PROBLEM COMPILATION AND TUTORING FLEXIBILITY
IN THE LISP TUTOR

Albert T. Corbett, John R. Anderson, Eric J. Patterson

Department of Psychology, Camegie-Mellon University, Pittsburgh, PA 15213

Abstract. The Lisp Intelligent Tutoring System
provides assistance to students as they do Lisp coding
exercises. The tutor monitors the student’s pertormance
and provides feedback when the student moves off a
known solution ﬁsd\. The tutor employs a model tracing
paradigm to do this, in which the coding task is modelle
in the background and used to evaluate the student’s
behavior. In this paper we discuss the relation between
the underlying student model and two of the tutor's
characteristics: (1) students are constrained to type code
top-down and left-to-right and (2) the tutor provides
immediate feedback on a symbol-by-symbol basis. We
then describe a new version of the tutor in which students
can enter code in any order and control when they get
feedback. Finally, results of an initial study are reported
comparing the standard version and the new version of
the tutor.

The Tutor: An Overview

The Lisp Intelligent Tutoring System is a program that
provides assistance to students as they work on Lisp
coding exercises (Anderson & Reiser, 1985). The
program presents problem descriptions and as the
students type answers, the tutor monitors the solutions
and stands ready to provide assistance at any point. The
tutor has been in use in an introductory Lisp course at
Camegie-Mellon University each term since the fall of
1984. While the lesson material has been extended over
the intervening three years!the basic architecture of the
tutor and the nature of the tutorial interaction have
remained essentially unchanged. Thus, the Lisp tutor
represents a relatively large and stable intelligent tutoring
sytem.

The tutor was initially developed for two purposes, (1)
to teach Lisp and (2) to collect data concerning the
acquisition of a formal skill in a "real-life" setting, and
has proved successful in both endeavors. Two evaluation
studies, for example, have indicated that working with the
tutor is more effective than doing the same exercises "on
your own" in a Lisp environment. In both studies,
students covered the exercises more quickly with the
tutor and in one of the two studies performed
substantially better on a final test (Anderson, Boyle &
Reiser, 1985. Anderson & Reiser, 1985). In addition to

IThe tutor currently includes approximately 240 exercises which
cover the first twelve chapters of an introductory Lisp text
(Anderson, Corbett & Reiser, 1987).

ITS-88 Jumcis, 1988

this evaluation data, the tutor provides data on the course
of skill ac?uisition. As students interact with the tutor, it
generates log files containing a time-stamped record of
the students’ overt responses and the abstract coding rule
that governs each response. Initial analyses of these files
reveal a large speed-up in aPplication from the first to
second use of a coding rule and a subsequent more
gradual speed-cgg. These data are consistent with
Anderson’s ACT* model of skill acquisition, which
suggests that knowledge becomes proceduralized with
inital usage and that the procedural knowledge becomes
strengthened with use (Anderson, 1987: in press).
Finally, the tutor can be used to study parameters of the
tutorial process and research is currently underway that
manipulates degree of practice and the content of
feedback.

While the tutor has reached a stable configuration and
is being used productively both in teaching and research,
there are several reasons why we would like to create
substantially different tutorial interactions that would
require significant modifications in various comj)onems
of the tutor’s architecture. First, the theory underlying
the tutor has undergone revision since the tutor was first
developed. Second, while the tutor is more effective than
"learning on your own," it is not as effective as a human
tutor (Anderson & Reiser, 1985; Bloom, 1984). Third,
feedback from students indicates that some believe they
would be happier with some modifications in the tutorial
interaction.

We have begun to tackle the task of implementing
tutorial changes and in this paper would like to address
issues involved in such a task. In particular, we would
like to discuss the impact of one component of the tutor,
the student model, on the tutor’s behavior and
implications for modifying the tutor’s behavior. We will
begin with a brief description of the tutor’s current
behavior and then will discuss both the role of the student
model in governing that behavior and the implications for
modifying the tutor. Finally, we will describe some data
from one such modification: a version of the tutor in
which the student and not the tutor controls when
feedback is given.

Model Tracing and the Tutor’s Interface

The tutor employs a model tracing paradigm to
provide assistance to students. In this approach the tutor
attempts to model the steps that a student might take in
solving a problem and uses the information to evaluate
the students’ responses. Thus, while the student is
working, the tutor in lock-step simulates the steps that a
knowledgeable student could take in writing the code. In

addition, it models errors that students make at each step
on the basis of known misconceptions. By comparing the
students’ response to the set of possible legal actions and
. the set of known erroneous actions, the tutor is able to
recognize whether the student is on a correct solution
path, appears to be suffering from a_ known
misconception, or has typed something unrecognizable.

Figure 1 grovides some "snapshots” of what it is like
to work with the tutor. Figure la depicts the terminal
screen shortly after the student has begun working on an
exercise in which a function called ends is to be defined.
At the beginning of each exercise, the problem
description aptiears in the tutor window at the top of the
screen, while the code window at the bottom of the screen
is blank. In this figure the student has alreac(if' begun by

ing (defun. Once the student has typed a delimiter, in
this case a space, the tutor recognizes the response is
correct and creates a template on the screen for a call to
the operator defun. As shown in Figure 1b, the tutor fills
in a right parenthesis that balances the left parenthesis
and puts three subgoal symbols on the screen that
represent arguments which must be expanded (replaced
with code). The student is constrained to write the code
in a left-to-right and top-down fashion, so the tutor
immediately highlights the next symbol which must be
expanded and the student continues typing.

The tutor continues to monitor the student’s responses,
essentially on a symbol-by-symbol basis. As ong as
each symbol lies on a known solution path, the tutor
continues highlighting nodes and creating function
templates where appropriate, and the student continues
along without interruption. However, if the student types
a symbol that does.not fall on a known solution path, the
tutor interrupts with feedback. For example, Figure lc
depicts the screen after the student has typed the function
name, ends, and the parameter list and has begun working
on the body of the function.
reaction of the tutor when the student makes a mistake, in
typing car. This error suggests that the student has not

ecomposed the task correctly and the tutor attempts to
describe what the current goal should be.

As long as the student makes errors that the tutor can
recognize, it will let the student continue trying to expand
a goal sKmbol. However, if the student repeatedly makes
errors that the tutor cannot recognize or if the student
repeatedly makes the same type of error, the tutor will tell
the student what code would work in that step, explain
why and fill in the code for the student. The student also
has the option at any goint of asking the tutor for two
types of information.” First, the student can ask the tutor
to provide a hint about the current goal. In this case the
tutor provides a description of what needs to be done, but
not how to do it. Second, the student can ask the tutor
what to do next, in which case the tutor will tell the
student what the next step is, explain why and fill in the
code for the student.

After completing each exercise, the student enters a
Lisp environment, in which he or she tries the code that
was generated and is also free to explore. Then when
ready, the student proceeds to the next exercise.

One imgortant feature of this tutorial interaction is that
it exemplifies the principle of immediate feedback. As
soon as a unit of code is typed, the student knows if it is
correct or not. This immediate feedback principle is
logically independent of the formulation of the student
model, but in practice the realization of the rinciple is
strongly influenced by the specifics of the stugem model.
The relationship between immediate feedback and the
Montréal
ITS‘88 June 1-3, 1988

This figure shows the -

424

8 functon called ends that takes one argument.
list. and returns a new list containing
n . For exampie.

CODE tor ends

[Fig. 1a]

Define a functon calied enas that takes one argument
which must be a kst. and returns a new list containing
the first and last items n the argument For exampie

fonds @ dbcd) = @0

CODE ftor encs

(Gotun <function> < parameters >
<process >)

[Fig. 1b]

You will need to call the function CAR. but not yet
You need to construct & list contaiming the fhirst nem
tn the argument and the last item n the argument so
you need to call a8 iist combining lunction here

CODE for enas

(Gefun ends (lis)
(car)

[Fig. 1c]

Figure 1. Three "snapshots" of the terminal screen
as a student codes the function ends with the tutor.

student model is an issue we will focus on below. (For a
more general discussion of the pros and cons of
immediate feedback, see Anderson, Boyle, Corbett &
Lewis, in press).

The Student Model

The student model that underlies the tutor is derived
from observations of students leaming Lisp (Anderson,
Farrell & Sauers, 1984; Pirolli & Anderson, 1985) and is
partly descriptive and partly prescriptive. In this model,
procedural knowledge of how to write Lisp code is
modelled by a set of l\})roductions. Each production is
essentially an IF-THEN rule. An English translation of a
typical production rule that students leamn in the first
lesson would be:

IF the goal is to form a list
by inserting newitem
at the beginning of
an existing list oldlist
THEN code a function call to CONS
and set subgoals to code
newitem and oldlist.

The complete set of correct rules for writing code is
referred to as the ideal student model and represents the
instructional objectives of the text and tutor. The student
model also includes a bug catalog - a set of incorrect
rules that reflect known misconceptions.2 In actually
modelling student behavior, the production system is
given a specification of the function to be written
(analogous to the English description provided the
student) and a goal is set to code the function. The set of
production rules is matched to the current goal and
problem description and ultimately a rule is selected that
satisfies the goal in the context of the problem
description. When that production "fires" it generates
code, possibly sets new goals (i.e., adds them to a list of
goals that remain to be satisfied) and may add
information to the problem description.3At that point, a
new goal is activated (drawn from the list of unsatisfied
goals) and the cycle is repeated. This process continues
until the exercise is completed.

There are several general characteristics of the student
model that have a direct bearing on the nature of the
tutorial interaction. First, the Pproductions generate code
in a top-down fashion; that is, they generate code by
decomFosing high-level goals into subgoals. For
example, when the system is given the goal of defining a
function, a production fires that codes a call to defun and
sets subgoals to code the name of the function, the
farameter list for the function and the body of the
unction. The function name and parameter list do not
require subgoaling, but when the goal to code the
function body is active, a production will fire that codes a
Lisp operator and sets goals to code arguments to that
operator. The complete goal decomposition for the
function ends is depicted in Figure 2.

2The papers in Part Il of Sleeman and Brown (1982) describe
similar approaches to student modelling that strongly influenced the
development of this tutor.

*his is an oversimplification since not all productions generate
code. Some only modify the the goal structure or the problem
description.
process for certain difficult algorithms, rather than generating code.
However, these productions are not directly relevant to topic of
modifying the tutorial interaction.

ITS-88 e

June 1-3, 1988

Another class of productions models a planning

425

Second, the student model is implemented in GRAPES
a production system that embodies the state of the ACT*
theory when work on the tutor began. GRAPES assumes
that a goal stack is maintained and that a single "active"
goal is popped off the stack in each cycle. The
consequence of this assumption is that not only is the
problem solved in a top-down fashion, but that the
traversal of the goal tree in generating code is strictly
depth-first. The model makes an additional simplifying
assumption, generally squoned by the data, that sibling
goals are tackled in a left-to-right order. This set of
assumptions concerning goal satisfaction gives rise to a
distinctive characteristic of the tutor mentioned earlier:
students are constrained to type their solutions in a top-
down, left-to-right fashion.

! | i ! . .
! cooe | }ooot’ cooe: cooe cooe | . cooe
CPMST| 1 (AST | FIRST; LAST PIRgT LAST
. fvousTy __,_‘ — —— N UST W oLST
. ' i
i
' ! H
. 1 '
: L - —_—
! cooe !] cooe ! cooe I cooe | COo0e <00¢€
 PARAM| | PARAM ioamam| i | ‘AMST samaw
: ' . PIN UST
i i —_—
_—
: i
w - . ™~ car)
;
—_— —_—
Z00E <oce
PaRAM SaRAMm
—_—
- o

Figure 2. The goal structure of the function ends.
Goals are.represented as boxed nodes. Branches are
labelled with code symbols that are generated in
satisfying the goals. (Circular arcs indicate points at
which multiple subgoals are created, each of which
must be satisfied).

A further characteristic of the student model has a
strong impact on the nature of the tutorial interaction.
The student’s knowledge of Lisp is represented at about
the finest grain size that has functional meaning in Lisp.
Roughly speaking, it models performance at the level of
the incfi'vidual symbol (modelling at a finer level of
analysis would essentially be of typing rather than Lisp
coding). This has a direct impact on the tutor’s behavior,
because in model tracing the immediate feedback
principle actually specifies that feedback should be given
after each production firing. Thus, the tutor’s symbol-by-
symbol feedback is a consequence of applying immediate
feedback to a student model of minimum grain size.

. student’s next res

In summary, important aspects of the tutorial
interaction depend directly on features that are built into
the student model. In principle, then, modifications in the
tutor’s behavior require a recoding of the student model.
This is an important realization because the student
model, which currently consists of approximately 1200
rules for generating correct and incorrect code, represents
about 75% of the code involved in the tutor. Fortunately,
we can implement model tracing in a way that makes
modification of the student model a less imposing task
than this statistic suggests.

Implementation of Model Tracing

One difficulty with model tracing within the
framework described above is that production systems
have high computational costs (due to pattern matching
demands) and require an unrealistically high level of
computational resources to keep up with students in real
time.*A second_difficulty with model-tracing concems
the disambiguation of students’ responses, since under a
limited set of circumstances, a student’s response may
match more than one production instantiation. For
example, consider the function call

(+ (car lisl) (car lis2))

Since the ordering of arguments to the function + is
unimportant, the tutor will allow the student to code the
two arguments in either order. Thus, when the goal is set
to code the first argument, there are two viable

roduction instantiations, each of which codes car.

hen the student types car, it is not possible to determine
which argument the student is coding. This ambiguity
could be resolved in the next cycle when a variable is
typed. However, to postpone resolution for a cycle, it
would be necessary for the production system to follow
both possible branches. t entails matching the
nse to the subgoal of each production,
which increases the amount of matching required.

Problem Compilation

Both of these difficulties can be resolved when it is
recognized that model tracing does not require on-line
execution of the production system while the tutor is
running. The tutor’s ability to recognize correct solutions
and standard bugs depends on the student model, since
the tutor is only presented a problem description and not
a solution. However, it is possible to run the production
system model ahead of time as long as a trace of the that
run is stored that retains whatever information is relevant
to tutoring. In this wa?' the cost of pattemn matching in
identifying relevant rules can be bome ahead of time.
Once those rules have been identified and stored in a data
structure, is easy to match the student’s response to the
rules and have the tutor respond accordingy. This
process, referred to as problem compilation”, not only
enhances the efficiency of modelling, but as an added
benefit, enables functional modifications in the student
model at relatively low cost.

Implementing Problem Compilation

There is one substantial difference between running
the production system on-line and running it ahead of

4An independent attempt by Anderson and Joe Parker is
underway (o reduce computational demands by applying a
discrimination-net approach 1o rule-matching. that should
substantially reduce the computational demands of modelling
programming skills.

SA similar process is described in Sleeman, 1983

Montréal

ITS"88 June 1-3, 1988

426

time. Most of the exercises in the tutor can be solved in
more than one way and some have literally hundreds of
acceptable solutions. Thus a goal tree representation of

the student model’s Batemial behavior contains or-nodes
(e.g., the node "CODE PROCESS" in Figure 2, which
represents a goal that can be satisfied by any of three

roductions). When the student model is being run on-
fine and an or-node is encountered, it is only necessary to
follow the branch selected by the student. When “the
model is run ahead of time, however, it is necessary to
follow each branch at an or-node so that subsequently the
tutor can follow the student down any branch that is
selected. Thus, problem compilation requires the
exhaustive reJJresentation of alternative expansions of the
goal tree and the resulting data structures can become
quite large.

The need to expand the goal tree exhaustively poses an
additional complication in representing = mutual
constraints among productions. Whenever there is more
than one production that satisfies a goal, the production
selected will almost certainly constrain the way at least
one other goal in the problem is satisfied. This can be
seen in the body of the function ends. Three different
functions can be employed to construct the required list
of two elements. Not surﬂrisingly, the code for the two
elements is different in each case:

(cons (car lis) (last lis))
(list (car lis) (car (last lis)))

(append (list (car lis)) (last lis))

In this examgle the components of the code that co-
vary are hierarchically organized. That is, the production
which satisfies the top-level goal in these exgressions
determines the correct response at the subgoals. It is easy
to represent such hierarchically organized constraints in a
Foal tree. (Each branch at a choice point only represents
egitimate actions at the subordinate goals). However, it
is sometimes the case that mutually dependent code is not
hierarchically organized. In iteration, for example,
variable initializations and loop actions are not
hierarchically ordered (at least in the tutor’s student
model) but the initial values assigned to variables interact
with the order in which loop actions are performed and
the nature of the variable updates. When a goal tree
containing such constraints is exhaustively expanded by
the student model it is essential that some convention be
adopted for marking the constraints.

One solution to this problems, adopted by Anderson
and Ross Thompson, in compiling problems for the tutor,
is to represent the student model traces not as a goal tree,
but as a depth-first expansion of the goal tree. An
example of such a representation is presented in Figure 3.
The effect of this transformation is that temporal relations
are represented hierarchically. If goal b follows goal a
temporally, then goal b is structurally a descendent of
goal a. 'I}I;e advantage of this is that coordinate goals in
the basic goal tree become hierarchically arranged and
any mutual constraints among tgoals can be easily
represented. The disadvantage of this solution is that
identical substructures are represented redundantly on
various branches in the tree. Even when branches are
allowed to converge whenever possible, an exhaustive
depth-first expansion of an and-or goal tree is larger than

the corresponding and-or goal tree itself.%
Problem Compilation and Tutoring Flexibility

There are at least two advantageous side effects of
problem compilation. First, it becomes relatively
inexpensive to search multiple steps down alternative
branches in the goal tree when necessary to process
ambiguous responses. Second, it becomes relatively
inexpensive to modify the behavior of the tutor by
effectively modifying the student model. The production
system is no longer running on-line as the tutor is at
work. Instead a relatively simple interpreter exists which
accepts the trace structure as input and simulates the
running model. As a result, it is possible to simulate a

CODE FUNCTION |

CODE PROCESS i
cone - aooend
* 1
i COOE FinsT| COOE FInST |cooe 'wl
: Iowoust |
| '——I'—'
car o -
; | [

. N 1]
COOE PARAM | | CODE PARAM | CODE FIRST
————— - —————
- - e
; ! i
—_— —_ PR U

AST | 3 - CODE AST. CODE =aRane
cooe : COpe Famm
wust |

—
L _J [4 ?
i
1
— U S
| CODE PARAM | ‘CODE -AST | | SODE LAST
- woust | ; N UST
| T
- T -
1
CODE SARAM | | CODE PARAM |
l 4
L] L]

Figure 3. A depth-first transformation of the goal
structure for the function ends.

6 Alternative solutions to the space demands of representing trace
structures are being pursued in other tutoring projects. In the case
of a geomeltry tutor (Anderson. Boyle & Reiser, 1985) the trace
structures and tutor programs have been ported from Lisp to C by
Anderson and Ray Pelletier. Every attempt was made to develop an
efficient representation and when the tutor is running, the code for
the program and exercises requires less than .5 megabytes. At the
same time Ed Skwarecki is tackling the problem of representing
trace structures as and-or trees and dealing with complications that
arise

ITS-88 Tueis, 1088

427

new model without changing the production system by
wnnnﬁaan interpreter that accepts the same data structure,
but behaves differently.

Modifying the Tutorial Interaction:
Student-controlled Feedback

In our initial research in varying the nature of the
tutorial interaction we have employed problem
compilation to implement a tutor that gives the student
more control over the coding process in two ways. First,
we have relaxed the constraint on input-order, so that the
students can generate code in any order they wish.
Second, in the new tutor, students have control over when
feedback is presented.

The transition from tutor-controlled to student-
controlled feedback is a fairl'i:l small one. Instead of
feeding each unit of code to the tutorial engine as it is
generated, the code can be buffered and submitted to the
tutor at the student’s request. Problem compilation is
important in converting to_student-controlled feedback
largely for the purpose of resolving ambiguity. As
described earlier, there are some situations in which a
student’s response may match more than one correct step
that the tutor is prepared to take. Further ambiguity can
arise in the student-controlled tutor since students can
deviate from left-to-right input order and as a result, may
have unexpanded goal symbols in the middle of thewr
code when they ask the tutor for help. Problem
compilation makes it convenient to resolve both types of
ambiguity by looking ahead through the rest of the
student’s code.

We have begun implementing this “student-controlled”
tutor and we have collected data with it for the first two
Jessons of the tutor’s curriculum. In this tutor the student
is provided with a true structured editor. As in the case of
the standard tutor interface, the structured editor provides

templates for the student’and ensures that the code is
syntactically correct. The student can only expand goal
symbols that exist on the screen, but the student is able to
generate arbitrary goal symbols (as long as they are
structurally legal) and so ultimately has complete control
over the order in which the code is generated. In
addition, unlike the standard interface the student may go
back and modify code that has been completed.

In this tutor, the student can request three types of
help. As in the standard tutor, the student can ask for a
hint at any unexpanded goal, and the student can ask for
an explanation at any unexpanded goal. A third option is
provided the student in this version of the tutor, however.
At any time the student can ask the tutor to check over all
the code that has been written so far. At that point the
tutor checks over the code in the same top-down, left-to-
right sequence that it ordinarily would. The tutor ignores
any unexpanded template symbols it encounters b&
skipping over the corresponding goals in the node tree.
no errors are found, it tells the student that everything is
fine so far. If no errors are found and the code is

TThe templates are very similar but not uniformly identical to the
tutor's templates for several reasons. For example. many functions
such as +. list and equal can take a variable number of arguments
and the editor has no information on what the student intends. -
Thus. while the tutor generates templates with the correct number of
argument nodes for the solution, the editor simply generates one
argument node when the function is first called and generates a new
argument node each time an earlier one is expanded until the student
fianlly deletes the last empty argument node.

com‘i)lete, the tutor advances the student to the Lisp
window just as in the standard configuration. If an error
is detected, however, the tutor gives the same feedback as
it would in the standard condition and removes the
* erroneous code from the screen. The tutor does not check
any farther and any code that is down or to the right is
popped out of the solution and into a separate buffer
(since leaving it in place might suggest to the student that
it is correct and in the proper position).

Testing Student-controlled Feedback

Thirty-four subjects took part in the first study of
student-controlled tutoring. Half the students used the
standard immediate-feedback tutor, while half used the
new student-controlled-feedback tutor. Students in both
conditions completed the first two lessons in the tutor
curriculum and then took a cumulative quiz. One student
dropped out in the immediate-feedback condition and one
student in the student-controlled condition failed to
complete the two lessons in the allotted time, leaving
sixteen subjects in each group.

Evaluation Measures

Two measures of tutor effectiveness are of interest:
rerformance on the final quiz and time to complete the
essons. There was no difference between the two groups
on the quiz: the mean score for both
correct. However. there was a reliable difference in time
to complete the exercises: Subjects in the immediate-
feedback condition required an average of 5.7 minutes to
complete each exercise, while subjects in the student-
controlled condition required 8.6 mi F <

act

roups was 83%

minutes, t(30)=3.9,
0.001. Part of this time difference may reflect the
that the subjects in the student-controlled condition were
working with a true structured editor which is necessarily
more complicated than the constrained interface in the
standard version of the tutor. However, as described in
the next section, students are doing additional processing
in the student-controlled condition (in catching their own
errors) and part of the time difference may reflect that
extra processing. :

Processing Measures

The log files in the student-controlled condition can be
used to address three issues concerning interface design
in programming tutors: (1) when do students request
feedback, (2) to what extent do students deviate from to
down, left-to-right coding, and (3) to what extent do
students catch their own errors when immediate feedback
is suspended?

In answer to the first question, subjects in the student-
controlled condition showed an overwhelming inclination
to complete their code before requesting feedback.
Students asked the tutor to "check over the code" a total
of 661 times across the exercises in both lessons and in
646 of these cases their code was complete, though not
necessarily correct. Students also teguested a goal-hint
33 times and a goal-explanation 39 times and these
requests also require the tutor to give feedback on partial
code. Even when these goal-specific requests are
included, however, the proportion of tutoring requests

>

8When a student requests a hint or an explanation at a specific
goal, the tutor actually checks over all the code "upstream” (up and
to the left) of the goal. If an error is found upstream. the tutor
provides the usual feedback on that error rather than trying to
provide help on the downstream goal, which may not be part of a
correct solution.

ITS-88 o3 1088

428

code before proceeding with the rest.

that involved partial code is still relatively small (12%).
This suggests that students could be happy with a tutor
that does not provide feedback on partial solutions but
only on complete code, as for example in the case of
Proust (Johnson & Soloway, 1985).

Examination of those instances in which students
request tutoring on partial code also provides indirect
evidence on the issue of top-down, left-to-right coding.
In no case did an{ of these partial solutions show
evidence of right-to-left or bottom-up coding. To obtain
direct evidence on this issue, however, it is not sufficient
to simply examine the state of the code when a student
asks the tutor for assistance. Rather, it is necessary to
trace through the students’ complete interaction with the
editor, which we did for the second lesson. Across the 16
subjects using the student-controlled tutor and the seven
exercises in lesson two, there were about 400 goals which
required subgoals and hence could be satisfied in a
bottom-up rather than top-down fashion. In addition,
there were about 450 opportunities for the students to
complete %)als in a right-to-left rather than left-to-right
fashion. Detailed inspection of the editor interactions
revealed only five cases in which a goal was completed in
a bottom-up fashion and just one case in which goals
were completed in right-to-left order.

It should be noted that these results conceming
tutoring requests and coding order may hinge on the
relative simplicity of the exercises under study here. As
functions become more complex, students may show
more inclination to have the tutor confirm parts of the
Similarly, as
functions become more complex, there may be some
payoff for jumping around and filling in the parts the
student is sure of before tackling the more difficult parts
of the solution. Moreover, this pattem of results may be
specific to the functional quality of Lisp and may not
generalize to more procedural languages (or to more
rrocedura] operations, such as iteration, encountered in
ater Lisp lessons). However, at least for the early
lessons, the top-down left-to-right interface of the
standard tutor seems entirely adequate.

In answer to the final question, analyses of the log files
suggest that subjects are catching and correcting their
own errors in the student-controlled condition. Across
both lessons, the tutor caught reliably more bugs per
exercise in the immediate feedback condition, l.lg, tlfaen
in the student-controlled condition, 0.83, (t(30)=2.48,p <
.05). This suggests that subjects in the student-controfled
condition are catching their own errors, though again, this
is only indirect evidence since it is conceivable that
students are being more cautious and making fewer errors
in the student-controlled condition. Detailed inspection
of the editor interactions in lesson two confirmed the
conclusion, however; subjects in the student-controlled
condition in fact corrected 23% of their own errors in that

lesson.”Thus, there may be some benefit in deviating
from symbol-by-symbol assistance in tutoring. It should
be noted though, that in addition to correcting errors,
students also "miscorrected” errors (changed an error to a
different error) and changed correct code symbols
(sometimes “discorrecting” them). Specifically. of the
code changes students made in lesson two. 46% were

9The data in this section exclude errors that would not register as
such in the immediate feedback tutor. e.g., errors that were corrected
by deleting characters before typing a delimiter and certain syntactic
errors that are caught by the interface rather than the student model.

BOCIE

R s s, s

O e
DL L

g

!

error corrections, 33% were error miscorrections and
21% were changes to correct symbols. The latter two
operations, which account for shightly more than half the
changes students made, clearly add to the time it takes
students to complete the exercises without yielding any
obvious benefits. This result exemplifies one of the chief
issues we are facing: how to balance the temporal
efficiency which can be obtained with the strong tutor
control built into the immediate-feedback condition, with
the possible cognitive and affective benefits that can be
obtained by relaxing that control.

One possible control structure is suggested b; some
results reported by Gray and Anderson (1987) and
replicated in this study. (.{ray and Anderson investigated
the code revisions that students made when writing fairly
difficult iterative search functions in Lisp. They found
that subjects are likely to go back and change code only
at the currently active ﬁ%a or at a direct ancestor of the
current?v active goal. e detailed analyses of lesson 2
revealed the same pattern for these simpler functions:
86% of the changes students made were at the currently
active goal or at a superordinate goal. -These results
suggest that a more optimal tutor might track students’
responses all the way down to leaf nodes in the goal tree
but only provide feedback as the students pop back up
through the tree. Such a tutor would (1) allow students
editing freedom while working on incomrlete subgoals,
(2) check each subgoal after it is complete, providing
feedback and ultimately answers where necessary. and
(3) move the student forward after each subgoal is
complete. A tutor with this control structure would not
be expected to save much time; since students make most
changes on the way down through the tree, they would
stil be making "almost as many productive and
unproductive changes as if the tutor never intervened,
However, such a tutor would have the advantage of
allowing students to catch whatever errors they are fikely
to catch, while providing feedback as soon as possible on
errors that the student is not likely to correct.

References

Anderson, J.R. (1987). Production systems, learning and
tutoring. In D. Klahr, P. Langley and R. Neches
(Eds.) Production Svstem Models of Learning and
Development. MIT Press, Cambridge, MA.

Anderson, J.R. (in press). Analysis of student
performance with the LISP tutor. In
N. Fredericksen, R. Glaser, A. Lesgold and

Montréal
June 1-3, 1988

ITS-88

429

M. Shafto (Eds.),'Diagnostic Monitoring of Skill
and Knowledge Acquisition. Erlbaum, Hillsdale,
NJ.

Anderson, J.R., Boyle, C.F., Corbett, A.T. and Lewis,
M.W. (in press). Cognitive modelling and
intelligent tutoring. Artificial Intelligence.

Anderson, J.R., Boyle, C.F. and Reiser, B.J. (1985).
Intelligent tutoring systems. Science, 228, 456-462.

Anderson, J.R., Corbett, A.T. and Reiser, B.J. (1987).
Essential Lisp. Addison-Wesley, Reading, MA.

Anderson, J.R., Farrell, R. and Sauers, R. (1984).
Leamning to program in LISP. C. ognitive Science, 8,
87-129.

Anderson, J.R. and Reiser, B.J. (1985). The Lisp Tutor.
Byte, 10, 4 (Apr.), 159-175.

Bloom B.S. (1984). The 2 sigma problem: The search
for methods of group instruction as effective as one-
to-one tutoring. Educational Researcher, 13, 3-16.

Gray, W. and Anderson, J.R. (in press). Change episodes
in coding: When and how do programmers change
their code? In G. Olson, S. Sheppard and
E. Soloway (Eds.), Empirical Studies of
Programmers: Second Workshop. Ablex. Norwood.
NJ.

Johnson, M.L. and Soloway, E. (1985). PROUST: An
automatic debugger for Pascal programs. Bvre, 10,
4 (Apr.) 179-190.

Pirolli, P.L. and Anderson, J.R. (1985). The role of
leaming from examples in the acquisition of
recursive programming skill. Canadian Journal of

Psychology, 39, 240-272.

Sleeman, D.H. (1983). Inferring student models for
intelligent tutor-aided instruction. In R. Michalski,
J. Carbonell and T. Mitchell (Eds.) Machine
Learning. Tioga, Palo Alto, CA.

Sleeman, D.H and Brown, J.S. (1982). Intelligent
Tutoring Systems. Academic Press, New York. NY.

