Corbett, Anderson & Patterson

Student Modeling and Tutoring Flexibility
in the Lisp Intelligent Tutoring System

Albert T. Corbett

John R. Anderson

Eric G. Patterson
Advanced Computer Tutoring Project

Carnegie-Mellon University

Corbett, Anderson & Patlerson

The Lisp Intelligent Tutoring System is a program that provides assistance to students as they
work on Lisp coding exercises (Anderson & Reiser, 1985). The program presents problem descriptions
and as the students type answers, the tutor monitors the solutions and stands ready to provide
assistance at each step. The tutor has been in use in an introductory Lisp course at Carnegie-Mellon
University each term since the fall of 1884, While the lesson material has been revised and extended
over the years, and now consists of approximately 240 exercises covering the first twelve chapters of an
introductory Lisp text (Anderson, Corbett & Reiser, 1987), the basic architecture of the tutor and the
nature of the tutorial interaction have remained essentially unchanged. Thus, the Lisp tutor represents a
relatively large and stable intelligent tutoring system,

The tutor was developed to serve as a "real-life" application of the ACT* model of skili
acquisition {(Anderson, 1983). The lutor's design and behavior are based in large part on the principles
of this model, as is described in more detail below. One goal of the tutor, of course, was to teach LISP
more effectively, but a second goal was to collect detailed data with the tutor on the course skill
acquisition in a natural setting. The tutor has proved successful in both endeavors. Two evaluation
studies, for example, have indicated that working with the tutor is more effective than doing the same
exercises "on your own" in a Lisp environment (Anderson, Boyle & Reiser, 1985; Anderson & Reiser,
1985). In one study, students using the tutor completed the exercises in a little over half the time
required by the students working on their own and scored equally well on a posttest. In the other study,
students completed the exercises 30% faster and scored 43% higher on a posttest. The tutor's
effectiveness, as indicated by these global measures of time-on-task and posttest success, provides
some general confirmation of the underlying theory. However, the data provided by the tutor on the
course of acquisition bears more directly on the theory. As students interact with the tutor, it generates
log files containing a time-stamped record of the students' overt responses and the abstract coding rule
that governs each response. As is described below, these coding rules are the basic units of skill
acquisition in ACT* and the theory makes some predictions about the time-course of acquisition. For

example, there should be a large speed-up in application of a rule from the first 1o second use, foliowed

Corbett, Anderson & Patierson

by a subsequent more gradual speed-up. This prediction is confirmed by the results (Anderson, 1987a,
in press; Conrad & Anderson, 1988).

While the tutor has reached a stable contiguration and is being used productively both in
teaching and research, there are several reasons why we would like to create substantially different
\utorial interactions. First, the theory underlying the lulor has undergone revision since the tutor was
first developed (Anderson & Thompson, in press). Second, while the tutor is more effective than
"learning on your own,” it is not as effective as a human tutor (Anderson & Reiser, 1985; Bloom, 1984).
Third, some students complain about aspects of the tutor and believe they would be happier with
moditications in the tutorial interaction. We have begun to tackle the task of implementing lutorial
changes and in this paper would like to address issues involved in such a task. Specifically, we will focus
on the impact of one component of the tutor, the student model, on the tutor's behavior and
implications for modifying that behavior. We will begin with a brief description of the tutor's current
behavior, followed by the principles that gave rise to the tutor. Then we will discuss the architecture of
the tutor, the role of the student model in governing the tutor's behavior and the implications for
modifying the tutor. Finally, we will describe some data from one such modification: a version of the tutor

in which the student and not the tutor controls when feedback is given.

Mode! Tracing and the Tutorial Interaction

The tutor employs a madel tracing paradigm o provide assistance to students. in this
approach the tutor attempts to model the steps that a student might take in solving a problem and uses
the information to evaluate the students' responses. Thus, while the student is working, the tutor in
lock-step simulates the steps that a knowledgeable student could take in writing the code. In addition, it
models errors that students make at each step on the basis of known misconceptions. By comparing the
students’ response 1o the set of possible legal actions and the set of known erroneous actions, the
tutor is able to recognize whether the student is on a correct solution path, appears to be suffering from
a known misconception, or has typed something unrecognizable, and is able 1o provide feedback

accordingly.

Corbett, Anderson & Patterson

Insert Figure 1 about here

Figure 1 provides some "snapshots” of what it is like to work with the tutor. Figure 1a depicts
the terminal screen shortly after the student has begun working on an exercise in which a function called
ends is 1o be defined. One possible solution to this exercise looks like this:

{clefun ends (§s)

{cons (car fis) {last lis}))
At the beginning of each exercise, the problem description appears in the tutor window at the top of the
screen, while the code window at the bottom of the screen is blank. In this figure the student has
already begun by typing a left parenthesis and the symbol defun. Once the student has typed a
delimiter, in this case a space, the tutor recognizes the response is comrect and creates a template on
the screen for a call to the operator defun. As shown in Figure 1b, the tutor fills in a right parenthesis
that balances the left parenthesis and puts three angle-bracket symbols on the screen. These angle-
bracket symbols represent subgoals that the student musl satsify, more specifically, they represent
arguments of defun which must be expanded (replaced with code). The student is constrained to write
the code in a left-to-right and top-down fashion, so the tutor immediately highfights the next symbol
which must be expanded and the student continues typing.

The tutor continues to monitor the student's responses, essentially on a symbol-by-symbol
basis. As long as each symbol fies on a known solution path, the tutor continues highlighting nodes and
creating function templates where appropriate, and the student continues along without interruption.
However, if the student types a symbol that does not fall on a known solution path, the tutor interrupts
with feedback. For example, Figure 1¢ depicts the screen afer the student has typed the function
name, ends, and the parameter list and has begun working on the body of the function This figure
shows the reaction of the futor when the student makes a mistake, in typing car. This error suggests
that the student has not decomposed the task correctly and the tutor attempts 1o describe what the

current goal should be.

Corbeit, Anderson & Patlerson

As long as the student makes errors that the tutor can recognize, it will iet the student
continue trying 1o expand a goal symbol. However, if the student repeatediy makes errors that the tutor
cannot recognize or if the student repeatedly makes the same type of error, the tutor will tell the student
what code would work in that step, explain why and fill in the code for the student. The student also has
the option at any point of asking the tutor for two types of information. First, the student can ask the tutor
to provide a hint about the current goal. In this case the tutor provides a description of what needs to be
done, but not how to do it. Second, the student can ask the tutor what to do next, in which case the
tutor will tell the student what the next step is, explain why and fill in the code for the student.

After completing each exercise, the student enters a Lisp environment, in which he or she
tries the code that was generated and is also free to explore. Then when ready, the student proceeds to

the nexi exercise.

ACT" and the Tutor's Design

The tutor's behavior as described in the prior section reflects both general assumptions of the
ACT* theory and observations of students learning to program in LISP {Anderson, 1987b; Anderson,
Farrell & Sauers, 1984, Pirolli & Anderson, 1985). ACT" is a general theory of cognition, but oniy a few
of its assumptions are relevant to tutoring.1 These assumptions were in tumn distilled into a set of
tutoring principles by Anderson, Boyle, Farrell and Reiser (1987).

One central assumption is that problem-solving behavior is hierarchically struclured. A
problem represents a goal that can be solved by decomposition into subgoals. For example, the
template in Figure 1b indicates that the goal of defining a function can be satisfied by typing defun and
setting three subgoals: (1) coding the function name, (2) coding the function parameters and (3) coding
the process or body of the function. Some goals can be directly satisfied by the execution of a rule (e g,

the first two subgoals in our example}, while other goals require additional decomposition (e .g., the third

I These assumptions are not unigue to ACT*, but are shared by a variety of cognitive
theories.

Corbelt, Anderson & Patterson

goal in the example)}. Figure 2 depicts the hierarchical goal tree that underlies the task of defining the

function ends.

Insert Figure 2 about here

The nodes in this figure represent goals and the branches are labelled with code symbols that
are generated in satisfying the goals. As can be seen, when defunis coded, three subgoals are set
{the arc at this juncture in the figure indicates that each of these subgoals must be satisfied). This goal
structure represents three different solutions to the exercise, since the CODE-PROCESS goal can be
satisfied by any of three code symbols, cons, list or append. Each of these three symbols gives rise
to a unique subgoal structure that must be satisfied. One tutoring principle is derived from the
hierarchical goal-structure assumption: a tulor should make the goal structure explicit.

An important cluster of assumptions, giving rise to several tutoring principles, concems the
representation and acquisition of knowledge. ACT* distinguishes between deciaralive and procedural
knowledge. It assumes that knowledge underlying a skill is encoded in declarative form initially, on the
basis of communication or observation. Declarative knowledge can be encoded readily, but does not
lead directly to behavior. Instead, behavior requires procedural knowledge. Procedural knowledge is
represented as a set of independent IF-THEN rules called productions. An English translation of

some productions rules that students learn early in LISP programming would be:

{1) IF the goal is to define a function called name
that accepts n arguments and performs the task process
THEN code a call to defun
and set subgoals to code
{a) the function name name
(b) a list of nparameters

{¢) the process process

Corbett, Anderson & Patterson

(2) IF the goal is to form a list
by inserting newitem at the beginning of
an existing list oldlist
THEN code a call to CONS
and set subgoals to code
(a) newitem

(b) oldist.

in the course of skill acquisition, the declarative knowledge that is encoded is applied by
means of general problem-solving productions. This application of declarative knowledge is relatively
slow, but results in the formulation of domain specific productions (e.g., the examples above) that can
be applied more rapidly. With additional experience, productions become stronger and give rise to
larger order productions. These assumptions concerning skill acquisition give rise to several tutoring
principles: instruction should be presented in the context of problem solving, the student's knowledge
should be represented as a set of productions and the grain size of the representation shouid be
adjusted with learning.

Finally, ACT* assumes that skill acquisition and performance depends on a limited-capacity
working memory. This assumption gives rise to the general principle that working memory load should
be minimized. Along with some specific production-learning assumptions discussed below, it also gives
rise to the principle that error feedback should be presented immediately.

Although the tutor as described here has proven generally effective, there are two aspects of
its behavior that we would like to manipulate experimentally, the constraints on coding order and the

immediate feedback policy.

Corbett, Anderson & Patterson

Coding Order

Students are constrained by the tutor to expand goals lefi-to-right and depth-first. These
constraints do not represent a general principle of problem-solving in ACT*, but represent a
generalization based on observations of students learning Lisp (Anderson, Farrell & Sauers, 1984) The
tutor itself deviates from the generalization under some circumstances. For example, when a student
creates a helping function in an exercise, the tutor imposes a breadth-first expansion; that is, the
student completes the top-level function before defining the helping function. In some exercises
students refer to local variables before declaring them, which violates left-to-right goal expansion. The
tutor also recognizes that students may deviate from strictly top-down goal expansion. For example,
imagine an exercise in which students have to define a function called remove-/ast that removes the
last element of a list, for example, (remove-last ‘(a b ¢ d)) relurns (a b ¢). This funclion can be
defined as follows:

(defun remove-last (1is)

(reverse (cdr (reverse lis))))

The body of this function is non-obvious to novices, even when students understand what the
functions cdr and reverse do. The function reverses the list, deletes the resulting first element and
then flips the list back again. The tutor contains coding productions that generate this code top-down,
but if a student flounders at this point, the tutor branches to mean-ends analysis planning productions
that derive the solution in a different order. The first means-ends production that applies recognizes that
cdris the only known function that deleles a list element. The second prodtclion recognizes that the
list should be reversed before cdris called, since cdronly deletes an element from the front of a list. A
final means-ends production then recognizes that the resulting list should be reversed again.
Conceivably, if students implicitly work through this plan, they would deviate from top-down code
generation. |

Our chief motivation for relaxing these constraints is that some students complain about the
restrictions on coding order. Relaxing the restrictions and observing when students deviate from the

standard order may provide additional evidence on the development of coding productions.

Corbett, Anderson & Patterson

Immediate Feedback

There are several reasons for maniputating the timing and control of feedback. Anderson,
Boyle, Farreil & Reiser (1987) proposed that feedback be provided immediately in skill acquisition for
praclical as well as theoretical reasons. Two practical reasons for immediate feedback are that it saves
time and frustration on the part of the student by reducing floundering and that it simplifies the model
tracing task. On the other hand, there are several practical reasons for varying from the principle. Some
students complain aboul immediate feedback, in part because they don' like being interrupted and in
part because they wouid prefer 1o find and fix mistakes themselves. In addition, human tutors do not
necessarily iltervene immediately when mistakes are made (Fox 1988, Lepper & Chabay, in press) and
the effectiveness of immediate feedback varies (Kulik & Kulik, 1988).

An additional reason for varying feedback, however, is that the learning assumptions of ACT"
have changed. Previously in ACT" production formation was based on a working memory trace of the
problem solving episode. That is, production formation was based on all that iranspired between the
initial setting of a goal and the action that satisfied it. Optimal production formation required both the
presence of relevant information in working memory and the ability to filter out irelevant information.
Since immediate feedback reduces floundering, it reduces the the load on working memory {by
reducing the size of goal-satisfaction episodes) and fosters the formation of appropriale productions.
Since the Lisp {utor was developed, however, assumplions have been elaborated and revised
concerning the initial proceduralization of domain-specific productions {Anderson & Thompsen, in
press). In the revised formulation, production formation is based on working memory data structures
representing the initial goal and ultimate solution and not on a trace of the entire goal-satisfaction
episode. As a result, production formation is no longer directly related (o the size of the episode

{amount of floundering), and immediate feedback is no longer viewed as crucial in production formation.

Corbett, Anderson & Patterson 10

Mode! Tracing and the Tutor's Architecture
The tutors architecture can be analyzed into three basic components: domain knowledge
(the student model), tutoring rules, and the interface (cf. Sleeman & Brown, 1982; Wenger, 1987). One
might guess that the characteristics we wish to manipulate, coding order and immediate feedback chiefly
involve the interiace and pedagogical component. However, because of details of the tutor's

architecture, these aspects of the tutorial interaction are closely tied to properties of the student model.

The Interface

Currently the tutor's interface is fairly simple. !t is responsible for accepting the student's code
and displaying the code on the screen. It is not responsible for maintaining an internal representation of
the student's code. The interface accepts expressions from the student roughly a symbol at a time and
does some syntactic checking. For example, it ensures that students do not embed illegal syntactic
characters within atoms and ensures that students type a left parenthesis at the beginning of funclion
calls. (Note that the interface must have information on correct solutions to perform the latter task). If the
input satisfies these syntaclic constraints the interface passes it through for checking. Communication
in the other direction, from the tutor to the interface is accomplished by means of a symbol table, which
is described below. At the end of each cycle, the interface converts the symbol table to Lisp code for

display on the screen, sets the cursor on the appropriate goal symbol and awaits a new input.

The Student Model

As specified by the tutoring principles, the student model is implemented in the form of a
production system. The complete set of correct rules for writing code is referred to as the ideal student
model and represents the instructional objectives of the text and tutor. The student model also
includes a bug catalog - a set of incorrect rules that reflect known misconceptions. In modeliing student
behavior, the production system is given a specification of the function to be written (analogous to the
English description provided the student) and the top-level goal of coding the function is added to a

goal stack. In each cycle a goal is pulled from the stack and the set of production rules is compared to the

Corbett, Anderson & Patterson

goal and the problem description. This comparison process results in a set of productions, called the
confiict set, that match the problem state and therefore could be applied. This set always contains one
or more correct rules and generally contains one or more buggy rules. The student's input is then
compared to this set. If the input matches the coding action of a correct production, that production
"fires." it adds an expression to the symbol table which represents the student's solution and may add
goals to the goal stack 2 No tutorial action is taken, and control is returned to the interface . If the

student's inpul does not match a correct preduction then the tutorial component responds.

The Tutorial Component

The tutorial component consists of a set of simple rules that apply when the student makes a
mistake. If the student's input matches the coding action of a buggy production, then a feedback
message associated with the production is presented. If the input does not match any production, the
tutor cannot diagnose the error and indicates this to the student. If the student makes two errors at a
goal that cannot be diagnosed or triggers the same buggy production three times, the tutor assumes
the student is floundering and provides a correct code symbol along with an explanation. In each case,

after the student hits the return key, control again passes to the interface.

In addition to providing error feedback, the tutorial cmponent performs a second function we
call knowledge tracing . As the student solves exercises, the tutorial component maintains an
"overlay” model of the student's knowledge of Lisp coding. For each correct production in the student
model, the tutor maintains a probability estimate that the student has the production correcily encoded.
The student's first response at each goal, correct or incorrect, is used to modify the estimate of a correct
production in the conflict set. These probability estimates do not influence the tutor's response to enor,

but are used to select exercises and 1o decide when a student is ready to move on to a new topic. (See

2 This is an oversimplification since not all productions generate code. Some only modify
the goal structure or the problem description and as described earlier, some productions
model planning processes. However, these productions are not directly relevant to the
topic of modifying the tutorial interaction.

Corbett, Anderson & Patterson 12

Corbett & Anderson, in press, for additional implementation details and an evaluation of knowledge

tracing).

implementation of Mode! Tracing

One difficulty with model tracing within the framework described above is that production
systems have high computational costs (due to pattern matching demands) and require an
unrealistically high level of computational resources to keep up with students in real time. A second
difficufty with model-tracing concerns the disambiguation of students' responses, since under some
circumstances, a student's response may match more than one production instantiation. For example,
consider the function call

(+ {car lis1)} (car lis2})
Since the ordering of arguments to the function + is unimportant, the tutor will allow the student to code
the two arguments in either order. Thus, when the goal is set to code the first argument, there are two
viable production instantiations, each of which codes car. When the student types car, it is not
possible to determine which argument the student is coding. This ambiguity could be resolved in the
next cycle when a variable is typed. However, to postpone resolution for a cycle, it would be necessary
for the production system to follow both possible branches. That entails matching the student's next

response 1o the subgoal of each production, which increases the amount of matching required.

Problem Compilation
Both of these difficulties can be resolved when it is recognized that model tracing does not
require on-line execution of the production system whife the tutor is running. The tutor's ability to
recognize correct solutions and standard bugs depends on the student modei, since the tutor is only
presented a problem description and not a solution. However, it is possible to run the production
system model ahead of time as long as a trace of the run is stored that retains whatever information is
relevant 10 tutoring. in this way the cost of pattern matching in identifying relevant rules can be bome

ahead of time. Once those rules have been identified and stored in a data structure, is easy to match the

Corbett, Anderson & Patterson

student's response to the rules and have the tutor respond accordingly This process, referred to as
problem compilation,3 not only enhances the efficiency of modelling, but as an added benefit, enables

functional modifications in the student model at relatively low cost.

Implementing Problem Compitation

There is one substantial difference between running the production system on-fine and
running it ahead of time. Most of the exercises in the tutor can be solved in more than one way and
some have literally hundreds of acceptable solutions. Thus a goal tree representation of the student
model's potential behavior contains or-nodes (e.g., the CODE-PROCESS node in Figure 2). When the
student model is being run on-line and an or-node is encountered, it is only necessary 1o follow the
branch selected by the student. When the model is run ahead of time, however, it is necessary to follow
each branch at an or-node so that subsequently the tutor can follow the student down any branch that is
selected. Thus, problem compilation requires the exhaustive representation of alternative expansions
of the goal tree and the resulting data structures can become quite large.

The need lo expand the goal tree exhaustively poses an additional complication in
representing mutuatl constraints among productions. Whenever there is more than one production that
satisfies a goal, the production selected will almost certainly constrain the way at least one other geal in
the problem is satisfied. This can be seen in the body of the function ends. Three different functions,
cons, list or append, can be employed to construct the required list of two elements. Not
surprisingly, the subsequent code for the two elements is different in each case:

(cons {car lis) (last lis))

(list (car lis) (car {last Iis)))

(append (list (car lis)} (last lis))
in this example the components of the code that co-vary are hierarchically organized. That is, whichever

function is chosen at the 1op-level goal here, cons, list or append, determines the correct code at

3 A similar process is described in Sleeman, 1983.

13

Corbett, Anderson & Patterson 14

the subgoals (the correct arguments). is easy 1o represent such hierarchically organized constraints in
a goal tree. (Each nranch at a choice point only represents legitimate actions at the subordinate goals)
However, it is sometimes the case that mutually dependent code is not hierarchically organized. In
iteration, for example, variable initializations and loop actions are not hierarchically ordered (at leastin the
tutor's student model) but the initial values assigned to variables interact with the order in which loop
actions are performed and the nature of the variable updates. When a goal tree containing such
constraints is exhaustively expanded by the student modei it is essential that some convention be
adopted for marking the constraints.

One solution 1o this problem, adopted by Anderson and Ross Thompson, in compiling
problems for the tutor, is 1o represent the student model traces not as a goal tree, but as a depth-first

expansion of the goal tree. An example of such a representation is presented in Figure 3.

insen Figure 3 about here

The effect of this transformation is that temporal relations are represented hierarchically. If goal
B follows goal A temporally, then goal B is structurally a descendent of goal A. The advantage of this is
that coordinate goals in the basic goal tree become hierarchically arranged and any mutual constraints
among goals can be easily represented. The disadvantage of this solution is that identical substructures
are represented redundantly on various branches in the tree. Even when branches are allowed to
converge whenever possibie, an exhaustive depth-first expansion of an and-or goal tree is larger than

the corresponding and-or goal tree itself 4

4 Alternative solutions to the space demands of representing trace structures arc being
pursued in other tutoring projects. Skwarecki (1988) describes a tutoring project that
employs a more compact goal tree. Anderson and Ray Pelletier are developing a more
efficient production system interpreter that should be fast enough to run on-line in
tutoring, eliminating the need for compiled solutions.

Corbett, Anderson & Patterson

Problem Compilation and Tutoring Flexibility

There are at least two advantageous side effects of probiem compitation First, it becormes
relatively inexpensive to search muitiple steps down alternative branches in the goal free when
necessary to process ambiguous responses. Second, it becomes relatively inexpensive to modify the
behavior of the tutor by effectively modifying the student modef The production system is no longer
running on-line as the tutor is at work. Instead a relatively simple interpreter exists which accepts the
trace structure as input and simulates the running model. As a result, it is possible to simuiate a new
model without changing the production system by writing an interpreter that accepts the same data

structure, but behaves differently.

Modiifying the Tutorial Interaction

As is suggested in the preceding section, much of the tutor's complexity resides in the
student model. The interface and tutorial components are fairly simple, as is the communication
between components. Given this architecture, the tutorial characteristics we wish o manipulate, coding
order and immediate feedback, depend heavily on characteristics of the student model. In particular,
input order is not an optional attribute of the interface, but is governed by properties of the student
model, because the student model rather than the interface determines what the student can do next.
Since the student modei can only expand goals top-down, depth-first and left-to-right, the student is
contrained to type code in that order.

A turther characleristic of the student model has a strong impact on the nature of the tutorial
interaction. The student's knowledge of Lisp is represented at about the finest grain size that has
functional meaning in Lisp. Roughly speaking, it models performance at the level of the individual
symbo! (modeliing at a finer fevei of analysis would essentially be of typing rather than Lisp coding). This
has a direct impact on the tutor's behavior, because in model tracing the immediate feedback principle
actually specifies that feedback should be given after each production firing. Thus, the tutor's symbol-
by-symbol feedback is not strictly a consequence of immediate feedback, but a consequence of

applying immediate feedback to a student mode! of minimum grain size.

15

Corbett, Anderson & Patierson

In summary, important aspects of the tutorial interaction depend directly on features that are
built into the student model. In principle, then, modifications in the tutor's behavior require a recoding of
the student model This is an important realization because the student model, which currently consists
of approximately 1200 rules for generating correct and incorrect code, represents about 75% of the
code involved in the tutor. Forlunately, we can implement model tracing in a way that makes modification

of the student mode! a less imposing task than this statislic suggests.

To relax the tutor's input and feedback constraints, we need to dissociate the tutor's interface
component from the student-modelling component and to revise the tutorial component. We are
following a muiti-stage plan in accomplishing this task. The first step is to isolate the interface functions
from the modelling functions. To do this, we have introduced a true structured editor into the the tutor.
It provides editing commands that allow the student to enter code in any order and to delete code they
have entered. The editor assumes the responsibility of maintaining a symbol table representing the
student's code and ensures that the code is syntactically legal, but has no capability for checking the
code is functionally correct. The structured editor provides code templates with angle-bracket symbols
that are similar to, though not uniformly identical to the tutor's tempfatesﬁ As in the case of the tutor,
the student can only enter code by expanding angle-bracket symbols on the screen, but the student is
able to select the next angle-bracket symbo! to be expanded, to generate arbitrary angle-bracket
symbols (as long as they are structurally fegal) and to embed existing code or angle-bracket symbols in a
template for a higher-level function call, and so has control over the order in which the code is

generated.

5 For example, many functions such as +, list, and equal can take a variable number of
arguments and the editor has no information on what the student intends. Thus, while the
tutor generates templates with the correct number of argument nodes for the solution, the
editor simply generates one argument node when the function is first called and generates
a new argument node each time an earlier one is expanded until the student finally deletes
the last empty argument node.

16

Corbetl, Anderson & Patterson 17

Student-controlled Feedback

Having introduced the editor, the next step is to integrate with the student-modeliing and
tutorial components 1o enable feedback. In our initial research with the revised architecture, we have
implemented a student-controlied tutor, in which students not only control the order in which they input
code, but also when feedback is given. In this tutor students can type code, make whatever changes
they want, and ask for feedback from the tutor at any point. The transition from tutor-controlled
feedback to siudent-controlled feedback is a fairly small one. Instead of feeding each unit of code to the
student-model and tutorial component, the code is buffered in the editor's symbol table and matched to
the student-model only when the student requests help. Problem compilation is important in converting
to student-controlled feedback largely for the purpose of resolving ambiguity. As described earlier,
there are some situations in which a student's response may match more than one correct step that the
tutor is prepared to take. Further ambiguity can arise in the student-controlled tutor since students can
deviate from left-to-right input order and as a result, may have unexpanded template symbols in the
middle of their code when they ask the tutor for heip. Problem compilation makes it convenient to
resolve both types of ambiguity by looking ahead through the rest of the student's code.

in the student-controlied tutor, the student can request three types of help. Asin the
standard futor, the student can ask for a hint at any unexpanded goal and the student can ask for an
explanation at any unexpanded goal. A third option is provided the student in this version of the lutor,
however. At any time the student can ask the tutor fo check over all the code that has been written so
far. At that point the tutor checks over the code in the same top-down, left-to-right sequence that it
ordinarily would. The tutor ignores any unexpanded template symbols it encounters by skipping over
the corresponding nodes in the goal tree. If no errors are found, it tells the student that everything is
fine so far. If no errors are found and the code is complete, the tutor advances the student to the Lisp
window just as in the standard configuration. If an error is detected, however, the tutor gives the same
feedback as it would in the slandard condition and removes the erroneous code from the screen. The
tutor does not check any farther and any code that is down or to the right is popped out of the solution

and into a separate buffer (since leaving it in place might suggest to the student that it is correct and in

Corbett, Anderson & Patterson

the proper position). We have begun collecting data with this version of the tutor, and preliminary

resuits are described below.

Further Developments: Restoring Tutor Control

As dala is collected with the student-controlled tutor, we have also begun work on the next
phase in our project: restoring the ability to evaluate code on a symbol-by-symbot basis, while aliowing
students 1o deviate from the standard input order. Restoring symbol-by-symbol evaluation will aliow us
substantial flexibility in implementing tutor-controlled feedback rules. In addition, it will enable greater
flexibifity in knowledge tracing. in the standard tutor, knowledge tracing is based on the student's first
coding attempt at each goal. Under the code-buffering implementation of the student-controlled tutor,
however, the modelracing and knowledge-tracing mechanisms only have access to the state of the
code when the student requests help, with no record of the order in which the code is entered and no
record of deletions and revisions the student made. Symbol-by-symbol evaluation will restore maximum
information to the knowledge-tracing mechanism.

Since the fully-expanded goal tree is available for each exercise as a result of problem-
compilation, we can implement symbol-by-symbol evaluation by means of a purely structural mapping of
editor symbols onto goals. As described earlier, the editor generates code templates much like those
created by the productions in the student-model. For example, when the student types a call to defun
the edilor generates the template (defun <names> <parameters> <process>}, which is identical
1o the templale generated by the production that codes defun. While the angle-bracket symbols
created by the editor do not strictly speaking represent goals in a correct solution, they do correspond
closely to those goals. Thus, the solution to integrating the editor with model-tracing is to map each
node in the editor symbol table, as it is generated ,to goals in the compiled solution tree. This mapping
allows us to continue evaluating code on a symbol-by-symbol basis, even if the student diverges from
depth-first left-to-right expansion and even if the student makes mistakes.

If there is a single solution to an exercise, each editor node will map to at most one goal in the

solution tree. If an exercise has more than one solution, then editor nodes below a choice point will map

18

Corbett, Anderson & Patterson 19

to multiple goals on various branches. Issues arise concerning such mappings to multiple branches,
however the issues can be readily resolved. First, a given input may satisfy goals on mulitple paths. For
example, if the student begins the body of ends by typing (cons (car...)the symbol car maiches a
goal on two branches. In this, case, we can identify the appropriate branch, because only one branch
invoives cons. However, the same disambiguation is not possible if the student begins the body as
follows: (<function> (car <list>} <other-expressionss) Since the entire goal tree has been
expanded through compilation, though, there is no particular reason to perform the disambiguation.
The appropriate branch will emerge as the student continues typing.

A second issue in mulliple mappings also arises Suppose the student types the following
code: {cons (car lis) (list (Iast lis})). The first three symbols match one branch in the tree and the
latter three symbols match a branch of a different solution. In light of the theoretical assumption of iop-
down goal expansion, when such conflicts arise, we will disambiguate them in favor of the higher level
code. Given this resolution, each time code is added to the editor table at or below a branch point, it is
necessary {o check downstream nodes to see if previously consistent code is now on a mismatching
branch. On the other hand, each time code is deleted from the symbel table, it is necessary 1o check
downstream to see it previously inconsistert code is now on a consistant branch.

Thus, while computational complexity is introduced, we can return to something
approximating the input cycle of the original tutor. On each cycle, new code is matched to 3 production
conflict set iat some goal (or more than one set if the code maps 1o more than one goal), any new editor
nodes are mapped to goals in the tree, and finally downstream code is checked if the modified node falls
below a branch point.

A final issue conceming this structural node mapping concerns bottorn up coding. Although
the editor expands code tempfates in a top-down fashion, much like the tutor, it is possible, by means
of an editor command te generate code bottom up. {This command takes an existing Lisp expression
or angle-bracket symbol and embeds it as the first argument of a new function call template). To the
extent that students deviate from top-down expansion, a purely structural mapping will lead to code

mismaiches. For example, if a student coded the body of ends bottom up, he or she would begin by

Corbett, Anderson & Patterson

coding His. This symbol would be structually mapped to the CODE-PROCESS goal, at which it does not

malch any production. Eventually, as the student completes a bottom-up expansion, the code would be

recognized, but at intermediate states the tutor would fail to recognize it as a possible solution If we find
this happening frequently it would warrent moving to a more complex goal-mapping scheme which
makes reference to the content of the goals. As the student types symbols under this system, the tutor
would search the goal tree for goals that match the input and are topologically consistant with the
structure of the editor 1able. Thus, if the student started by typing fis the tutor would tentatively map the
input to the six CODE-PARAM goals in the goal tree. If the student then embedded this symbol in a call
to car, i.e., {car iis), only four ltopologically consistent mappings would remain from lsto CODE-
PARAM goals (i.e., mappings that would not require the subsequent deletion of code). Such a system
would enable more immediately accurate evaluation of bottom up coding, but yet higher computational

expense.

The immediate code evaluation process described in this section enables us to implement a
variety of tutor-controlled feedback rules. One option, of course, is to restore the standard tutor's
policy: inform the student of errors immediately and require that each step be accomplished correctly.
However, symbol-by-symbol evaluation does not necessitate immediate feedback. One structural
alternative that might prove less disruptive is to provide feedback on the basis of farger order units, e g.,

complete function calls.

Another option is 1o make feedback timing contingent on the type of error made. For
example, given the demonstrable effect of working memory limitations on coding errors {Anderson &
Jeffries, 1985) it would be ideal to present feedback messages immediately only when the benefit of
the message outweighs the cost of disrupting working memory. One rule thal would approach this goal
and would be fairly easy to implement given the knowledge tracing mechanism would be to delay
feedback on "slips,” (errors in which a student fails to fire a well-learned production) that do not seriously

disrupt the goal structure of the exercise. An alternate scheme to minimize working memory disruptions

20

Corbett, Anderson & Patterson 21

would be to provide immediate notification when an error is made, but not 1o insist on immediate
correction. Such a tutor would signal that an error has been made by dispiaying the error in a distinctive
font, but leave it up to the student when a correction is made. Under this system it is up to the student
to evaluate the relationship of the error to his or her current goal structure and 1o choose the optimal

time to suspend goal expansion and correct the error.

Multiple Errors

A final issue deserves comment before we consider the preliminary data from the student-
controlled tutor. If we deviate from immediate feedback and error correction, then students wiil be
generating code with more than one error. When the student requests help, a decision wilt be required
concerning the error on which to comment.

The student-controlled buffering approach described above answers this question impiicitly.
Given the standard student-modeling mechanism, when the student asks the tutor to check over the
code, the tutor checks it top-down, depth-first, left-lo-right and provides feedback on the first error
encourtered. Indeed, if the student asks for goal-specific feedback (a goal hint or explanation of correct
code), the tutor checks over the code from the beginning. Iif an error is encountered before reaching
the target goal, the tutor will instead provide feedback on the earlier error. In part this is because it could
be difficult to continue tracing down to the target goal once an error is made. However, another
imporiant reason concerns the contert of the feedback itself. Given the operation of the standard tutor,
the feedback messages, including the goal reminders, bug diagnoses and descriptions of correct code,
assume that the upstream code is correct and that there is no code downstream. These messages may
mislead students if these assumptions are violated. Currently, we are keeping the standard feedback
messages in the new implementations for two reasons: experimental control and efficiency. We want to
keep the content of feedback constant as we vary its control and fiming, 1o avoid confounding the
factors. However, ancther imporiant consideration is that there are more than a thousand feedback
messages to be modified. We would like to delermine that an alternative to immediate feedback and

error correction is effective, before tuning this body of messages accordingly.

Corbett, Anderson & Patterson) 22

Testing Student-controlied Feedback

As described earlier, our initial research in varying the nature of the tutonal interaction employs
problem compifation to implement a tutor that gives the student more controf over the coding process in
two ways. First, we have relaxed the constraint on input-order, so that the students can generate code
in any order they wish. Second, in the new tutor, students have control over when feedback is
presented. We have collected data with this tutor for the first two lessons of the tutor's curriculum. The
first lesson introduces basic arithmeltic and list functions, the structure of function calls, and vanables.
The second lesson covers function definitions.

Thirty-four subjects look part in this study of student-controlled utoring. Half the students
used the standard immediate-feedback tutor, while half used the new student-controlled-feedback
tutor. Students in both conditions completed the first two lessons in the tutor curriculum and then took a
cumulative quiz. One sludent dropped out in the immediate-feedback condilion and one student in the
student-controlled condition failed to complete the two lessons in the allofied time, leaving sixteen

subjects in each group.

Evaluation Measures

Two measures of tutor effectiveness are of interest: performance on the final quiz and time to
complete the lessons. There was no difference between the two groups on the quiz; the mean score
for both groups was 83% correct. However, there was a reliable difference in time to complete the
exercises: Subjects in the immediate-feedback condition required an average of 5.7 minutes to
complete each exercise, while subjects in the student-controlled condition required 8.6 minutes,
1(30)=3.9, p < 0.001. Part of this time difference may refiect the fact that the subjects in the student-
controlled condition were working with the true structured editor which is necessarily more complicated
than the constrained interface in the standard version of the tutor. However, as described in the next
section, students are doing additional processing in the student-controlled condition {in catching their

own errors) and part of the time difference may reflect that extra processing.

Corbett, Anderson & Patierson 23

Processing Measures

The log files in the student-controlled condition can be used to address three issues
concerning interface design in programming tutors: (1) when do students request feedback, (2) to
what extent do students deviate from top-down, depth-first, left-to-right coding, and (3) to what extent
do students catch their own errors when immediate feedback is suspended?

in answer to the first guestion, subjects in the student-controlled condition showed an
overwhelming inclination to complete their code before requesting feedback. Students asked the utor
to "check over the code” a total of 661 times across the exercises in both lessons and in 646 of these
cases their code was complete, though not necessarily correct. Students also requested a goal-hint 33
times and a goal-explanation 39 times and these requests necessarily require the tutor to give feedback
on partial code. Even when these goal-specific requests are included, however, the proportion of
tutoring requests that involved partial code is still relatively smalt (12%). This suggests that students
could be happy with a tutor that does not provide feedback on partial solutions but only on complete
code, as for example in the case of Proust (Johnson & Soloway, 1885).

Examinatlion of those instances in which students request tutoring on partial code also
provides indirect evidence on the issue of coding order. In no case did any of these partial solutions
show evidence of right-to-left, depth-first or bottom-up coding. To obtain direct evidence on this issue,
however, it is not sufficient to simply examine the state of the code when a student asks the tutor for
assistance. Rather, it is necessary 1o trace through the students' complete interaction with the editor,
which we did for the second lesson. Subjects never deviated from depth-first coding in these
exercises, although the struciure of the exercises provided relatively few opportunities to distinguish
depth-first vs. breadth-first coding - a total of three per subject. Across the 16 subjects using the
student-controlled tutor and the seven exercises in lesson two, however, there were about 400 goals
which required subgoals and hence could be satisfied in a bottom-up rather than top-down fashion. In
addition, there were about 450 opportunities for the students to complete goals in a right-to-left rather

than left-to-right fashion. Detailed inspection of the editor interactions revealed only five cases in which

Corbett, Anderson & Patterson

a goal was completed in a bottom-up fashion and just one case in which goals were completed in right-
to-left order.

it should be noted that these resuits concerning tutoring requests and coding order may
hinge on the relative simplicity of the exercises under study here. As functions become more complex,
students may show more inclination to have the tutor confirm parts of the code before proceeding with
the rest. Similarly, as functions become more complex, there may be some payoff for jumping around
and filling in the parts the student is sure of before tackling the more difficult parts of the solution.
Moreover, this pattern of results may be specific to the functional quality of Lisp and may not generalize
to more procedural languages (or to more procedural operations, such as iteration, encountered in later
Lisp lessons). However, at least for the early lessons, the top-down, depth-first left-to-right interface of
the standard tutor seems enfirely adequate.

in answer to the final question, analyses of the log files suggest that subjects are catching and
correcting their own errors in the student-controlled condition. Across both lessons, the tutor caught
reliably more bugs per exercise in the immediate feedback condition, 1.15, than in the student-
controlled condition, 0.83, {1(30)=2.48, p < 05). This suggests that subjects in the student-controlled
condition are catching their own errors, though again, this is only indirect evidence since it is
conceivable that students are being more cautious and making fewer errors in the student-controlled
condition. Detailed inspection of the editor interactions in lesson two confirmed the conclusion,
however. In that lesson students detected and revised a total of 86 errors, while the tutor detected 165
errors. Of these 86 errors students revised, 49 (57%) were corrected, while the remaining 37 (43%) are
changed to a different error.® Thus, there may be some ben efit in deviating from symbol-by-symbol
assistance in tutoring. it should be noted though, that in addition to correcting errors {and

"miscorrecting” errors) students also changed correct code symbols 21 times (changing them to

6 The data in this section exclude errors that would not register as such in the immediate
feedback tutor, e.g., errors that were corrected by deleting characters before typing a
delimiter and certain syntactic errors that are caught by the interface rather than the
student model.

Corbett, Anderson & Patterson

alternative correct symbols 9 times and "discorrecting” them 12 times). Thus, of all the spontaneous
changes students made, 20% were ¢hanges 10 correct code.

Alinal issue we examined concems the relative position of the coding revisions the subjects
made. Gray and Anderson (in press) investigated the code revisions students made when writing fairly
difficult iterative search functions in Lisp. They found that subjects are most likely to change code at the
goal they are currently working on or have just completed and are next most likely 1o go back and
change code at a goal superordinate to the current goal. They are relatively unlikely 1o change code at
other goals. For example, suppose a student is typing code in the standard order andhas reached this
point in coding a solution to ends:

{defun ends (lis)

(list {car lis) (car (last <fist3>)))
Gray and Anderson found that the student would be most likely to change the symbol Jast, next most
likely to change the second instance of car, or the occurrences of Jist and defun, all of which satisfy
superordinate goals of the current goal, and least likely to change any of the other symbols in the code.
The detailed analyses of lesson 2 revealed the same pattern for the simpler functions in the current
experiment. Sixty-one of the students changes (57%) were at the current goal, 31 (29%) were at
superordinate goals and 15 (14%) were at other goals. In addition, the probability that a revision actually
corrects an error varied with the position of the correction relative to the current goal. Fifty-one percent
of the changes at the current goal corrected an error, while only 42% of the changes at superordinate
goals and 33% of changes at other goals corrected errors.

These results suggest that a more oplimal tulor might track students' responses all the way
down {o ieaf nodes in the goal tree but only provide feedback as the students pop back up through the
tree. Such a tutor would (1) allow students editing freedom while working on incomplete subgoals, (2)
check each subgoal after it is complete, providing feedback and ultimately answers where necessary,
and (3) move the student forward after each subgoal is complete. A tutor with this control struciure may
not save much time relative to the student-controlled tutor; since students make maost changes on the

way down through the tree, they would still be making almost as many produclive and unproductive

25

Corbett, Anderson & Patterson

changes as if the tutor never intervened. However, such a tutor would have the advantage, relative 1o
the standard tutor, of allowing students to calch whatever errors they are likely to caich, while providing

feedback as soon as possible on errors that the student is not likely 1o correct.

28

Corbett, Anderson & Patterson

References

Anderson, J.R. {1983). The architecture of cognition. Harvard University Press, Cambridge, MA.

Anderson, J R. (1987a}. Production systems, learning and tutoring. In D. Klahr, P. Langley and R.
Neches (Eds.) Production System Models of Learning and Development. MIT Press,
Cambridge, MA.

Anderson, J.R. (1987b). Skill acquisition: Compilation of weak-method problem solutions.
Psychological Review, 84, 192-210.

Anderson, J R. {in press). Analysis of student performance with the LISP tutor. in N. Fredericksen, R.
Glaser, A Lesgold and M. Shafto (Eds.}, Diagnosric Monitoring of Skiff and Knowlecdge
Acquisition. Erlbaum, Hillsdale, NJ.

Anderson, J.B., Boyle, C.F., Farreli, R. & Reiser, B.J. (1987). Cognitive principles in the design of
computer tutors. In P. Mormis (Ed.) Modelling cognition. Wiley, New York,

Anderson, J.R, Boyle, CF.and Reiser, B.J. {1985). Intelligent tutoring systems. Science, 228, 456-
462.

Anderson, J.R., Corbett, AT. and Reiser, B.J. (1987). Essential Lisp. Addison-Wesley, Reading, MA.

Anderson, J.R., Farrell, R. and Sauers, R. (1984). Learning to program in LISP. Cognitive Science, 8,
87-129.

Anderson, J.R and Jeffries, R. (1985). Novice LISP errors: Undetected losses of information from
working memory. Human-Computer Interaction, 22, 403-423.

Anderson, J.R. and Reiser, B.J. {1985). The Lisp Tutor. Byte, 10, 4 {Apr.}, 159-175,

Anderson, J.R. and Thompson, R. {in press). Use of analogy in a production system architecture. in S
Vosniadou and A. Ortony {Eds.) Similarity and analogical reasoning. Cambridge University Press,
New York.

Bloom B.S. (1984). The 2 sigma problem: The search for methods of group instruction as effeclive as
one-to-one tutoring. Educational Researcher, 13, 3-16.

Conrad, F.C. and Anderson, J.R. {1988). The process of learning Lisp. The Proceedings of the Tenth

Annual Conference of the Cognitive Science Society, Montreal.

27

Corbell, Anderson & Patterson 28

Corbett, A.T. and Anderson, J.R. (in press). The Lisp Intelligent Tutoring System: Research in skill
acquisition. In J. Larkin, R. Chabay and C. Sheftic (Eds), Computer assisted instruction and
intelligent tutoring systemns: Establishing communications and collaboration. Erlbaum, Hillsdale,
NJ.

Fox, B A, {(1988). Cognitive and interactional aspects of correction in tutoring. Technical Report #88-2,
Institute of Cognitive Science, University of Colorado.

Gray, W.and Anderson, J.R. {in press). Change episodes in coding: When and how do programmers
change their code? in G. Olson, S. Sheppard and E. Soloway {Eds), Empirical Studies of
Programmers: Second Workshop. Ablex, Norwood, NJ.

Johnson, M.L. and Soloway, E. (1985). PROUST: An automatic debugger for Pascal programs. Byte,
10, 4 (Apr) 179-190.

Kulik, J.A. and Kulik, C.C. (1988). Timing of feedback and verbal learning. Review of Educational
Research, 58, 79-97.

Lepper, M.R. and Chabay, R.W. (in press). Socializing the intelligent tutor: Bringing empathy to
computer tutors. In H. Mand! and A. Lesgold (Eds.) Learning issues for intelligent tutoring
systems. Springer, New York.

Pirolli, P.L. and Anderson, J R. (1985). The role of learning from examples in the acquisition of
recursive programming skill. Canadian Journal of Psychology,39, 240-272.

Skwarecki, E. J. (1988). Improving the engineering of model-tracing diagnosis. The Proceedings of
the International Conference on Infelligent Tutoring Systems, Montreal.

Sleeman, D.H. (1983). Inferring student models for intelligent tutor-aided instruction. In R. Michalski, J.
Carbonell and T. Mitchell (Eds.) Machine Learning. Tioga, Palo Alto, CA.

Sleeman, D.H and Brown, J.S. (1982). Intelligent Tutoring Systems. Academic Press, New York, NY.

Wenger, E. (1987). Artificial intelligence and tutoring systems. Morgan Kaufmann, Los Altos, CA.

Corbett, Anderson & Patterson 29

Figure 1.

Figure 2.

Figure 3.

Figure Captions
Three "snapshots” of the terminal screen as a student codes the function ends with the
tutor.
The goal structure of the function ends. Goals are represented as oval nodes. Branches
are labelled with code symbols that are generated by productions in satisfying the goals.
(Circular arcs indicate points at which multiple subgoals are created, each of which must
be satisfied).

A depth-first transformation of the goal structure for the function ends.

Define a function called ends that takes one argument, which must
be a list, and returns a new list containing the first and last items
in the argument. For example,

(ends '(a b ¢ d)) = (a d)

‘ . CODE for ends - ‘

(defun

Define a function called ends that takes one argument, which must
be a list, and returns a new list containing the first and last items
in the argument. For example,

(ends '(a b ¢ d)) = (a d)

, CODE for ends : '

(defun [ENEIVIEY <PARAMETERS>
<PROCESS>)

™ o o
Rt A S

You will need to call the function CAR, but not yet. You need to
construct a list containing the first item in the argument and
the last item in the argument, so you need to call a list combining
function here.

(defun ends (lis)
(car)

, CODE for ends _

;o

[L. 10

T i

st s
WHHYd WHHHd
3003 3002
sl 182 1sof si] A3 1 sH
1811
WoHHd 1s4i4 N1 1SH1 WHHHd WHHUd WH4Yd
3007 3002 3003 1003 3002 1003
1sej 181} Jea aes 1sej 183

puadde }SH suol
(st) spusa
| |
8833044 3003 Qu.ﬁzammm m_m@ C IWHUN 3000 D
Vel I
unjap

_
CNOILINDA 300D

CODE FUNCTION

C_CODE PARAMETERS

cons list append
@@ C_CODE FIRST >

car car list
CcobE PARAM D

lis lis car

jast

car lis
C CODE PARAM) CODE LAST CODE LAST
IN LEST IN LIST

lis last last

CODE PARAM CODE PARAM
lis lis

¥ Koy o

