match any move allowed in the student model we
immediately correct the student and force the student to make a move that
matches the student model. Later in this chapter, we will describe what
happens with less restrictive modes of tutoring.

AN EXAMPLE INTERACTION WITH THE LISP TUTOR

In this section we will describe an interaction with the original, immediate-
feedback tutor we created. Figure 1 depicts the terminal screen at the
beginning of an exercise. The screen is divided into two windows, and the
problem description appears in the "tutor window" at the top of the screen. As
the student types, the code appears in the "code window" at the bottom of the
screen. The example exercise is drawn from Lesson 6, in which iteration is
being introduced. Students are familiar with the structure of function
definitions by this point, so the tutor has put up the template for a definition,
filling in defun and the function name for the student. The symbols in angle
brackets represent code components remaining for the student to supply. The
tutor places the cursor over the first symbol the student needs to expand,
<PARAMETERS>.

As the student works on an exercise, this tutor monitors the student's input,
essentially on a symbol-by-symbol basis. As long as the student is on some
reasonable solution path, the tutor remains in the background and the interface
behaves much like a structured editor. The tutor expands templates for
function calls, provides balancing right-parentheses for students, and advances
the cursor over the remaining symbols which must be expanded. If the student
makes a mistake, however, the tutor immediately provides feedback and gives
the student another opportunity to type a correct symbol. When the student
types another response, the feedback is replaced either by the problem
description (if the response is correct) or another feedback message (if the
student makes another error). The tutor will also provide a correct next step in
a solution, along with an explanation if the student appears to be floundering, 2
or if the student requests an explanation.

2A student is judged to be floundering at a step in the solution if he/she repeats the
same type of error three times or makes two mistakes that the tutor does not
recognize.

Define a function called "create-list® that accepts one
argument, which must be a positive integer. This function
returns a list of all the integers between 1 and the value of
the argument, in ascending order. For example,

(create-list 8) returns (1 2 3 4 5 6 7 8).

You should count down in this function, so that you can just
insert each new number into the front of the result variable.

CODE for create-list

(defun create-list <parameters>
<process>)

Figure 1. The appearance of the tutor screen at the beginning of a
coding problem.

Table 1 contains a record of a hypothetical student completing the code for the
exercise. This table does not attempt to show the terminal screen as it actually
appears at each step in the exercise. Instead, it shows an abbreviated
"teletype" version of the interaction. As described above, while the student is
working, the problem description generally remains in the tutor window, while
the code window is being updated on a symbol-by-symbol basis. Instead of
portraying each update to the code window in the interaction, the table portrays
nine key "cycles" in which the tutor interrupts to communicate with the
student. At each of these enumerated cycles the complete contents of the code
window are shown, along with the tutor’s response. The tutor’s response is
shown below the code to capture the temporal sequence of events; on the
terminal screen, the tutor’s communications would appear in the tutor window

above the code. In each cycle all the code which the student has typed since
the preceding key cycle is shown in boldface. However, in each case, the
tutor is responding specifically to the last symbol the student typed.

The Problem Description

Define a function called "create-list” that accepts one argument, which
must be a positive integer. This function returns a list of all the
integers between 1 and the value of the argument, in ascending order.
For example,

(create-list 8) retums (123456 7 8).

You should count down in this function, so that you can just insert
each new number into the front of the result variable.

Cycles in which the tutor communicates with the student

1. (defun create-list (num)
(loop)

You will need local variables in this function. So before you code
anything else, there is a particular LISP operator you need to code.

2. (defun create-list (num)

(let (()
<BODY>))

Which of the following do you want to do?
PRESS: IF YOU WANT TO
1 Initialize a variable to hold the list of digits between

1 and the value of the parameter.
2 Initialize a counter variable to keep track of how
many times we go around the loop.
3 Have the tutor choose.
Menu choice: 2

3. (defun create-list (num)
(let ((count 1)
<OTHER-INITIALIZATIONS>)
<BODY>))

In this problem we won't want to start counting at the same value
each time we call the function, so we can't initialize the counter to a
constant like 1. How is the starting value being communicated to
the function?

4. (defun create-list (num)
(let ((count num)
(numlist (list num)))
(lop))

Did you mean loop (y orn)? y

5. (defun create-list (num)
(let ((count num)
(numlist (list num)))

(cond ((equal count 1) numlist))
<LOOP-ACTIONS2>)))

You do want to retumn the variable "numlist" here, but just typing it
into the code won't accomplish that. What LISP operator will allow
you to retumn something from a LOOP?

6. (defun create-list (num)
(let ((count num)
(numlist (list num)))

O(?imd ((equal count 1) (return numlist)))
<LOOP-ACTIONS25)))

In numeric iteration the first thing you should do after the exit test is
\égdate the counter variable. You can use the function SETQ to do
S.

7. (defun create-list (num)
(et ((count)
(numlist (list num)))

(loop
(cond ((equal count 1) (return numlist)))
(setq count (1- count))
(cons)))

(continued)

You've got the right idea, since you'll need to use the function
"cons", but remember you are trying to insert the new value of the
counter into the list. What LISP function allows you to assign the
results of this function call to a local variable?

8. (defun create-list (num)
(let ((count num)
(numlist (list num)))

(cond ((equal count 1) (return numlist)

(setq count (1- count)
(setq numlist (list)))

If you LIST together arguments like 7 and (8) you get (7 (8)). what
you want is (7 8). Try another function that combines things
together.
9. (defun create-list (num)
(let ((count num)

(numlist (list num)))

(cond ((equal count 1) (return numlist)))

(setq count (1- count)

(setq numlist (cons count numlist)))))

----YOU ARE DONE. TYPE NEXT TO GO ON AFTER-----
-—-TESTING THE FUNCTION YOU HAVE DEFINED---

THE LISP WINDOW
=> (create-list 10)
(12345678910)

=>next

Table 1. A Teletype Depiction of a Hypothetical Student Completing
the Code for the Function create-list with the Tutor.

£

In the first of the cycles displayed, the student has typed in the parameter list
and has called loop in order to iterate. The tutor reminds the student that it is
necessary to create some local variables before entering the loop.

In the second cycle, the student has called let and is about to create a local
variable. The template for numeric iteration calls for two local variables in this
function, so the tutor puts up a menu to clarify which variable the student is
going to declare first.

In the third cycle, the student has coded an initial value which would be correct
if the function were going to count up. However, this exercise is intended to
give the student practice in counting down, so the tutor interrupts the student.

In the fourth cycle, the student has made a typing error which the tutor
recognizes, and in the fifth cycle the student is attempting to return the correct
value from the loop, but has forgotten to call return.

In the sixth cycle, the cursor is on the symbol <LOOP-ACTIONS2> and the
student has asked the tutor for an explanation of what to do next. The tutor
tells the student what the current goal is and what symbol to type next in order
to accomplish the goal. In addition, the tutor puts the symbol, setq, into the
code for the student.

In the seventh cycle, the tutor recognizes that the student is computing the new
value for the result variable, but has forgotten that the new value must be
assigned to the variable with setq.

In the eighth cycle, the student has gotten mixed up on the appropriate
combiner function to use in updating the result variable. The tutor tries to
show, by means of an example, why list doesn't perform quite the right
operation and another combiner is needed.

Finally, in the ninth cycle, the student has completed the code.

Note that, for illustration sake, this interaction shows students making rather
more errors than they usually do. Typically, the error rate is about 15 percent
while it is approximately 30 percent in this dialogue.

After each exercise, the student enters a standard LISP environment called the
LISP window. Students can experiment in the LISP window as they choose;
the only constraint is that they successfully call the function they have just
defined (which the tutor has loaded into the environment for them).

GROUP DATA ANALYSES

Analysis of Computer Records

It is worth identifying how we segment a sequence of interactions, such as
those in Table 1, and assign these segments to various production rules. The
data from the LISP tutor comes in as a stream of keystrokes and responses by
the tutor. This data can be partitioned into cycles in which (1) the tutor sets a
coding goal (i.e., places a cursor over a goal symbol on the screen); (2) the
student types a unit of code corresponding to a production firing (generally a
single atom or "word" of code); and (3) the tutor categorizes the input as
correct or incorrect (or as a request for help) and responds accordingly. If the
response is correct, the tutor will set a new goal in the next cycle. If it is
incorrect, the tutor provides feedback and resets the same goal in the next
cycle. If the student asks for an explanation or appears to be floundering at the
goall. the tutor will provide the correct answer and set a new goal in the next
cycle.

Suppose the student is coding a function called insert-second, and imagine
that the student has just typed cons as the beginning of the body of the
function. At this point the screen would look like this:

(defun insert-second (lis1 lis2)
(cons <elem 1> <elem2>))

In the following cycle, the tutor would place the cursor over the goal symbol
<elem1>, the student would type code, for example, "(car" and when the
student has typed the final space after car, the tutor would evaluate the input
and respond. It is of interest here to extract two measures of production
firings from this data: time and accuracy. Firing time is measured only for
goals in which the student's first response is correct. The measure of firing
time is the time from when the tutor is ready to accept input (cursor over
<elem1> in the above example) to when the student has completed the code for
that element. Two measures of firing accuracy have been extracted: (1) the
probability that a student responds correctly in his/her first attempt at a goal,
and (2) the number of extra attempts (cycles) required to achieve a correct
answer at a goal. The second measure will be used since it proves to be more
sensitive (often initial errors are just slips while repeated errors are signs of
real difficulty). As a rule of thumb, the number of extra attempts is about one
and a half times the number of errors.

What is happening during the period of time attributed to a production firing?
It is clearly not just a single correct production rule firing. There must be an
encoding of the screen, the setting of subgoals to type the individual

characters, and the actual typing of these characters. Moreover, students can
delete characters in order to correct mistypings, or even change their mind
about the comrect code unit to type. The tutor will also intervene to block
syntactically illegal characters. Thus, the time for these segments will involve
much more than simply the time for the target production to fire. The target
production just sets the top level organization for the episode. However, it is
the rule of interest, because it represents the new thing that the student must
learn. Also, since typing and interacting with the tutor presumably represent
skills at relatively high asymptotic levels of proficiency, learning the coding
rules accounts for much of the variation in performance across segments.

Learning Curves

We will present a description of the most systematically and exhaustively
analyzed data collected with the LISP tutor. This data was collected in the fall
of 1985 and the spring of 1986. While there were more students in these
classes, we collected complete data sets from 42 students and these were used
for this analysis. There were 12 lessons in the tutor at that time. Each lesson
involved students solving a sequence of problems where a problem involves
writing a LISP function to do a specified task. Table 2 displays exercise
solutions, for a small illustrative portion of the curriculum, the first six
exercises in lesson 3. For the sake of illustration, consider how performance
varied across these six problems. Figure 2 presents coding time and error rate
averaged across productions for each of the six exercises. There is a notable
lack of any leaming trend when the data is collapsed in this fashion.

Figure 3 presents the same data aggregated according to production identity
rather than problem. Note that production rules appear in different patterns
across the problems. For instance, the rule that codes an inequality operator
("<" or ">") applies once each in the first and third problems and twice in the
fifth, while the rule for coding cond appears once each in the fourth through
sixth. Thus, there is a poor correlation between problem number and how
many times specific productions have been practiced. Figure 3 shows the data
organized according to the number of practice opportunities per production.
Now we see very systematic leaming trends.

Thus, we see that a production analysis can convert an apparently complex
pattern of data into a very simple pattern of data. The data in Figure 3 illustrate
that amount of practice of specific productions is a strong determinant of
performance as expected.

3.1 (defun compare (num1 num?2)
(> (+ num1 10) (* num2 2)))

32 (defun palp (lis)
(equal lis (reverse lis)))

3.3 (defun numline (item)
(list (zerop item) (< item 0)))

34 (defun caris (object) ¥
(cond ((null object) nil)
((atom object) object)
(t (car object))))

335 (defun checktemp (temp)
(cond ((> temp hightemp) 'hot)
((< temp lowtemp) 'cold)
(t 'medium)))

3.6 (defun make-list (item)
(cond ((null item) nil)
((lstp item) item)
(t (list item))))

Table 2. Initial Problems in Lesson 3.

Regression Analysis

We (Anderson, Conrad, & Corbett, 1989) have performed a fairly
exhaustive analysis of the data from all 12 lessons both to better analyze the
practice factor and to identify other complexity factors. Regression analyses
were performed on these data in an attempt to find best predicator equations for
log coding times and errors. These analyses were performed separately on
"new" productions in each of the lessons (production rules introduced in that
lesson) and "old" productions in each of the lessons (production rules
introduced in previous lessons). There were about 100,000 observations in
total, far too many for our regression program, so we collapsed across
subjects, generating a mean for all observations in which different subjects
applied the same production (according to the tutor's analysis) in the same
serial position in the same exercise in a particular lesson (in order to fit the size
constraints of our regression program). This produced about a 10 to 1

collapsing in average, yielding 6409 observations for old productions and
3350 observations for new productions.

181
r0.4

161

Seconds
o
@
Number of Errors

141

r0.2
121

10 v T v v T v 0.1
o

Figure 2. Mean coding time and error rate per production as a
function of problem number in Lesson 3.

The following regression equations were determined as the best fitting function
for new productions:

log(time) =1.35 - .03(lesson number) - .31 log(within lesson opportunity)
- .15 log(absolute position in code)

mean errors =.23 - .11 log(within lesson opportunity)
- .03 log(absolute position in code)

where "lesson number” is just the number 1 through 12, "within lesson
opportunity” is the number of times the production had been used in the lesson
up to and including the current opportunity, and "absolute position in code" is

the serial position of the code in the function definition. A rather similar best
fitting function was obtained for the old productions:

log(time) = 1.31 - .01(lesson number) - .25 log(within lesson opportunity)

- .26 log(absolute position in code)
mean errors =.16 - .09 log(within lesson opportunity)
- .02 log(absolute position in code)
22 % 0.5
m-
0.4
181
0.3
;
167 s
i o}
141
i - 0.1
10 - v v - - v 0.0
¥y ¥ B = -8 B § ¥
Production Opportunity

Figure 3. Mean coding time and error rate per production as a
function of production opportunity in Lesson 3.

The within-lesson opportunity effect reflects the production specific practice
effect and is illustrated in Figure 4. The difference between the intercepts for
the old and new productions reflects the advantages subjects have when using
the productions during a second or later session. It is interesting to compare
the shape of the leaming curves for old and new productions in Figure 4. The
new productions show much larger speed up from first to second use, but after
that they show similar rates of improvement. We attribute the special

advantage from first to second opportunity for new productions to knowledge
compilation.

The other two variables reflect "complications" to a degree, although they are
not inconsistent with the theory. Indeed, the effect of absolute position in the
code is a confirmation of a subtle prediction of the theory. Before discussing
these two variables, however, it is worth noting the additional variables which
did not prove significant when placed in competition with these variables.
They included: depth of embedding of the code which was being written,
number of pending goals (or unexpanded symbols to the right), left-to-right
position in the pretty-printing of the code, familiarity of the concept behind the
production (as rated by a panel of four judges), and number of keystrokes in
typing the symbol. It is also the case that the logarithm of lesson opportunity
and the logarithm of absolute position are better predictors than are
untransformed scores.

16
1St - .
new productions
14 F -& old productions
- 13r
% 12}
a "My
= 2
g o}
E
e
8 o
7-
6;—
——
0 1 2 3 4 5 6
Opportunity

Figure 4. Mean coding time for old and new productions as a
function of coding opportunity.

o

The effect of lesson number, while small, is quite significant for reaction
times. This variable may just reflect an increased familiarity with the tutor
interface. The fact that the same variable shows up for new productions (that
do not appear in earlier lessons) as well as old productions suggests that this
variable does not reflect production-specific practice. At least part of the
mmenon is a matter of general interface leaming. It is also the case that

number is not significantly related to error rate. This is further evidence
that the effect may be an interface effect and not reflect any real proficiency in
coding.

Problem Practice and Its Interaction with Production
Practice

The effect of absolute serial position in the code is interesting because it has
been established that the effect is logarithmic, not linear, and not a result of
potentially confounded variables such as depth of embedding, number of
pending goals, or left-to-right position in a pretty-printing. It is also the case
that absolute serial position is a better predictor than relative serial position or
total length of the function. Figure 5 illustrates the average serial position
effect over the first 33 positions. The initial long pause is at least in part due to
reading the problem specifications and planning. The subsequent speed up is
thought to be attributable to subjects using, and hence practicing, their problem
understanding as they go through the problem. This would strengthen their
declarative representation of the problem and so speed their access to it.
According to the ACT* theory there should be an effect both of procedural
practice and declarative practice, and the overall performance improvement
should be the product of two power practice functions. Thus, the effects of
procedural practice and declarative practice should be superadditive.

A more direct test of the proposed superadditivity was attempted. Productions
were broken into two categories which were above or below the median use.
Serial positions were similarly broken into above and below the median. Data
were then classified into a 2x2 matrix according to whether the production
involved was above or below the median frequency, and the serial position
above or below the median frequency. This analysis was done separately for
each subject. Then an analysis of variance (ANOVA) was done with three
factors: subject, (42 values), production frequency, (2 values), and serial
position, (2 values). Separate ANOVAs were performed for old and new
roductions on mean coding time. These data, as well as mean production
g‘equency and mean serial position, are reported in Table 3. There are main
effects for both factors, but critically there is an interaction between the two of
them (Fl 41=9.09; p<.01 for new; F1 41=21.1"5; p<.001 for old). In both

cases, as predicted, the effect of production frequency is greater at lower
values of serial position.

104

n (time)

| 1 | 1 1 1 1 1 |
1 2 4 6 8 10 15 20 25

In (position in code)

Figure 5. The effect of serial position in code on production time in
Lessons 2 and 3.

INDIVIDUAL DIFFERENCES IN LEARNING

There are substantial differences among students in their performance with
the LISP tutor both in error rate, time to complete exercises, and in post-test
performance. The interesting question is whether there is anything more
involved than some unidimensional factor of skill. In one attempt to answer
this, a factor analysis was performed to see whether certain groups of subjects
found certain productions categories difficult. One factor analysis was
performed on the data from the spring of 1985; a second factor analysis was
then performed on the combined data for fall of 1985 and spring of 1986.
These two separate analyses were performed because the spring 1985 subjects
worked through a different curriculum. The details of the factor analysis of the
spring 1985 data and the details of the methodology are reported in Anderson
(1990). In the spring 1985 data, and more clearly in the combined fall 1985

-

data and spring 1986 data, factors emerged within each lesson which loaded
on thematically related productions. For instance, in Lesson 1 a factor
emerged which loaded on arithmetic operations, and a factor emerged in
Lesson 3 that loaded on logical operations. This meant, for instance, that in
Lesson 1, one group of students tended to do relatively poorly on all arithmetic
productions while another group of students tended to do well.

New Productions
Serial Position
Low High
Low 17.3 sec 10.1 sec
1.0 2.1
6.2 16.1
Frequency
High 13.8 sec 8.5 sec
19 8.9
6.3 20.4
Old Productions
Serial Position
Low High
Low 13.5 sec 8.9 sec
20 a1
6.8 18.2
Frequency
High 9.6 sec 6.1 sec
10.1 13.3
7.8 20.6

Table 3. Results of Superadditivity Analysis. Reported in Each
Cell are Mean Time, Mean Frequency, and Mean Serial Position

The initially frustrating feature of these within-lesson factors is that they did
not show any across-lesson consistency. Thus, productions which loaded on
one factor in one lesson would split up and load on different factors in a later
lesson. To help organize these within-lesson factors, a meta-factor analysis
was done. That is, students' factor scores from particular lessons were taken
and a factor analysis of these was performed. Two meta-factors emerged
fairly strongly in the spring 1985 data and in the combined 1985-1986 data.
When the spring 1985 data was examined, it was noticed that most of the
productions which loaded on factors of one of the meta-factors were new to
that lesson (22 out of 34), while most of the productions that loaded on factors
in the second meta-factor were old (20 out of 23). This led to a labelling of the
first meta-factor as an acquisition factor and the second meta-factor as a
retention factor. A similar analysis was done on the 1985-1986 data. Most of
the productions associated with one meta-factor were new to that lesson (18
out of 23), while most of the productions associated with the other meta-
factors were old (23 out of 31).

Thus, what seems stable across lessons are only very general leaming
attributes, acquisition and retention. We think we understand why thematic
clusters of new productions appeared in individual lessons but disappeared
thereafter. These thematically related productions were discussed in the text in
close proximity. If a subject's attention waxes and wanes while reading the
text, then this will produce a local correlation among thematically related
productions. Another factor that would produce this thematic clustering is that
many of the new productions in a lesson are thematically related. For instance,
a large fraction of the productions in the third lesson on conditionals are
concemed with logical operation of some sort or another. Thus, to the extent
that there is an acquisition factor, within a lesson it will produce a thematic
clustering of productions. Thus, the apparent themacity of productions only
reflects the fact that the new productions introduced in any lesson tended to be
thematically related.

There is some external validation of these two meta-factors. Although both
were defined on behavior internal to the LISP tutor, both were strong
predictors of performance on paper-and-pencil midterms and final exams.
These factors were also associated with math SATSs but not verbal SATs. The
correlation of the retention factor with math SATs was .62 for spring 1985 and
.38 for 1985-1986. The correlation of the acquisition factor with math SATs
was .03 for spring 1985 and .60 for 1985-1986. Except for the 1985-1986
correlation coefficient for the acquisition factor, all coefficients are significant.

These factors or math SATs are equally good predictors of performance on a
final paper and pencil test at the end of the course. The failure to find any
consistent thematic individual differences in the LISP learning is further
evidence for the view that learning is simple. The only stable individual

0

differences are very general acquisition and retention factors. This means that
the acquisition of a production rule is not sensitive to its content.

LEARNING UNDER DIFFERENT TUTORING MODALITIES

So far the data we have displayed has come from the immediate-feedback
version of the tutor. The suggestion has been made a number of times that the
simplicity of the leaming results reflect the constraints imposed by the tutor,
particularly the constraint that students remain on a correct solution path, and is
not representative of leaming in general. Over the past few years we have
begun to explore other feedback schemes that relax this constraint. We have
developed a number of environments that relax the tutor's control over
feedback and over the student's behavior. These newer versions of the tutor
are:

No Tutor — The student receives no instruction at all and must solve the
problems on their own. All they are told is whether their final solution is
correct. They can use the LISP environment to try out their solutions which
provides a feedback of a sort. Essentially, these students are in the same kind
of environment that students have who leamn without a tutor. However, they
enter their code into the same structured editor as the tutor students. This
enables us to perform some analyses of their data.

Demand Feedback — Students are not interrupted by the tutor with
feedback but can request feedback on their solution at any time. The tutor will
tell them if their solution so far is correct and if not where the first error is. If
an error is found, the tutor will provide the same feedback about the error as
the immediate feedback tutor does. Our experience is that as much as 80
percent of the time students wait until they have finished their solution before
they request feedback. So by their own choice they tend to tum this into a
delayed feedback condition.

Flag Tutor — Whenever the student makes an error, the error is immediately
highlighted by the tutor. However, students are not required to fix the error
immediately, they can ignore the error and continue to code. Indeed if they can
come up with a code that works despite "errors” flagged on the screen (i.e., if
they generate a solution that the tutor does not recognize) they are credited with
solving the problem. This is true in the no-tutor and demand-feedback tutors
also. At any time the student can go back and request feedback on an error, in
which case the same message is presented as would be in the immediate-
feedback tutor. Our experience is that about 10 percent of the time students
will ignore the error signal at least initially and continue coding, about 15

percent of the time they will request the tutor’s explanation of the error signal,
and the other 75 percent of the time they will try to correct their code without
any information from the tutor as to the nature of their error or what the correct
code would be. Thus, students tend to tum this into an immediate correction
tutor but one in which they only receive minimal feedback from the tutor.

Effects of Tutoring Modalities

More information about these various tutors can be found in Corbett and
Anderson (1990) and Corbett and Anderson (1989). We find that time to
complete a fixed set of exercises is inversely related to the amount of influence
exercised by the tutor. Students take longest in the no tutor condition and are
fastest with the immediate feedback tutor. The demand-feedback tutor, and
error-flagging tutor fall in between, with the demand feedback condition taking
somewhat longer of the two. The effects, comparing the extremes, can be as
large as a 3 to 1 difference in times. There tends to be no difference among the
three tutor conditions in final achievement measured by post-tests although the
no-tutor condition sometimes performs worse. This fact is very significant to
our understanding of the learning process. Students in the three tutor
conditions are going through very different trajectories (and taking very
different amounts of time) to reach essentially the same final solutions.
Students in the no-tutor condition, however, sometimes fail to reach a correct
solution at all. It seems that leaming is a function of the solutions students
achieve and not the process by which they achieve it—students do achieve
higher levels if they solve more problems under any discipline.

This pattemn of results provides an important confirmation of the ACT* theory.
Recall that initial production formation takes place by analogy to an example.
Thus, the ingredient for leaming is a product, the solved example, from which
the analogy can take place. Once the production is in place, further learning is
in response to a process—further use of the production leads to further
strengthening. Since learning is both in response to a product (the initial
compilation) and in response to a process (subsequent strengthening) it might
not be obvious why ACT* predicts that the number of problems should be the
critical variable. This requires going into more detail as to what happens in the
ACT* theory in particular situations:

When solving their first problems in a lesson, students are in a state in which
they have adequately studied the instructional examples so that they can
perform about 50 percent of the new production rules without error. This 50
percent will be learned and compiled into production rules in all conditions
without hitch. The compilation will occur in the same way in all conditions.
The remaining 50 percent will be leasned when the student comes to an
understanding of one of the problems which involves that production and uses

Q-

that problem as the example for a later problem. This 50 percent of the
learning will therefore be based on the products of later problem solving
episodes. Since, in all tutor conditions students come essentially to the same
solutions and understanding of these solutions, there would be no difference in
the leaming involved in this 50 percent either. Once the productions are
leamned they are strengthened on each subsequent trial that they apply. Since
the tutoring conditions only differ in how they respond to errors, strength will
accumulate with correct rule applications across conditions in the same way.

The differences among conditions can have large consequences when the
student makes an error and has to correct it. In conditions that provide little
guidance the student can spend a lot more time finding out how to correct
errors. However, according to ACT* students do not learn from errors or

error correction. The only thing they learn when an error is made is the final
correct code. Thus, the differences among the conditions are not relevant to
learning as long as students come to the same understanding of the same
correct code at the end of the correction episodes. Students do not always
come to the same code and there can be other subtle differences among
conditions but the learning consequences of the various conditions are
substantially the same and so one would not expect to see substantial
differences in learning outcome.

Learning Curves

It is also of interest to consider what the learning curves are like in the
various conditions. We have collected some data on this issue. A difficulty in
collecting such learning curves concems the fact that only in the immediate
feedback condition are subjects guaranteed to stag“on an interpretable path of
behavior to which we can apply model tracing. Our solution to this dilemma
has been only to analyze that fragment of the data which is on an interpretable
path. As soon as a student makes an error in an exercise, we stop trying to
analyze any subsequent data for that function. In the flag tutor, 87 percent of
the interactions are analyzed, in the demand-feedback tutor 70 percent are
analyzed, and in the no-tutor condition 67 percent are analyzed. Also, we have
only the data analyzed for three of the lessons; lessons 2, 3, and 7 from the
LISP tutor curriculum, and only for 10 subjects per lesson. Therefore, we
have a much smaller data base than for the analyses we reported earlier.

Figure 6 presents the change in error rate as a function of condition and Figure
7 presents the change in coding time. Clearly, we are getting learning

3That is, with respect to writing correct code. They may learn how to debug their
code.

functions across all tutoring modalities. In the case of error rates, there appear
to be no differences as a function of tutoring modality. With respect to times,
there are initial speed advantages for the two delayed feedback conditions (no
tutor, demand) relative to the two immediate feedback conditions (flag,
immediate). There are several reasons to believe these time differences do not
reflect real leaming differences. First, this may reflect the selection artifact.
We only look at data on a correct path and subjects may be on a roll, so to
speak, in the delayed conditions whereas in the immediate conditions we are
mixing in more difficult situations. Second, subjects may be more cautious in
the two immediate feedback conditions. Finally, since there is no feedback
given in the two delayed feedback conditions, subjects do not have the implicit
positive feedback to process. It is interesting in this regard that subjects are
slowest in the flag tutor condition where they have to discriminate the type case
of the feedback to detect errors which are printed in bold.

0.3
—_—— Fug
—0— [Immediate
—&— No Tutor
Demand
£ 0.2
('
g
w
| —
©
g 0.11
0.0

B S & & & % % 1
Opportunities
Figure 6. Learning in various tutor modalities as a function of

amount of production practice: mean number of errors per coding
attempt.

22
g
20 —%— Immediate
18- —*— No Tutor
—0— Demand
8 167
B
§ 141
121
101
8
9 . 3 7

2 2 4.5
Opportunities

Figure 7. Learning in the various tutor modalities as a function of
amount of production practice: mean time per correct coding attempt.

The basic similarity of the learning functions across tutoring conditions offers
further support for the ACT* conception of the leaming process. As discussed
earlier, leaming should be a function of the number of solutions the student
has passed through and not of how the student passes through these solutions.

CONCLUSIONS

This chapter has reviewed the effects we have found in our research with the
LISP tutor. Perhaps more interesting are the effects we did not find. There
were no interesting effects of different content of problems, of individual
differences, or of instructional style. The picture of leaming a complex skill
was every bit as simple as advertised at the beginning of the chapter. Learning
individual production rules underlying a complex skill does not appear much
different than learning simple paired associates. The resulting skill is complex

oy

because of the interrelations among the units but the leaming of the units
themselves is quite straight forward.

REFERENCES

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA:
Harvard University Press.

Anderson, J. R. (1990). Analysis of student performance with the LISP tutor.
In N. Fredericksen, R. Glaser, A. Lesgold, & M. Shafo (Eds.), Diagnostic
Monitoring of Skill and Knowledge Acquisition. Hillsdale, NJ: Erlbaum, 27-
50.

Anderson, J. R., Conrad, F.R. & Corbett, A.T. (1989). Skill acquisition and
the LISP Tutor. Cognitive Science, 13, 467-506.

Anderson, J.R., Farrell, R. & Sauers, R. (1984). Learning to program in
LISP. Cognitive Science, 8, 87-130.

Corbett, A. T. & Anderson, J. R. (1990). The effect of feedback control on
leamning to program with the Lisp Tutor. Proceedings of the Twelfth Annual
Conference of the Cognitive Science Society, 796-803.

Corbett, A. T. & Anderson, J. R., (1989). Feedback timing and student
control in the LISP Intelligent Tutoring System, Artificial Intelligence and
Education. Proceedings of the Fourth International Conference on Al and
Education, 64-72.

