L1 200987
Qv

Tn pregs: J. Larkin, P.Chabav & (.%heftic (eds) Computer assisted instruction and
intellieent tutoring svstems: Fstablishing communication and collahoration.
Hillsdale, NJ: Erlbhaum.

LISP Intelligent Tutoring System:
Research in Skill Acquisition::

Albert T. Corbett and John R. Anderson
Advanced Computer Tutoring Project, Carnegie Mellon University

The LISP Intelligent Tutoring System (LISPITS) is an instructional program
that helps students learn to program in the computer language LISP,
Specifically, the tutor helps students with homework exercises. In each exercise
the student is given a written description of a short program to write and, as the
student types the program at the terminal, the tutor monitors the student's
performance and provides assistance when errors are made. The tutor currently
covers the first twelve chapters of an introductory LISP text (Anderson, Corbett
& Reiser, 1987) and includes approximately 240 exercises.

LISPITS is dubbed "intelligent” because it is capable of generating correct
solutions to the exercises and of assisting students based on this capability. The
decision to build the tutor was inspired in large part by the collection of papers
in Intelligent Tutoring Systems (Sleeman & Brown,1982) describing several
tutors that embody the general approach described below. The tutor was
developed for two major purposes:

» To automate some of the advantages of a personal tutor, thereby making
them more widely available

+ To test the real-world applicability of a psychological theory of skill
acquisition, called ACT* (Anderson, 1983) and described below,

LIS_PHS was first tested in the summer of 1983, and has been used since then as
a research tool. It has also been used in teaching a LISP course in the

2 Corbett & Anderson

psychology department at Carnegie Mellon University each term since the fall of
1684.

The principal goal of the tutor is to allow students to practice programming.
The tutor is constructed to be used in conjunction with an introductory LISP text
Essential LISP (Anderson et al,, 1987), which describes the LISP language.
After every major section in the text (roughly every two or three pages) there are
coding exercises which require the students to write brief programs. Although
these exercises can be done with LISPITS, they can also be done with paper and
pencil or on a computer in the conventional mode of typing, executing and
debugging solutions. The goal in developing LISPITS has been to optimize the
time spent in doing these coding exercises. TFhishend several things a

’§ not dgp” LISPITS doesn't try to
provide any initial exposmon of LISP, it doesn't make any provision for the
students 1o ask general questions about LISP, and it doesn't try to assess the
student's understanding of LISP (except in the context of doing exercises).
Rather, the tutor provides an environment, similar to an editor, in which the
student can do the exercises. But unlike an editor, it ensures that the student's
final solutions are correct. More specifically, the tutor provides feedback when
the student makes a mistake and, if the student appears to be floundering, will
provide the next correct step in the solution. Thus, exchanges between the
gtudent and tutor are in the context of doing exercises and arise only if the
student is having difficulties. Although in principle a student might complete
all the exercises without knowing the tutor is in the background, in actuality,
even if the student makes no mistakes, the tutor occasionally presents a menu in
order to clarify the student's responses.

In this chapter we discuss assessment studies of the tutor and our experiences
with it in the classroom. We then present the central assumptions of the ACT*
theory and how these assumptions motivate the tutor's design and
implementation. We then describe the research we have conducted with the
tutor, To provide context, however, we precede the main part of the chapter with
a brief discussion of LISP and a pictwre of the student's interaction with the
tutor.

— LISP AND AN ILLUSTRATIVE INTERACTION WITH LISPITS
At this point we first give a brief description of the language LISP and then run

through a hypothetical interaction with LISPITS to give some idea what it is
like to use the tutor.

9/20/89, to author

a——

Siven 101

Lot

Intelligant Tutoring: Research in Skill Acquisition 3

BRIEF DESCRIPTION OF LISP

LISP is an interpretive language {like BASIC), which means it is not necessary
to compile LISP code before running it. Instead it is possible to "enter a LISP
environment” on the computer, that is, run a program called a LISP interpreter,
and just type LISP code. The interpreter will "evaluate” {(execute) the code and
return an answer. For example, in the following interaction, the LISP
interpreter has put a prompt (=>) on the screen. The user has typed a line of
code, indicating the addition of three numbers. The LISP interpreter executes the
line of code and returns the answer, 12.

=> (+ 3 4 5)

12

Function calls

Functions in LISP are generally designed to accept one or more “arguments”
(input values) and return an answer. The expression (+ 3 4 5) inthe
example above is a function call. The function + is applied to three arguments,
and an answer is returned. There are two important points to recognize
concerning the structure of function calls:

1. LISP uses prefix notation the operator precedes all the argument values on
which it operates.

2. A function call takes the form of a list: the operator, followed by its
argumentis, are all enclosed in a set of parentheses.

In evaluating a function call, LISP first evaluates each of the arguments and then
applies the operator to them. For example, consider the following function call:
=> (+ 4 (* 10 5))
54

The user has catled the function + with two arguments, but the second argament
is itself a function call (* 10 5). Before LISP can apply +, it must evaluate
this function call. The operator * performs multiplication, so (* 10 5) returns
50, and the call to + returns 54.

In the preceding example, LISP evaluates the numbers (4, 10, 5), returning their

own values. LISP can also evaluate variables. For example, suppose the
symbol sym has the value 5. Then, as above,

9/20/89, to author

4 Corbett & Anderson

=> {(+ 4 {(* 10 sym}}
54,

because LISP evaluates sym as 5. If one wants LISP to evaluate a symbol
literally rather than as a variable, then the symbol is preceded by a single
quotation mark (e.g., "sym).

Function definitions
Programming in LISP largely consists of defining new functions. New
functions can be defined in LISP by means of the built-in function defun.
This function takes three argumnents:
1. The name of the function.
2. A list of variables called "parameters.”
3. The body of the function describing what the function does.

INTERACTING WITH LISPITS TO SOLVE A PROBLEM

We now turn to the tutor LISPITS and how a student might work with it to
define a LISP function.

A sample problem
Consider the following problem description:

Define a function called pal that takes a single list as an argument and
returns a palindrome that is twice as long. A palindrome is a list that reads
the same forward and backward. For example, (pal '(a b c}) renuns
fa b ccb a).

Note that the argument of pal begins with a single quote, meaning that LISP
should not evaluate the symbol (a b ¢) before applying pal w0 it

The-student is being asked to define a function which, when provided a list,
creates a new list with a specific structure. The student must use the existing
function defun to define a new function pal. As described above, defun
requires three arguments. The following solution satisfies the problem
description:

9/20/89, to author

cede

Intelligent Tutoring: Research in Skilt Acquisition 5

{defun pal (origlist)
{append origlist {(reverse origlist})))

The first symbo! following de fun (its first argument) specifies the name of the
new function, pal. The second symbol (origlist) isa list containing a
single parameter origlist. This parameter is a variable; when pal is
subsequently executed and given a list, such as {a b c), the list will
auwtomaticatly be assigned to the variable origlist. The final argument of
defun, (append origlist (reverse origlist)),isthe "body" of
the function definition. To code the body of the function the student must
realize that-it-is to gencrate a list which is a mirror-image reversal

cede. (reverse omgl ist)) ef-we-fiset-and then merge the original list and this
T reversal into a new Hst, @ppsnd@nglmﬁfevmgh@}-
it The fue ot CEpIe 1.

——

Interaction with LISPITS N o T
N 1. ¢ H \‘

Let's trace the process by which a student might generate this code. The
following snapshot shows the terminal screen shortly after the student has begun
the exercise.

Tutor Window

Define a function called pal that takes a single list as an argument and returns a
palindrome that is twice as long. A palindrome is a list that reads the same
forward and backward. For example, {(pal *{a b c})) returns
{a b cegcb al

Code Window

{defun <rame> <parameters> '
<body>)

When students are working on an exercise, the terminal screen is divided in two,
with a tutor window at the top of the screen and a code window at the bottom.
The tutor communicates with the stedent by means of the tutor window; the
problem description appears in this window at the beginning of an exercise and
remains there except when the student makes a mistake. The code the student
types appears in the code window.

9/20/89, to author

=~ T, 2

-

§ Corbett & Anderson

In the preceding snapshot, the student has already typed a left parenthesis and
defun and LISPITS has responded by putting up a template for the student.
Specifically, it has provided a matching right parenthesis and put three goal
symbols on the screen in angle-brackets. These angle-bracket symbols are not
themselves LISP code, but stand for the three arguments for defun that the
student needs to fill in. They represent remaining goals to be satisfied.
LISPITS highlights the goal symbol which the student must work on next.
LISPITS constrains the student to type the function definition from left-to-right
and top-down, so the next symbol the student must replace with code is
<name>,

As the student works on an exercise the tutor monitors the student’s input on a
symbol-by-symbol basis. LISPITS is intended to recognize any reasonable
solution that conforms to both the problem specification and the stylistic
guidelines specified in the text. In many exercises there are several possible
solutions and in some cases LISPITS recognizes literally hundreds of acceptable
variations . As long as the student remains on any reasonable solution path, the
interactions with LISPITS is very similar to working with a programming
editor. As the student types, the tutor replaces the goal symbols with the
student’s correct entries, and advances the cursor to the goal symbol that is to be
expanded pext.

After the student types defun and LISPITS has put up the three-part function-
definition template, the tutor then highlights each of the three goal symbols in
suceession, for the student to fill in. The student would type pal over the first
symbol <name>. Then the student would replace the symbol <parameters>
with a list {i.¢., parentheses enclosing a set of symbols for function parameters).
As we have seen, the function pal takes a single argument, so only one
parameter is required, and the student should type a list containing a single
symbol here. There are many errors that students make at this point as they are
first learning to code functions. One interesting error would be to type the
parameter list (List). Technically, this is is a correct step; in LISP the
student can legally create a parameter called 1ist. However, LISPITS would
object to this step for two reasons. The following snapshot shows what the
student's code wounld look like at this juncture and how LISPITS would respond.
(In-each of these snapshots, the specific input to which the tutor is responding is
in bold typeface).

9/2(/89, to author

Intelligent Tutoring: Research in Skill Acquisition 7

Tutor Window

Remember that you are wrying to get the parameter list of the function here.
You should not be calling the function list. If you were thinking of using list
as a parameter name, it is a bad idea because you might get confused between the
function and the parameter,

Code Window

{defun pal (list)
<process>)

‘Whenever the student makes a mistake, the tutor immediately provides feedback
and, if the tutor can diagnose the nature of the error, it provides an explanation.
After the student presses the return key, the erroneously typed symbol is erased
and the student is given chance to type a correct symbol. The student then types
a new symbol. If this response is correct, the problem description reappears. If
the response is again erroneous, another feedback message appears. If the student
repeatedly makes errors at a particular step that the tutor cannot diagnose or, if
the student is repeating the same type of diagnosed error, the tutor will intervene
1o prevent floundering and provide the student with a correct next step along with
an explanation, then allow the student to proceed.

The message in the preceding sample tutor display is typical of the general
framework for providing feedback on errors. It reminds the stident of the current
goal and tries to explain why the student's code does not accomplish the goal.
As the feedback suggests, LISPITS does not just point out syntactic or
algorithmic errors, but also enforces certain stylistic constrainis. While List
can be used as a parameter, it is not good style to do so since it is also the name
of a function in LISP, which can cause confusion. The other interesting point
about this error is that there is another interpretation. The student may have
intended 1o call 1ist as a function here, perhaps because hefshe forgot the
parameter list and began work on the body of the function. Since there are two
explanations of the student’s behavior and LISPITS cannot distinguish between
them, it says something about both interpretations.

9/20/89, o author

8 Corbett & Anderson

In the next snapshot, we assume that the student has typed the parameter list
correctly, with a single parameter origlist . This parameter represents the
list to be given to the function pal. The student now makes a mistake in
beginning the body of the function. The Tutor Window shows LISPITS
response.

Tutor Window

Yes, you will need to use the function REVERSE, but not yet. Remember that
you need to make a new list that combines the original list with its reverse, so
first you will need a list combining function

Code Window

(defun pal (origlist)
(reverse)

As the feedback suggests, the current goal is to code a function that will build a
list, but the student's code, reverse will not accomplish that goal. However,
LISPITS recognizes that reverse does accomplish a subgoal of the current
goal. It tells the student that it is premature to be working on that subgoal and
tries to explain what the current goal is,

In the next snapshot the student seems to be working on the correct goal, but
has called the wrong function 1o accomplish it:

2/9/72, to author

Intelligent Tutoring: Research in Skill Acquisition 9

Tutor Window

You will need to make a list, but LIST is the wrong combining function. If
you LIST (abc) with its reverse, you will get ((abc) (cba)) instead of
(abccha).

Code Window

{defun pal (origlist)
(list)

In this message, LISPITS confirms that the student is working on the correct
goal, but tries to show, by means of the example in the problem description,
why the student's code won't satisfy the goal.

In the following cycle the student has the right idea, but has made a typing error.
LISPITS has a simple spelling corrector which detects the likely error and
queries the stdent.

Tutor Window

Define a function called pal that takes a single list as an argument and returns a
palindrome that is twice as long. A palindrome is a list that reads the same
forward and backward. For example, (pal (abc)) retumms (abccba).

Code Window

(defun pal (origlist)
(append orglist <list2>))

Did you mean origlist?

In the next snapshot the cursor is on the symbol <1ist2> and the student has
asked for an explanation of what to do next.

§/20/89, to author

10 Corbett & Andarson

Tutor Window

Here we can see that the argument list needs to be reversed. REVERSE will flip
around the order of the elements in a list. For example, if we apply REVERSE
to (abc) we get (cba)

Code Window

{defun pal (origlist)
{append origlist <list2>))

LISPITS tells the student what the cormect next step is and will put the correct
symbol into the code for the student.

Finally, in the next snapshot the student has completed the code correctly.

Tutor Window

Define a function called pal that takes a single list as an argument and returns a
palindrome that is twice as long. A palindrome is a list that reads the same
forward and backward, For example, {(pal '(ab¢)) returns {abc c ba)

Code Window

(defun pal (origlist) .
{append origlist (reverse origlist)))

After completing each exercise the students have an opportunity to try out the
cade they just wrote. When students complete an exercise, they enter a LISP
window that gives them access to the a LISP Interpreter. Students can
experiment in the LISP window as they choose; the only constraint is that they
successfully call the function they have just defined at least once. The following
snapshot shows a the result of successfully calling the newly defined function
palonthelist ' (d e £).

0/20/89, to author

Intelligent Tutaring: Research in Skill Acquisition 11

LISP Window

=> (pal ‘d e))
(deffed)

LISPITS: ASSESSMENT AND CURRENT USE

Two studies of LISPITS were conducted early in its development to assess its
effectiveness (Anderson, Boyle, & Reiser, 1985; Anderson & Reiser, 1985).
The first study compared three groups of students, all novice programmers, who
learned LISP by reading a text and doing a standard set of exercises. One group
performed this task with the assistance of a human tutor, a second group used
LISPITS to do the exercises, and the third group performed the task on their
own, doing the exercises entirely in the LISP window. There were no differences
among the three groups on a post-test, but there were substantial differences in
how quickly they worked through the exercises. The students working with a
human wtor completed the task in approximately 12 hours, those working with
LISPITS finished in about 15 hours, while those working entirely on their own
required approximately 28 hours.

The second study assessed LISPITS in the context of a class. The students in
this study had 1aken a prior programming class (in Pascal). These students
attended lectures on LISP and performed the same set of exercises. Half the
students did the exercises with LISPITS, while the other half did the exercises on
their own in the LISP window. The students working with LISPITS took 30%
less time to complete the exercises and scored 43% higher on a posttest. Thus,
while LISPITS is not as effective as a human tutor, it leads to strong
performance gains in comparison with students doing exercises on their own.

Currently LISPITS is used to teach a self-paced course in LISP offered each term
in the Psychology Department at Carnegie Mellon. Most of the work in the
course involves completing LISPITS' twelve lessons. Two mechanisms are
built into the program to ensure that students are learning the material. First,
LISPITS assesses students' performance as they complete exercises and provides
additional exercises to students who are having difficulties {this mechanism is

9/20/89, to author

12 Corbett & Anderson

described in more detail below). Second, after every other lesson LISFITS gives
an on-line quiz, in which students are asked to perform four programming
exercises without tutoring assistance. Students must pass this quiz before they
can move on. If they flunk a given quiz twice, LISPITS has them repeat the
material in the two preceding lessons. If they flunk the quiz two more times,
students are required to see the instructor before proceeding. In addition to these
internal mechanisms, there are external mechanisms to ensure that studenis are
able to function in LISP without the assistance of LISPITS. First, they are
asked to do a handful of exercises entirely outside the tutoring program with a
standard LISP interpreter and a typical screen editor. These non-tutor
assignments culminate in a final project that typically involves writing a
program that employs artificial intelligence search techniques to perform a
problem solving task. In addition, students typically take paper-and-pencii
midterm and [inal exams involving programming exercises.

THEORETICAL PRINCIPLES UNDERLYING LISPITS

The goal of this research project has been to develop a programming futor on the
basis of principles derived from the ACT* theory of cognition (Anderson, 1983).
ACT* is a general theory of cognitive processing, and as such is necessarily
complex, but only some of its assumptions are directly relevant to the tutor.
Table 1 contains a summary of the relevant assumptions from the ACT* theory,
with corresponding tutoring principles derived from these assumptions
{Anderson, Boyle, Farrell, and Reiser,1987).

9/20/89, to author

Intelligent Tutoring: Research in Skill Acquisition 13

Table 1: ACT* Assumptions and Related Principles
for a Computer-Implemented Tutor

ACT* Assumptions Corresponding Tutoring
Principles
1. Problem-solving behavior is goal Communicate the goal structure
driven. underlying the problem-solving
task.

2. Declarative and procedural knowledge Represent the student's
are separate. knowledge as a production set.

The units of procedural knowledge are

IF-THEN rules called productions.

3. Initial performance of a task is Provide instruction in the
accomplished by applying weak problem-solving context; let
(general) procedures to declarative student's knowledge develop
knowledge structures. through successive

approximations to the target
Task-specific productions arise by skill.

applying weaker productions to
declarative knowledge. Provide immediate feedback on
These task-specific productions fTors.

underlie more efficient performarnce.

4. As aresult of additional practice, Adjust the step size of instruction
productions can be chained together as learning progresses.
into larger-scale productions.

5. The student maintains the current Minimize working memory load.
state of the problem in a limited-
capacity working memory.

These principles generally governed the development of LISPITS and other
programming and mathematics tutors developed by Anderson's group (cf.
Anderson, Boyle, & Yost, 1985; Lewis, Milson, & Anderson, 1987, Anderson,

9/20/89, to author

by

14 Corbett & Andarson

Boyle, Corbett, & Lewis, in press). In this section we will elaboraie the
assumptions of the model and the wmoring principles from Table 1.

BEHAVIOR 1S GOAL-DRIVEN (PRINCIPLE 1)

Like most theories of problem solving, ACT* assumes that behavior is goal
driven (Miller, Galanter, & Pribram, 1960; Newell, Shaw, & Simon, 1958).
Problem solving requires that the goal specified in the problem description (e.g.,
writing a program} be decomposed into subgoals which can either be satisfied
directly or, in turn, decomposed. Thus, to a first approximation, acquiring a
skill such as LISP coding requires the student to learn both (1) operations that
can gccomplish specific goals and (2) how to decompose high-level goals into
subgoals that can be satisfied by known operations.

DECLARATIVE VS. PROCEDURAL KNOWLEDGE (PRINCIPLE 2)

A second fundamental assumption, again shared by many cognitive theories, is
that a distinction must be drawn between declarative and procedural kmowiedge.
Students are assumed to acquire declarative knowledge of programming by
reading or listening to lectures. Declarative knowledge can be readily learned
bat, in isolation, does not lead to behavior. Instead, performance requires
procedural knowledge. It is assumed in ACT™, as in many other psychological
models, that this knowledge is represented in the form of IF-THEN rules called
productions. When a production is triggered (by the satisfaction of its IF
clause), behavior results (through the execution of its THEN clause).

For example, one of the first declarative facts a student learns about LISP might
be rendered in English as:

: The function + takes one or more numbers as arguments and returns the sum of
those numbers.

This declarative knowledge could be employed in different types of tasks, for
example:

A Code Generation Task:

"
~ \Write a function call that will add the numbers 10, 20, 30 and 40.

9/20/89, to author

Intelligant Tutoring: Research in Skili Acquisition 15

A Code Evaluation Task:

| Compute the answer LISP would return if given the expression (+ 3 4 5).

The assumption of the ACT* theory is that the declarative knowledge alone is
not sufficient to perform either of these tasks. Instead, procedural knowledge is
required; productions must execute (or "fire") to lead to any behavior such as
writing code or evaluating code. In terms of the ACT* model, the ultimate goal
in learning a programming language is to acquire productions that can be
employed 10 perform these operations, for example:

A Code Generation Production:
IF the goal is to add together a set of numbers
THEN code acail to + and set goals to code the arguments.

A Code Evaluation Production:
IF the goal is to evaluate a function call of the form
(+ <axgl>..<argn>)
THEN evaluate each of the n arguments and generate the sum of
the resulting numbers.

Note that each of these rules refers to the student's current goal and what to do to
satisfy the goal. It is an important assumption of the theory that a production
will lead to behavior only in the context of a particular goal. If the current goal
is to write code, the second production cannot execute, while if the current goal
is to evaluate a LISP expression, the first production cannot execute.

ACQUIRING PROCEDURAL KNOWLEDGE (PRINCIPLES 3 AND 4)

When the student first codes a call to +, it is not by firing a production like the
one described above. Instead, the student executes a more general production for
coding function names that refers to declarative knowledge structures, for
example,
IF the goal is to perform an operation and the appropriate
function name is in declarative memory
~THEN code a call to that function and set a goal to coede its
arguments.

9/20/89, to author

16 Corbett & Anderson

Tt is only as a result of successful applications of such general productions to
specific declarative knowledge that the more specific coding production for + is

acquired.

Once goal-specific productions have been formed, additional practice leads to two
additional types of learning. First, productions are strengthened with additional
practice. That is, with practice, they come to execute more quickly and reliably.
Second, with practice, sequences of productions can be composed into larger-
scale productions. One of the first obvious candidates for this composition
process that arises in learning LISP concerns the operation of returning the
second element of a list. LISP provides a function, car which returns the first
element of a list, e.g., (car *{a b c)) retwns a. LISP also provides a
complementary function, ¢dr, which takes a list as an argument and removes
the firstitem, e.g., {cdr *(a b c}) returns (b c¢). In order to return the
second item in a list, it is necessary to remove the first item, by applying cdr
10 the list and then to return the first element of the resulting list with cax.
Thus, (car (cdr '(a b c))) returns b. When students first solve this
problem (in Lesson 1) presumably they trigger two separate productions that
code car and cdr. However, with experience, they are assumed to develop
knowledge characterized by the following composed production:
IF the goal is to code a function call that returns the second
element of a list,
THEN code acall to car on the result of a call to cdr and set a
goal to code the argument to cdr.

WORKING MEMORY (PRINCIPLE 5)

According to ACT*, the current state of a problem is stored in a limited capacity
working memory. [t is the current state information that can satis{y the IF
clause of a production and so cause it to executs. Implementing the THEN
clavse of a production ordinarily causes a change in working memory so that
some new productions are satisfied.

In the early phases of learning, before efficient productions have been bailt,
relatively large amounts of information must be stored in working memory over
relatively long periods of time. As more efficient productions are built, the load
on working mermnory decreases.

9/20/89, to author

Intelligent Tutoring: Research in Skill Acquisition 17

TUTORING PRINCIPLES

These fundamental assumptions give rise to the tutoring principles summarized
in Table 1 and govern the general nature of LISPITS. The text enables the
student to encode declarative knowledge structures and, as Tutoring Principle 3
suggests, the tutor concentrales on giving the student the opportunity to practice
the skill and build productions. It is certainly Hkely that the student will not, by
studying the text, completely and correctly encode the necessary declarative
knowledge to complete the exercises in the tutor, In fact, empirical estimates of
the probability that the student will correctly encode the declarative knowledge 1o
construct various production rules ranges from 15% to 90% with a mean of
about 60%. However, the assumptions underlying the tutor suggest that the
most efficient course of action is to give students the opportunity to write code,
and to repair declarative knowledge as the need arises in the course of coding.

Of course, within this general framework, it is necessary to make various
decisions about the specifics of the interface. Again, theoretical assumptions
suggest goals to strive for (although not necessarily how to obtain them). For
example, in problem-solving, the process of recognizing which productions will
satisfy the current goal relies heavily on working memory. This is particularly
true in the early stages of problem solving, when larger declarative knowledge
structures must be maintained in working memory 0 allow more general
productions to execute. As a result, it should be optimal to reduce the load of
non-essential information in working memory. Indeed, research by Anderson &
Jeffries (1985) suggests that many errors made by novices leaming 1o program
are slips that result from the loss of information from their working memory.
This research examined a simple code generation task (among other tasks)
involving list operations and found that when more complicated arguments were
involved, students were more likely to make errors in selecting the correct
function lo accomplish a goal. The fact that subjects were making errors
inconsistently, i.e., making errors in some situations and not in others, suggests
that the errors were slips rather than systematic misconceptions. The fact that
errors occurred more often in more complex exercises suggests that the slips may
have resulted from working memory overload. The tutor reduces working
memory load largely by providing templates for function calls. By providing
balancing right parentheses these templates reduce the burden of syntactic
considerations in coding. By providing angle-bracket symbols for arguments
these templates also provide exiernal cues concerning pending goals (and
simultaneously satisfy Principle 2 in Table 1).

9/20/89, to author

18 Corbett & Andarson

One of the tutoring principles in Table 1 has proven quite controversial and
deserves special discussion. This is the principle of immediate feedback. This
principle is derived from both thegretical and practical considerations.
Theoretically, it is assumed that procedural leaming is based on a memory trace
of the students’ practice. If a student makes an error while coding a function and
must go back and self-correct then, first, the memory trace is more complicated
and, second, it reflects error repair rather than correct generation. These two
factors combine to decrease the potential for successful learning. First, it is less
likely that a correct production will be formed from the more complicated trace.
Second, even if the correct production is formed, it is less likely that the student
will recognize its goal at the next opportunity without going through the same
error and repair process.

There are two practical reasons for preferring very immediate feedback over more
delayed feedback. First, if feedback is to lead to a useful production, if is
necessary that it be provided in the context of the appropriate active goal and
working memory state. If feedback is delayed it may be less likely that the
appropriate context will be reinstated, rendering the feedback less useful. Lewis
and Anderson (1985) have provided some evidence of a weaker effect of delayed
feedback in an adventure game which is formally equivalent to solving equations.
A second reason for providing immediate feedback is that once a student has
branched onto an erroneous path, the error can be compounded by additional
errors and the student can spend a lot of time and become quite distressed trying
to recover. Since the tutor is unable to follow a student once he/she has diverged
from a successful path, the simplest solution io this problem is to immediately
bring the student back to a comrect path. The adequacy of the immediate feedback
principle is an open issue and we will return to it in the final experiment
discussed in this chapter.

Of course, if the tutor provides feedback on an error, the consequence can only be
to repair declarative knowledge and not to encode a production for doing it
correctly in the first place. However, the student is given the opportunity to try
again at the point of the error, so the possibility remains of generating the
correct symbol and perhaps encoding the corresponding production. If the tutor
tells the student what code to generate, for example, "code a call to + here,” the
praduction a student is likely to form is

IF the goal is to code what the tutor tells me to and
the tutor says to code "+"
THEN code +.

9/20/89, to author

intelligant Tutering: Research in Skill Acquisition 19

This production is not likely to be generally useful so, in responding to errors,
the goal of feedback in the tator is to provide a reminder of the current goal and
why the student's code does not achieve the goal. It is not to tell the student
what the correct code is. The tutor only gives the student the correct code when
the evidence is that the student is lost.

MODEL TRACING: IMPLEMENTING LISPITS

To construct a tutor that performs according to the specifications in the preceding
section, it is necessary to have at all times a pattern against which the students'
behavior can be measured. That is, as the student generates a LISP program
step-by-step, the tutor ust have information that allows it to recognize whether
each successive step is on the path 1o a successful solution. One way to
accomplish this task is to provide the tutor with a catalog of possible solutions
for each exercise. This approach would allow it to recognize whether each
symbol of code does or does not match a known solution. It could recognize
correct steps, could have relatively simple rules for deciding if a mistake was
close to, or far from, being correct, and could readily tell the student steps that
would work. The difficulty arises in trying to explain steps to students, in terms
of underlying goals and constructs. A given function always performs the same
operation, so it is possible to describe to the student what the next step in the
algorithm is but, with this approach, it is not possible to say why that step is
appropriate. This difficulty with a solution catalog might be surmounted, e.g.,
by providing hand-coded explanations for each solution or, perhaps, by providing
the tutor with a description of each exercise and with rules for inferring, in
relation to the description, the purpose of each symbol of code. However, we
have taken a different approach with LISPITS. Instead of providing LISPITS
with a set of solutions for each exercise, we provide LISPITS with rules that
allow it to generate solutions.

In this approach LISPITS is provided a set of general rules for writing LISP code
and a specification of each exercise, From these, it attempts 10 model the steps
that a student might take in solving a problem. Thus, while the student is
working, the tutor in Jock-step simulates the steps that a knowledgeable student
coutd take in writing the code. In addition, it models errors that students make at
each step on the basis of known misconceptions. By comparing the students’
response 1o the set of possible legal actions and the set of known erroneous
actions, the tutor is able to recognize whether the student is on a correct solution
path, appears to be suffering from a known misconception, or has typed

9/20/89, to author

20 Corbeft & Anderson

something unrecognizable. This set of correct and incorrect rules for writing
LISP programs is referred to as the student model and is described in more detail
in the following section. We refer to this process of comparing the student’s
steps in writing a program to the steps generated by the student model as model
tracing.

THE STUDENT MODEL

The student model that underlies the LISP tutor is partly descriptive and partly
prescriptive. That is, it is derived in part from observations of students learning
LISP (Anderson, Farrell, & Sauers, 1984; Pirolli & Anderson, 1985) and in pant
from analysis of requisite knowledge for LISP programming and considerations
of good programming style. As described earlier, procedural knowledge of how
to write LISP code is modelled by a set of productions. Each production is
essentially an IF-THEN rule. An English translation of a typical production rule
that students learn in Lesson 1 would be:
IF the goal is to form a list by inserting an item at the
beginning of an existing list
THEN code a call 1o the function cons and set subgoals to code
the item and the list.

A more complex rule that is encountered in a later lesson is:

IF the goal is to code a function that takes a list and the
function must access every atom in the list structure and
the list structure can be arbitrarily complex

THEN code cond to implement car-cdr recursion and set
subgoals to code terminating cases and to code recursive
cases.

The complete set of correct rules for writing code is referred to as the ideal
student model and represents the instructional objectives of the text and tutor.
The student model also includes a set of incorrect rules that reflect known
misconceptions and are collectively referred to as the bug catalog, or the set of
buggy rules.

In actually modelling student behavior, the production system is given a
spegification of the LISP program to be written and a goal is set to write the
program. The problem description, which is analogous to the English
description provided the student, is loaded into the production system's working
memory. At each step in generating a program, the production system examines
its correct and buggy rules and decides which ones could execute according 1o the

9/20/89, to author

Intelligent Tutoring: Ressearch in Skill Acguisition 21

IF clauses satisfied by the current problem state, i.e., by the the current goal and
the current contents of working memory. This set of eligible rules is termed the
conflict set and will always contain one or more correct rules and will generally
contain one or more buggy rules. Only one of these eligible rules in the conflict
set can actually be triggered, and the next step is to decide which one best
describes the action taken by the student. LISPITS does this by comparing the
symbol the student types to the symbol that would be generated by each of the
rules in the conflict set.

If the student's input matches the symbol generated by a correct rule, then that
rule is triggered. As a result, the student's symbol is added to the permanent
problem solution, one or more new goals may be set, and information may be
added to working memory. At that point, a new goal is activated (drawn from
the list of unsatisfied goals) and the cycle is repeated. If the student's input
matches the symbol that would be generated by one of the buggy rules, or does
not match any rule in the conflict set, then no rule is triggered. Instead, the
tutor provides a feedback message and gives the student another chance. If the
student then types a correct symbol, a correct rule is then triggered as described
above. If student repeatedly types symbols that either do not match any rule in
the conflict set or maich the same buggy rule, then the tutor intervenes to
prevent floundering. This is done by triggering one of the correct rules in the
conflict set and providing an explanation of why that rule is appropriate to]
accomplish the current goal staring-from-the current-problem-siate.

This cycle of activating goals, generating conflict sets, and matching the
student's inputs continues untl the exercise is completed.

WHY MODEL TRACING?

As suggested earlier, given our goal of providing assistance 1o students as they
work on programming exercises, it is necessary to provide the tutoring program
with either a set of exercise solutions or a mechanism for generating solutions.
In model tracing, we provide LISPITS with a mechanism for generating
solutions; more specifically, we provide a mechanism that is intended to model
the student's thought processes in completing the exercises.

As mentioned earlier, the chief reason that model tracing is useful in tutoring is
that there can be different underlying reasons for employing a given LISP
function in different contexts. For example, the function setq always has the
effect of assigning a value to a variable, but there are different underlying goals
that can be achieved by performing this action. One distinction concemns the

9/20/89, to author

22 Corbett & Anderson

type of variable being assigned a value: we could be assigning a value to a
global variable so that it is available 10 any function we define, or we could be
updating a local variable that is only needed within a specific function. The
reason for the assignment can also vary: we could be storing intermediate results
within a loop, or we could be storing the result of a complex operation to avoid
having to repeat it.

In the student model different production rules govern the coding of a given
symbol (such as setq) for different purposes. As a practical matter, this allows
LISPITS to generate contextually appropriate explanations, since we can
associate a contextually appropriate explanation with each production. When the
student model is running through an exercise, contextually appropriate rules will
be available at each goal and, if an explanation is required, a contextually
appropriate one is automatically produced.

The student model is intended to be more than a convenient formalism for
generating explanations, however. It is intended to be a psychological model of
the knowledge the student is acquiring. Indeed, examination of the log files of
the students' interactions with LISPITS supports the hypothesis that different
rules generate the same symbol in different contexts (Anderson, in press; Conrad
& Anderson, in press). As described in the following section, LISPITS
maintains a model of how well each student understands how to program in
LISP. To the extent that different rules govern the coding of a single symbol in
different contexts, it is important {0 represent and track the rules separately to
maintain an accurate model of the student's knowledge. Again, the student
model allows us to do this. It provides us with a list of the rules to track and, as
the student model is running, ensures that the student's responses at each goal are
associated with the appropriate production rules.

In addition, student modelling also allows us to automnates the initial stage of
data analysis. When students interact with LISPITS it maintains a timed-
stamped log file of the student's inputs and J#€ LISPITS' responses. Since
LISPITS is modelling the student's behavior, it can conveniently identify and
store the underlying rules which theoretically give rise to each of the stadent’s

TeSpONSes.
Finally, there is at least one beneficial side effect of model tracing.

Development of the student model is a useful aid in curriculum development,
since it forces us 1o think in specific terms about what a student needs to learn.

9/20/89, to author

Inteliigent Tutoring: Research in Skill Acquisition 23

MODEL TRACING AND MASTERY LEARNING

When the tator was first used in teaching LISP to programming novices, it
became clear in postiests that an appreciable minority of the stdents were not
learning LISP well encugh. In a rare case or two, it turned out the student was
Jjust asking the tutor for an explanation at each step and having the tutor generate
the code. In most cases, however, even though students were doing most of the
work themselves in getting through the exercises, they had trouble doing
exercises on their own,

The current configuration of the course, as described in an earlier section, in large
part reflects this observation. We instituted a handful of non-tutor exercises and
frequent quizzes to provide the students as well as the instructor 4 measure of the
student's understanding. Moreover, quiz resuits are psed to implement a mastery
learning paradigm: students cannot proceed to later lessons until they have

passed each quiz.

In addition to these revisions in the course structure, we introduced a degree of
mastery learning within LISPITS itself. We modified LISPITS so that it
monitors the student’s performance in completing exercises and tailors the
exercise sequence to accommodate the student's rate of progress. Specifically,
the tutor maintains a model of the student’s knowledge state in the course of
proceeding through the twelve lessons. The model of each student is essentiatly
an overlay model that consists of a list of the production rules in the ideal
student model. For each rule LISPITS maintains an estimate of the probability
that the student has learned the rule. By examining log files of students who
have used LISPITS to see what percentage of them use a given rule correctly the
first time, we can compute an estimate of the average probability that students
will learn that rule just from reading the text. These estimates are initially
assigned to the production rales when an overlay model is first created for an
individual student. Then the probability estimate for a rule is updated when the
student has the opportunity to employ the rule. The new estimate of whether
the student has learned the rule depends on whether the smdent responds correctly
or makes an error and is computed according to a simple two-state learning
theory! and Bayesian statistics.

1A two-state model assumes that a production rule can be in exactly one of two
states in memory, either the student has learned it or not. ACT* is not a two-
state model, and there is ample leaming data that support either multi-state or

9/20/89, to author

24 Corbett & Andarson

Of course, once these probabilities are computed, it is a separale issue how (o
use them. As previously mentioned, we have opted for a mastery-based system
of learning. We have adopied a probability value of 0.95 as the criterion for
concluding that the student knows a rule. Each time a new set of rules is
introduced in the text and the student is ready to do exercises, the tutor presents a
set of required exercises that draw on the new rules. After the student has
completed the required exercises, the tutor reviews all the rules in the student’s
knowledge model to see if any fall below the 0.95 criterion. If so, the tutor
selects the best exercise to practice the rule(s). An optimal practice exercise is
defined as one in which the student knows 90% of the rules required to write the
code but needs to learn the remaining 10% of the rules, and LISPITS selects an
exercise that comes closest to this ratio. Only after the student has brought all
rules above the 95% criterion does the tutor allow the student to move on to the
next section in the text.

We refer o this process of monitoring and remediating the smdent’s knowledge
as knowledge tracing. As a final fail-safe measure in knowledge tracing, if
the student completes many exercises in a lesson (operationally defined as twice
the number of required exercises) without completing the lesson, the tutor
requires the student to see the instructor before proceeding. This allows us to
deal with the rare stdent who has fundamental misconceptions. A later section
describes assessment of this knowledge tracing.

SKILL ACQUISITION RESEARCH WITH LISPITS

At this point we would like to describe some research we have conducted with
LISPITS. An ecarlier section provided a comparison of students using LISPITS
with students who used only a standard LISP programming environment to do
exercises. The results do indicate that LISPITS lets students learn at least as
much LISP in a considerably shorter time. The following studies address more
detailed questions about what features of LISPITS are useful, and what what’
might be eliminated or changed.

continuous-strength memory models. However, the estimates of all such models
are highly correlaied and the dala generated by the tutor is not sufficiently
powerful to distinguish among them. Thus, we have opted for the
computationally simplest model.

9/20/89, to author

intelligent Tutoring: Research in Skill Acquisition 25

The first study examines whether practice in evaluating sample programs
wransfers to skill in writing programs. The outcome of this study has practical
pedagogical implications and is of theoretical interest, since it investigates the
possible transfer between two types of procedural skill based on common
declarative knowledge structures. The remaining studies examine two aspects of
feedback: content and control. In the first two of these studies, we examine the
effectiveness of the explanations LISPITS by comparing the standard tutor with
a version that notifies students of errors but does not try to explain them. In the
final section, we address some practical issues that arise in implementing the
tutor and describe some preliminary results obtained with a version of LISPITS
in which the student controls the timing of feedback.

DOES PRACTICE IN CODE EVALUATION
IMPROVE CODE GENERATION?

The first pedagogical issue we addressed with the tutor concerns the assumption
that time should be concentrated on practice in writing programs rather than in
other activities. In particular, we examined whether better performance in
writing programs can be produced by practice in evaluating programs (i.e.,
executing them in the mind to predict their results). Textbooks and instructors
ordinarily assume that an effective way to introduce new programming constructs
is to show sample code and to explain how the code is executed, i.e., to evaluate
the code. An interesting question is whether such practice in evalnating code
contributes substantially to skill in generating programs. ACT* would suggest
that practicing evaluation would provide refatively little benefit in learning to
generate code. At least three studies have confirmed this prediction over two
restricted areas of LISP, basic LISP functions (McKendree & Anderson, 1987;
Kessler, 1988) and recursive functions (Pirolli, 19835),

We used the tutor to investigate the issue systematically across the eleven
Iessons that existed in the fall of 1985, In this experiment, all students went
through the tutor and took a paper and pencil test after the sixth lesson and after
the final lesson. Half the students received practice in evaluating sample
functions in addition to performing the tutor's programming exercises.
Specifically, before starting each section of code generation exercises, the tutor
presented students one or two code evaluation exercises. In each evaluation
exercise the students were presented with a function definition and a sample call
to the function. By pressing special keys the student indicated how LISP would
sequentially evaluate the function definition in the course of executing the
sample call. To solve an evaluation exercise, students indicated not only the

9/20/89, to author

rl"gV i _{; .

26 Corbett & Anderson

order in which the expressions were evaluated, but also the result of each
evaluation step. Students continued through this evaluation process until a final
result was obtained. As the students worked the tutor provided immediate
feedback on errors concerning both evaluation sequence and results.

Table 2 presents the results of this experiment. This table contains one measure
of performance from the tutor exercises and one posttest performance measure,
The measure of performance in completing the LISPITS exercises is average
production execution time for goals at which the student's first response is
correct, The operational definition of execution time is the average time it takes
students to respond to each of the angle-bracket goal symbols in defining
functions. Each such step the student takes corresponds to executing a
production in the student model, so this measure is theoretically a measure of the
time for a student to make an inference corresponding to the execution of one
production. As can be seen, evaluation practice had no impact on coding time
for the tutor exercises. Average production execution time is essentially the
same for the two conditions.

(- With With No h
Practice on Practice on
LISPITS Evaluation Evaluation
Programming
Exercises
Average Time for One
Production Execution 12.5 sec 12.0 sec
Percent Correct
on Posttest
Coding 60% 62%
Evaluation 66% 56%
Debugging 61% 65%
\ v,

Table 2: Transfer from Code Evaluation to Programming

The posttest score is percent correct across the midterm and cumulative final
exdm. Asindicated in the table there were three types of exercises on the exams:
coding exercises in which the student wrote function definitions, evaluation
exercises similar 10 the ones administered by the evaluation tutor, and debugging
exercises, in which students were asked to repair buggy programs. As can be
seen, students in the two groups obtained virmatly the same score on the coding

9/20/89, to anthor

intelligent Tutoring: Research in Skill Acquisition 27

exercises; if anything the students who used the evaluation tutor scored slightly
lower in these exercises. Students who practiced evaluation exercises did perform
slightly better on the posttest evaluation exercises, 66% vs 56%. Thus, the data
suggests that students who practiced evaluating code were acquiring some
knowledge that was not acquired by the students who did not practice evaluation.
However, there is no indication that this knowledge transferred to writing code,
nor to debugging code. While there is common declarative knowledge
underlying coding, evaluation and debugging, this result supports the
assumption that employing that knowledge in the pursuit of one type of goal
will have minimal impact on the pursuit of different goals.

EFFECTS OF EXPLANATORY FEEDBACK AND REMEDIAL PRACTICE

In a pair of studies conducted over the past year we evaluated the effectiveness of
the tutor's feedback and the tutor's ability to provide remedical practice based on
knowledge tracing. In the case of feedback, we were interested in whether
LISPITS' explanations are helpful, or whether students might benefit from
generating their own explanations when the tutor has identified an error. To
evaluate the effectiveness of explanations, we simply shut them off for half the
stadents. The tutor continued to interrupt as usual if an error occurred, and
continued to provide correct answers under the standard rules when the student
appeared to be flonndering. However, the tutor no longer attempted to explain
the nature of errors nor to explain correct answers it provided. That is, if the
student made an error, the tutor interrupled immediately but just responded, "That
doesn't seem to be correct.” ‘When the tutor provided a correct answer, it simply
told the student what code to write, but not why, e.g., "You need to call the
function APPEND here."

To asse e effectiveness of knowledge tracing, and its individually tailored
remediaadl practice, we shut it off for half the subjects. These students
complelﬁfjust the required exercises in each section. While the tutor continued
to update estimates of the students' understanding, it did not provide any
additional practice exercises with the aim of remediating weaknesses in the
student's knowledge. The manipulation of explanations and remediation were
crossed in these studies, yielding a two-by-two between subjects design. By
crossing the manipulations we can observe whether the presence of either
explanations or remediation alone compensates for the absence of the other.

We ran two replications of this experiment: Study 1 in the spring of 1987

covered Lessons 1-3, §, and 6; Study 2 in the fall of 1987 covered all 12 Iessons.
Table 3 presents the resuits of both experiments.

9/20/89, to author

28 Corbett & Andarson

Table 3 presents, for Study 1, two measures of performance in completing the
LISPITS programming exercises: average production execution time for goals at
which the student's first response is comect and average number of errors in
responding at each goal. These LISPITS performance measures are derived from
the required exercises, which are common 10 all groups. The postiest score is
percent correct on & cumulative final exam. As can be seen, there is virtually no
effect of either manipulation on posttest performance. An analysis of variance
confirmed that the two main effects and interaction were non-significant.

-
Exercises: Production Flring Time (sec) and Errors per Goal
Study 1 Study 2
Explanations: Explanations:
Yes No Yes No
Remedial Yes 149 sec 13.6 sec 10.4 sec 11.1 sec
Practice: 0.23 errors 0.28 errors 0.13 eqors 0,18 ‘eryors
No 155 sec 22.8 sec . 124 sec 10.6 sec
0.15 errors 0.38 errors 0.18 errors (.26 errors

Posttest Performance (Percedt Correct)

Study 1 Smdy 2
Explanations: Explanations:

Yes No Yes No
Remedial Yes 80% 9% 95% (quizzes) 94% (quizes)
Practice; 87% (examn) 82% (exam)
No 85% 85% B6% (quizzes) 88% {(quizes)
65% (exam) 79% (exam)
\. /

Table 3: Performance based on combinations of Error Explanation and use of
Knowledge Tracing with its Remedial Practice.

9/20/89, to author

Intelligent Tutoring: Research in Skill Acquisition 29

The manipulations of explanations and remediation did have measurable effects
on students' performance with LISPITS, however. Averaging over subjects who
did and did not receive remediation, subjects who received explanations made
fewer errors per goal than subjects in the other group, 0.19 errors/goal vs. 0.33
errors/goal. This effect of explanations was significant in an analysis of variance
F(1,21) = 6.58, p<.05. Neither the main effect of remediation on this
measure of accuracy nor the interaction of explanations and remediation were
significant. Thus, students who received explanations from LISPITS made fewer
errors in completing the tutor exercises.

Knowledge traa‘ing remediation did influence production execution time,
however. Studenis who received remedial exercises responded more quickly at
each goal, 14.3 seconds/production vs. 19.2 seconds/production. This difference
was significant in an analysis of variance, F(1,21)=7.97, p<.05.
Production execution times were also faster for subjects who received
explanations, 15.2 seconds/production vs. 18.2 seconds/production, although
this effect was only marginally significant, F(1,21) = 3.11, p < .10. Finally,
the interaction of explanations and remediation was significant in this analysis,
F(1,21) = 6.16, p<.05. As can be seen students who received neither
explanations nor remediation were particularly slow in responding,.

The pattern of effects on performance with the tutor is understandable. First, if
the explanations are useful, then we would expect smdents to make fewer second
and third errors at a goal after having received an explanation on the first error.
In that case, we would expect fewer emmors per goal as observed. Second, students
in the remediation condition performed more total exercises with LISPITS than
did students in the non-remediation condition. This fact is likely to influence
response speed, even though the measure is based just on the required exercises
common to all groups. Once the first few required exercises have been
encountered, students in the remediation condition will begin doing remedial
exercises with the result that, when any subsequent required problem is
encountered, students in the remedial groups will have performed more prior
exercises. Since performance speed generally decreases with time on task, it
follows that students in the remedial condition would on average perform the
required exercises more quickly.

Two other results concerning the measures of performance with LISPITS are
perhaps less predictable. Consider first the interaction of explanations and
remediation on production execution time. Apparently the presence of
explanations roughly compensates for the extra practice received in the
remediation condition. Reduced practice only leads to reduced speed of

9/20/8%9, to author

v/

30 Corbett & Anderson

production execution when explanations are shut off. Perhaps the most
surprising result, however, is that while the explanation and remediation
manipulations affected tutor performance, there were no long-term effects on
posttest performance. Students’ performance on the posttest was independent of
the version of LISPITS used.

The results for Study 2, also presented in Table 3, are slightly different. There
are again two measures of performance with LISPITS: production execution
time for goals at which the student's first response is correct and average number
of errors per goal. (These analyses were performed just on the five lessons that
also appeared in the Study 1). The table also contains two postiest performance
measures. One is percent correct across a midterm exam and a cumulative final
exam, both paper-and-pencil tests. The other measure is percent correct across
six on-line quizzes presented by the tutor.

As can be seen in Table 3, the manipulation of explanations had little impact on
either posttest score. In this experiment, unlike the previous one, there was an
effect of knowledge tracing on posttest measures. When knowledge tracing was
shut off, students scored lower on both the quizzes, 87% vs. 95%, and on the
tests, 72% vs. 85%. The effect of remediation on quiz scores was significant,
F(1,29) = 6.48, p < .05, while the effect on final exam scores was marginally
significant, F(1,29) = 2.97, p < .10. The main effect of explanations was non-
significant in the analyses of both the quizzes and final exams, although the
interaction of explanations and remediation was marginally significant in the
final exam analysis, F(1,29) = 3.18, p<.10. Examination of Table 3
indicates that there may be less effect of the remediation manipulation in the No-
Explanation condition.

The two manipulations had weaker effects on the measures of performance with
LISPITS than in the previous experiment. The explanation manipulation had no
reliable effect on production execution speed and only a marginal effect on the
number of errors; Subjects who received explanations made fewer errors per goal
than those who did not receive explanations, 0.16 vs. 0.22, F(1,29) = 3.08,
p<.10. The manipulation of remediation also had no reliable effect on
production execution speed, but had a marginal effect on errors per goal.
Students made fewer errors in the remediation condition, 0.16/goal vs. 0.22/goal,
F(1,29) = 2.99, p<.10. Finally, the interaction of the two manipulations
was non-significant in both analyses.

In summary, there is no indication in either study that explanations are having

an effect on degree of learning as measured by posttest scores. There is evidence
that knowledge tracing has an impact on posttest scores in the second

9/20/89, to author

tnteiligent Tutoring: Research in Skill Acquisition 31

experiment; students seem to learn the material better when knowledge tracing is
turned on. This effect is not obtained in the first experiment, but this
inconsistency is not entirely surprising. So far, no research limited to the first
part of the LISPITS curriculum has led to posttest performance differences. In
particular, the first assessment study of LISPITS described earlier, which covered
just the first eight lessons, led to total time differences but no posttest
differences among students in the three conditions. In the second assessment
stdy, differences in posttest performance did not appear on the midterm, but
only appeared on the cumulative final exam,

Concerning measures of performance with LISPITS, again the pattern is not
entirely consistent across the two studies. The explanation manipulation did
have an impact on accuracy in both studies, although the effect is marginal in
the second one. Knowledge tracing chiefly affects performance time in the first
study but affects accuracy in the second study.

The absence of an explanation effect on the posttest and the marginal effect on
tutor performance in the second study is interesting. It may suggest that most of
the effectiveness of LISPITS is obtained just by interrupting students
immediately after an error and simply providing the correct next step when
students are floundering. The tutor's efforts to provide explanations in those
situations may not be helpful., One possible explanation of the small effect of
shutting off explanations is that stdents simply aren't reading the explanations
when they are presented. One way o investigate this issue is wo ask: If a
student makes a mistake that LISPITS can diagnose and explain to the student,
what is the probability that the student will get the answer correct on the next
attempt? If the explanations were effective, we would expect that students who
received the explanations would be less likely to make another mistake at the
same goal. Table 4 provides evidence on this point for Lessons 1-3, 5, and 6 in
the Study 2.

4 ™y
Probebility of Immediate Error Correction (LISPITS Exercise in Smdy 2)

Explanations
Yes No

Remedial Yes 0.88 0.65
Practice N 570 o062

9/20/89, to author

32 Corbett & Anderson

Table 4: Effect of Explanation on probability of immediate correction of an
error.

This table displays the probability that students take a correct step at a goal
immediately after making a diagnosed error at the goal (i.e., a mistake for which
the tutor could provide an explanation, but does so for only half the students).
As can be seen, students who received explanations are more likely to make a
correct response immediately after an error. Thus, there is some internal
evidence that the students are reading the explanations. However, there is litle
evidence of a long-term effect of this feedback.

MODEL TRACING AND STUDENT-CONTROLLED FEEDBACK

As described earlier, LISPITS constrains students to type in their code in a strict
top-down, left-to-right order and provides error feedback on a symbol-by-symbol
basis. The first characteristic may appear to be a superficial property of the
program's interface, and the second characteristic may appear to be purely a
tutoring principle. However, these characteristics are closely tied to two
characteristics of the student model. The input-order consiraints are tied to
assumptions built into the production system concerning active goals. While
there is generally more than one unsatisfied goal pending at any point during
problem solving, only one goal can be active at each step in problem solving.2
Additional assnumptions concerning which of the pending goals will be selected
at each step give rise to strict top-down, left-to-right behavior in the student
model, which in turmn governs the tutor's interface (see Corbett, Anderson, &
Patterson, 1988, for more details). Symbol-by-symbol feedback is tied to the
grain-size of the productions in the student model. The student's knowledge of
LISP is modelled at the finest grain-size that has meaning in LISP—roughly the
level of individual symbols. Any finer grain-size would begin 10 model typing
skill. The immediate feedback principle specifies that feedback should be
presented right after an erroneous production is triggered, but it is the grain-size

2This theoretical assumption has been relaxed since work on the tutor was
initiated. A new production systern, in which all pending goals are active in each
cycle, reflects this modification in the theory.

9/20/89, to author

Intalligent Tutoring: Research in Skill Acquisition 33

of the tutor which dictates the symbol-by-symbol feedback presented by the
tutor.

Given this relationship between the student model and the tutor's behavior,
modifications in coding order or feedback units would require modifications in
the student model and not just in the interface and tutorial components of the
program. This is an important point since the student model is fairly large,
consisting of approximately 1200 rules. Fortunately, model tracing can be
implemented by means of a technigue called problem compilation that facilitates
such modifications. This technique is described in the next section,

MODEL TRACING AND PROBLEM COMPILATION

We originally adopted problem compilation as a means to speed up the tutor.
Running a production system, such as the student model, imposes high
computational demands on the computer because of the large amount of pattern
matching required in determining the conflict set at each goal. As a result, the
tutor in its initial form had trouble keeping up with students as they worked
through an exercise. Fortunately, model tracing does not actually require
execution of the production system student model on-line with the tutor. The
reason is that the dynamic behavior of the student model in writing a program
can be captured in a data structure which contains all the information required for
tutoring. For example, consider a function called insert~two that takes three
arguments, the third of which must be a list, and inserts the first two arguments
at the beginning of the third. For example, given the arguments 'x, ' (y z),
and "(a b ¢ d), insert-two wouldreturn (x (y z) a b c d) Two
possible definitions of the functon are:
(defun insert-two (iteml item2 alist)
(cong iteml {cons item2 alist)))

{(defun insert-two (iteml itemZ alist)
(append {(list iteml item?2) alist))

Figure 1 displays a tree structure that represents the possible steps the student
model would take in coding this function. Each node (ellipse) in this tree
represents a goal that is set in writing the code. The link descending from each
node represents a production execution and ends at the symbol the production
generates, €.g., defun is the symbol generated from the goal "code function.”
Links descending from the code symbol represent goals set by the production,
The top goal in the tree represents the initial goal of defining the function
insert-two. The link leading from that goal represents a production that
generates the symbol defun and sets three goals: to code the function name,

9/20/89, to author

34 Corbett & Andaerson

the parametger list, and the body of the function. All three of these goals must be
satisfied. The first two of these goals are satisfied by productions that code the
name ¥nsert-two}and parameter list (iteml,” item2,/ alist)
respectively and do not set any subgoals. As indicated by the arc fabeled "OR",
the third goal, coding the function body, can be satisfied by either of two
productions. One of these productions generates the symbol cons and sets two
subgoals. The other production generates the code symbol append and also
sets two subgoals. Each of these subgoals is satisfied by additional productions
and so on,

In essence this data structure contains the information we need to know in order
to ttor: the goal that is set at each step in a solution and the production(s) that
satisfy the goal (including the buggy productions not depicted in the figure). We
can provide LISPITS a data structure analogous to the hierarchical goal tree in
Figure 1 by running the student model through the exercise ahead of time,
allowing it to pursue every path it can find that leads to a correct solution, and
saving the relevant information. Thus the high computational demands of
recognizing appropriate productions at each step in problem solving are met in
advance and the results of the process are stored in a structure that can be
processed quickly. (See Sleeman, 1983, for a description of a similar process.)

While problem compilation was initiated to speed LISPITS' performance, it also
has a beneficial side effect: it allows us to conveniently modify the tutor's
behavior without actually rewriting the prodoction rules. Note that the result of
the problem compilation is a complete specification of the steps at the smallest
possible grain size of every acceptable solution to an exercise. Once this data
soucture exists, it is relatively easy to write a program that can track the
students’ behavior through the tree, even if they deviate from a top-down lefi-to-
right coding order. We can also modify the functional grain-size of productions.
Thus, we can modify the assumptions of the student model, without actually
modifying the original production system, writing new rules, and regenerating
solutions.

9/20/89, to author

Intelligent Tutaring: Research in Skill Acquisition 35

REMAINDER

list

item? alist item1 item2

Figure 1: The hierarchical goal structure underlying the definition of
insert~two. Each elliptical node represents a goal. The link descending from
each goal represents a production execution. Each production link leads to
Sithertey-the code symbol it generates, additdonal goals that are set by the
production.

——r

ﬁh'_r‘ {",5 ar

T

J

4/17/4, 1o author

46 Corbett & Anderson

MODIFYING THE TUTORIAL INTERACTION:
ENHANCED STUDENT CONTROL

It is not coincidental that we have discussed problem compilation in the context
of input order and feedback. Perhaps the most frequent complaint we hear from
students concerns symbol-by-symbol feedback. Another, less frequent
complaint, concerns the input-order constraint. As a result, we have taken
advaniage of problem compilation to develop a version of LISPITS that gives
the student complete control over both the order in which code is generated and
the points at which feedback is provided (Corbett et al., 1988).

In this student-controlled version of LISPITS, the student is provided with a true
editor for entering code. More specifically, it is a structured editor that provides
function templates and balancing right parentheses much like the interface in the
immediate-feedback version, The editor ensures that the student generates legal
(syntactically correct) code. However is does not (and cannot) ensure that the
student's program satisfies the exercise description. Thus, students can generate
code in any order, including right-to-left and an?t bottom-up. Unlike the
immediate-feedback version, students can also modify parts of the code they have
already completed. While the student is working with the editor, the model
tracing/ttoring component of the program is disengaged and never interrupts.
However, the student is provided with three commands to request wtoring. One
of these commands asks the tutor 1o check over the entire solution as it currently
stands. When the student selects this command, the tutor checks the code in the
same top-down left-to-right order as it ordinarily would in the immediate
feedback version. If the code is correct and complete, the tutor recognizes that
the student is done. If the existing code is correct but is not a complste
solution, the tutor tells the student that the code is comreci so far and returns
editing control to the student. However, if an error is detected, the tutor stops
and gives the same error feedback as in the immediate-feedback version and
deletes the incorrect symbol from the code. Any code which follows the error
remains unanalyzed and is moved from the code window to a separate buffer on

_the screen to emphasize 1o the student that that code has not been checked. (This
code can readily be transferred back to the code window as the stodent sees fit)
After performing these actions, the program returns editing control to the
student.

The two other tutoring commands allow the student to request either a goal hint

or the correct code symbol at any goal, just as in the immediate feedback
version. If one of these commands is selected, the tutor begins by checking over

4/17/4, 1o author

Intelligent Tutoring: Research in Skil Acquisition 37

any code in the student’s solution that precedes the goal in question. If g error
is found, the program provides feedback on that error {to avoid discussi;dﬁg the
goal specified by the student in an erroneous context). Otherwise, (¥e tutor
provides the same information on the requested goal as it would in the immediate
feedback version.

TESTING STUDENT-CONTF&OLLED FEEDBACK

Our study with the student-controlled tutor covered the first two lessons, Half
the students completed the two lessons with the new student-controlled version,
while the other half used the standard immediate-feedback version. Knowledge
tracing was shut off, so all students completed the the same set of exercises
across the two lessons. After completing the lessons, the students took a
cumulative quiz.

Assessment Measures

Two measures of student performance are of interest for pedagogical as well as
theoretical reasons: posttest performance and total time to complete the
exercises. This control manipulation had no effect on posttest scores; both
groups scored 83% correct on the quiz. However, the manipulation did affec: the
time required to complete the exercises. Students using the immediate feédback
version required an average of 2.9 minutes to complete each exercise, while
students using the student-controlled version required an average of 4.3 minutes.
This difference is significant, Y30)=3.9, p< 001.

Processing Measures

The total-time difference in completing the exercises may in part reflect the fact
that the editor in the student-controlled condition is intrinsically more difficult to
use than the constrained interface in the immediate feedback condition. In
examining the log files, there are indeed occasions in which the student seemed
to struggle with the interface. However, examination of the log files also
Suggests a second reason that students may be taking longer in the student-
controlled condition. Specifically, in the student-controlled condition the ttor is
detecting an average.0.83 errors per exercise per student, while in the immediate-
feedback condition the tutor is detecting 1.15 errors. This difference ig reliable
(1(30) = 238, p < .05) and suggests that, in the student-controlled condition,
students are detecting and correcting their own errors, which also may contribute
to total processing time,

4/17/4, 1o author

38 Corbatt & Anderson

Error Detection and Code Revision

There is an alternative explanation of this difference in error detection rate:
subjects could be more cautious and simply make fewer errors in the student-
controlled condition. To obtain firmer data on this point, we performed a
detailed analysis of the editor actions performed in Lesson 2 by subjects in the
student-controlled condition. The results of this analysis are summarized in
Table 5

4 N
Total Tutor-Detected Errors: 1
Total Student-Initiated Revisions o Erroneous Code:

Changes of Erroneous Code
To Correct Code:

To other Erroneous Code:

Changes of Correct Code
To Other Correct Code:;

To Erroneous Code:) y

98 KK

Bo

.

Table 5; Student Controlled Feedback: Error Detection and Code Revision

This table shows the total number of errors detected by the tutor across the
sixteen subjects in the student-controlled condition for the seven exercises in
Lesson 2. It also shows the total number of code revisions made by these
sixteen subjects across those seven exercises. As indicated, students detected and
revised a total of 86 errors, while the tutor detected 165 Of the errors detected
and revised by students, 57% are corrected (49 out of 86) while the remaining
43% are changed to a different error. In addition, students went back and changed
correct symbols in the code 21 times. Forty-three percent of these changes
resulted in alternative correct code, while the remaining 57% of the modifications
introduced errors. Thus, students do rethink and revise code when given an
opportunity that is not afforded them by the immediate feedback tutor. However,
only about half (449) of the revisions are constructive, that is, move toward a
correct solution. The remaining non-constructive modifications are inefficient in
the.sense that they take time without yielding any progress to a successful
solution. We don't know if there is a cognitive benefit of such non-constructive
changes, although the posttest results don't suggest that subjects in the student-
controlled condition learned the material more effectively.

4/17/4, to author

"\ =7

<

intelligant Tutaring: Research in Skill Acquisition 39

A final code-revision issue we addressed concerns the relative position in the code
of the revisions students make. Specifically, when a revision occurred, we
Iooked at the structural relation between the goal the student had been working
on prior 10 the revision and the goal at which the revision was made. Gray and
Anderson (in press) investigated the code revisions students made in writing
fairly complex iterative LISP functions and found that students are likely to
make revisions only at the goal they are working on (or have just completed) or
at a superordinate goal in the tree structure. To exemplify this resnit, consider
the function insert-~two. Suppose a student has just satisfied the goal
"CODE 2ND ITEM" at the lower left in Figure 1 by typing the symbol itemZ in
the body of the function. At this point the code window would look like this:

{defun insert-two (iteml itemZ alist)
{cons iteml {cons itemZ <list2>)))

{the symbol <list3§ denotes the pending goal of
coding some list as the second argument of cons).

%}ray and Anderson's resulis suggest that the symbol the student is most likely
to change at this point is item?2, which has just been typed. The only other
symbols the student would be likely to immediately change are defun and the
two instances of cons, since these symbols were generated at the goals CODE
FUNCTION, CODE BODY, and CODE REMAINDER, which are superordinate to
CODE 2ND ITEM in the tree diagram. In Gray and Anderson's analysis the
student is much less likely to revise the function name, parameter list or
reference to iteml in the body of the function since these symbols were
generated at goals that are not superordinates of CODE 2ZND ITEM.

4/17/4, 1o author

40 Corbett & Anderson

(" ™
Structural Relation Probability that

of Revised Goal to Numberof Revision
Current Goal Revisions Corrects Error

Same 61 0.51
Superordinate 31 0.42
Other 15 0.33
\ J

Table 6: Position of Code Revisions with Student Controlled Feedback

An inspection of the Lesson 2 log files in this study confirmed this prediction,
as shown in Table 6. Of the 107 revisions students made, 57% were at the
current goal, 29% were at superordinate goals and only 14% were at other goals.
Analysis also indicated that the probability a revision is productive {i.e., cormrects
an error) varies with the relative position of the revision. Of the revisions at the
current goal, 51% corrected an error, whereas only 42% of the revisions at
superordinate goals and 33% of revisions at other goals corrected errors.

Immediate Feedback and Input Order

Examination of the log files in the student-controlled condition also allows us to
evaluate students complaints concerning input order and immediate feedback.
For example, concerning feedback, students asked LISPITS to check over their
solutions 661 times across the two lessons. Only 15 of these requests came
when the student had a partial solution In the other 646 cases the student had
complete, though not necessarily correct, code. Students also asked for goal
hints or explanations a total of 72 times. Necessarily the student's code is
incomplete when such requests are made but, even when these 72 requests are
included, students are asking for help with partial code only 12% of the time.
Thus, students’ behavior in this experiment is consistent with previous
complaints about step-by-step immediate feedback. When students are in conwmol
they not only do not request immediate feedback, they seldom ask for feedback
until they are done. Moreover, when their code is not channeled into a correct
solution path by the tutor, students do take advantage of the opportunity to
rethink and revise their answers. The pattern of results concerning feedback on
partial solutions may change in later lessons as exercises become more complex.
However, the present results indicate that students would be happy with a tutor

4/17/4, to author

intelligent Tutoring: Research in Skill Acquisition 41

that only provides feedback on complete code, as in the case of PROUST
(Johnson & Soloway, 1985; Sack & Soloway, this volume).

Finally, we examined the editor interactions in Lesson 2 to evaluate student
complaints concerning input order. Across all students and exercises in Lesson 2
there were about 400 goals that could have been solved in a bottom-up rather
than 1op-down order. (That is, there were about 400 non-terminal Goals which
entailed subgoals.) Among those 400 opportunities, there were only 5 occasions
in which students coded bottom-up rather than top-down. In addition, there were
about 450 occasions in which students could have generated code in a right-to-
left fashion, rather than left-to-right. On only one occasion did a student take
advantage of this opportunity. Thus, despite student complaints concerning
coding order (which actually occur frequently in the context of Lesson 2
exercises), students took little advantage of the opportunity to deviate from top-
down and left-to-right coding.

CONCLUSION

The goal of the LISPITS project is to create an environment in which students
can practice LISP programming productively. More specifically, our goal has
been to monitor students' performance in programming exercises, to recognize
errors as they occur, and to provide feedback on these errors. The project has
adopted a student-modelling approach to this task that is based on a cognitive
model of (1) the programming knowledge we want the students to acquire and
(2) misconceptions that may arise. By applying this model of ideal and buggy
programming knowledge to the exercises that the students perform, we can
generate a dynamic model of correct and incorrect steps 10 solve the exercises and
we can use this dynamic model to assess the students’ behavior and provide
feedback.

This general approach has proven quite successful. In the assessment research to
date, students using LISPITS complete the coding exercises substantially more
.rapidly than those working on their own, although not as fast as students
working with a human tutor. Furthermore, students using LISPITS perform as
well or better on posttests,

Current research focuses on the control and timing of feedback and the
effectiveness of explanations. Much of LISPITS' effectiveness apparently can be
atributed to the immediate feedback it provides on errors. When students are
given control of feedback timing (and input order) exercise completion times

4/17/4, 1o author

42 Corbatt & Anderson

increase by 50%. Moreover, research on LISPITS' feedback suggests that the
explanations it provides have no impact on posttest scores and relatively little
consistent impact on performance in completing the exercises. This suggests
that it is the immediate noting of errors and the immediale provision of correct
answers when the student shows signs of floundering that are critical in
LISPITS' success. Nevertheless, students’ most frequent complaint concerns
immediate feedback. As a result, much of our current research involves
resolving this conflict between the efficiency that is gained with immediate
feedback and the students’ desire for greater control.

Simultaneously we are examining other factors that govern the effectiveness of
explanations. Some of these factors are internal to LISPITS, e.g., the tutor's
ability to determine what instruction the student needs and how to present it
clearly. Other important factors, however, may be external to LISPITS. For
example, the components of the overall curriculum, including the quality of the
text and non-tutor programming experience, may have a strong impact on the
usefulness of explanations the tutor provides. Finally, the student’s perception
of control over the tutoring interaction may also have a strong bearing on the
effectiveness of explanations the mtor attempis to provide.

4/17/4, to author

Inteiligent Tutoring: Research in Skill Acguisition 43

NOTE

This research was supported by the Office of Naval Research contract NOOO14-
87-K-0103.

REFERENCES

Anderson, J. R. (1983). The architecture of cognition Cambridge, MA: Harvard
University Press.

Anderson, J. R, (in press). Analysis of student performance with the LISP mtor. In N,
Fredericksen, R. Glaser, A. Lesgold & M. Shafto (Eds.), Diagnostic monitoring of
skill and knowledge acquisition. Hillsdate, NJ: Erlbaum.

Anderson, J. R., Boyle, C. F,, Corbett, A. T., & Lewis, M. W. (in press). Cognitive
modelling and intelligent tutoring. Artificial Intelligence. i

Anderson, J.R., Boyle, C.F., Farrell, R, & Reiser, B.J. (1987). Cognitive
principles in the design of computer tutors. In P. Morris (Ed.}, Medelling cognition.
New York, NY: Wiley.

Anderson, J. R., Boyle, C. F., & Reiser, B.J. (1985). Intelligent muoring systems.
Science, 228, 456-462,

Anderson, J. R, Boyle, C. F, & Yost, G. (1985). The geometry tutor. Proceedings of
the Ninth Ireernational Joint Conference on Artificial Intelligence (pp. 1-7). Los
Angeles, CA.

Anderson, I R, Corbett, A. T., & Reiser, B J. (1987). Essential LISP. Reading,
MA: Addison-Wesley.

Anderson, 1. R., Farrell, R., & Savers, R. (1984). Leaming to program in LISP.
Cognitive Science, 8, 87-129.

Anderson, J. R., & Jeffries, R. (1985). Novice LISP errors: Undetected losses of
information from working memory. Human-Computer Interaction, 22, 403-423.

Anderson, J R, & Reiser, B. J. (1985, April). The LISP Tutor. Byie, 10 (4),
159-175.

Conrad, F. G, & Anderson, J.R. (1988). The process of learning LISP. Proceedings
of the 10th Annual Conference of the Cognitive Science Society (pp 454-460).
Montreal, PQ

Corbeit, A. T","Anderson, J. R., & Patterson, E. G. (1988). Problem compilation and
tutoring flexibility in the LISP wtor. Proceedings of IT5-88 The International
Conference on Intelligent T'utoring Systems (pp. 423-429). Montreal, PQ,

Gray, W., & Anderson, I. R. (in press). Change episodes in coding: Whef and how do
programmers change their code. In G. Olson, S. Sheppard, & E. Soloway (Eds.),
Empirical studies of programmers: Second workshop Norwood, NI: Ablex,

4/17/4, to author

44 Corbelt & Anderson

Johnson, W. L., & Soloway, E (1987). PROUST: An automatic debugger for Pascal
programs. In G. Kearsley (Ed.), Artificial intelligence and instruction: Applications
and methods Reading, MA Addison-Wesley (Originally published in 1985 in Byte,
10,(4), 179-190}

Kessler, C. {1988). Transfer of programming skills in novice LISP learners. Ph.ID.
Dissertation, Camegie-Mellon University.

Lewis, M. W, & Anderson,] R. (1985) Discrimination of operator schemata in
problem solving: Leaming fom examples. Cognitive Psychology, 17, 26-65,

Lewis, M. W., Milson, R, & Anderson, J R. ({1987). The TEACHERS
APPRENTICE: Designing an intelligent authoring system for high school
mathematics. In G. Kearsley (Ed.), Artificial intellipence and instruction' Applications
and methods Reading, MA: Addison-Wesley.

McKendree, J., & Anderson, J.R. (1987). Effect of practice on knowledge and use of
basic LISP. InJ. M. Carroll (Ed.), Interfacing thought. Cambridge, MA: MIT Press.

Miller, G A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of
behavior New York, NY: Holt, Rinehart & Winston,

Newell, A., Shaw, J. C., & Simon, H. A. (1958). Elements of a theory of human
problem solving. Psychological Review, 65, 151-166.

Pirolli, P. L. (1985). Problem solving by analogy and skill acquisition in the domain
af pragramming Ph.D. dissertation, Camnegie-Mellon University.

Pirolli, . L., & Anderson, J.R. (1985). The role of learning from examples in the
acquisition of recursive programming skiil. Canadian Journal of Psychology, 39,
240.272.

Sleeman, D. H. (1983). Inferring student models for intelligent tutor-aided instruction.
In R. Michalski, J. Carbonell, & T. Mitchell (Eds), Machine learning Palo Alio,
CA: Tioga.

Sleeman, D. H., & Brown J. 8. (1982). [ntelligent tutoring systems. New York, NY:
Academic Press.

4/17/4, 1o anthor

