7392 Sebrmsicin

Student Modeling and Mastery Learning
in a Computer-Based Programming Tutor

Albert T, Corbett
John R. Anderson

Psychology Department
Carnegiec Mellon University

Abstract

The CMU General Programming Languages Tutor provides assistance to students as
they write short computer programs. The tutor is constructed around a set of several
hundred programming rules that allows the program to solve exercises step-by-step
along with the student. This paper evaluates the tutor's student modeling procedure.
This procedure employs an overlay of the tutor's programming rules. The tutor
maintains an estimate of the probability that the student has learned each rule, based
on the student's performance. These estimates are employed to guide remediation and
implement mastery learning. The predictive validity of these probability esiimates

for posttest and tutor performance is assessed.

Please address correspondence to: Key words:
Albert T.Corbett Student Modelling
Department of Psychology Mastery Learning
Carnegie Mellon University Knowledge Representation
Pittsburgh, PA 15213 ITS Evaluation

phone: 412-268-2815
fax: 412-268-2844
email: corbett @psy.cmu.edu

This paper describes the student modelling process in the CMU General
Programming Languages Tutor (Anderson, Corbett, Fincham, Hoffman & Pelletier, in
press) and our efforts to implement mastery leaming in the tutor. The tutor is a
practice environment for students learning to program., It presents exercises
requiring students to write short programs and monitors the students' performance
symbol-by-symbol as they enter code. It informs the students of errors and provides
advice upon request. The tutor contains modules for Lisp, Prolog and Pascal; this

report focuses on students learning Lisp.

We have been using such tutors 1o teach programming courses for the past eight
years. The tutors have proven effective; students generally work through exercises
more quickly with the tutor and perform as well or better on posttests (Anderson &
Reiser, 1985; Corbett & Anderson, 1990). Despite this general effectiveness, however,
some students flounder. This was particularly true the first time we taught a course
to programming novices. Our impression was that the tutor and student together
made an effective team in solving exercises, but that the tutor was providing
assistance at key junctures and the students were sometimes unaware of the holes in
their knowledge. As a result, we incorporated a student modelling and remediation
mechanism into the tutor. This mechanism has also proven effective; postiest scores
are higher when the remedial mechanism is in operation (Anderson, Conrad &
Corbett, 1989). In this paper we describe a more detailed assessment of the internal
and external validity of this mechanism. Before reviewing these results, we will
describe the tutor, the underlying cognitive theory and the student modelling

procedure in more detail.

2 Student Modeling

The Programming Tutor

Figure 1 depicts the computer screen shortly after the student has begun an
exercise. The problem description appears in the window at the upper left and
remains on the screen as the student completes the exercise. The student's solution
appears in the code window immediately below the problem description window. In
this figure the student has just entered the operator car. Students can enter code by
selecting operators from the menu immediately to the right of the code window, or by
typing. ‘The highlighted symbol <EXPRO> is not lisp code. It is a syntactic symbol
which represents the argument to car (the value that car will operate on). The
student will replace this goal reminder with a Lisp expression. Feedback from the
tutor appears in the hint window at the bottom of the screen. If the siudent makes a
mistake the tutor immediately notifies the student of the error and requires the
student to repair the error. The student can also ask for help at each step in a
solution. Three levels of help are available. The first hint reminds the student of the
current goal, the second level provides an explanation of how to achieve the goal and
the third level describes exactly what code to enter. Finally, the skill meter in the
upper right comer of the screen displays the tutor's model of the student. As will be
described below, this model consists of a set of programming rules. The skill meter
displays the rules that have been introduced so far in the curriculum. The bar graph
represent the tutor's estimate of the probability that the student has learned each
rule. In the diagram, this probability stands at 50% for three of the rules and at

about 80% for the rule the student has just exercised.

3 Student Modeling

Model Tracing: The Cognitive Model

The tutor was developed an an environment in which to test the ACT* theory of
skill acquisition (Anderson, 1983). The central assumption of this theory, for present
purposes, is that a cognitive skill such as programming can be modeled as a set of
independent production rules. Each step in performance of a skill is governed by
one of these if-then rules, relating the current goal and problem stale to an
appropriate action. In Figure 1, for example, the student has coded the operator car,
which takes a list of symbols as an argument and returns the first one. Thus, one of

the earliest and simplest rules a student would learn is:

If the goal is to extract the first element of a list X,

Then code CAR and set a goal to code X as the argument to CAR.

The tutor is constructed around a set of several hundred such rules for writing
programs, called the ideal student model. This model, which represents the
knowledge that the student needs to acquire, allows the tutor 1o monitor the student's
behavior in real time. At each step in an exercise solution, the tutor attempts 10
match the student's input to an applicable rule in the ideal model in a process we call
model tracing. If a match is found, the assumption is made that the student has
applied an analogous mental rule and the tutor's representation of the problem state
is updated accordingly. If no match is found, the tutor notifies the student and

requires the student to try again.

Knowledge Tracing: The Learning Model
Within this framework, the task in student modelling is to track the student's
knowledge of each of the rules. The programming tutor employs an overlay of the

ideal student model for this purpose (Goldstein, 1982). Each time the student has the

4 Student Modeling

opportunity to apply a rule in the ideal student model, the tutor updates a probability
estimate that the student has learned the rule, comtingent on the accuracy of the

student's response. We refer to this student modelling process as knowledge tracing.

The computational procedure is a variation of one described by Atkinson (1972).
Our procedure assumes a simple two-state learning model with no forgetting. Each
rule is either in a learned or unleamed state. A rule can make the transition from
the unlearned to unlearned state when an opportunity arises to apply the rule, but

rules cannot make the transition in the opposite direction.

At each goal in an exercise solution, the tutor updates its probability estimate that
an applicable rule is in the learncd state on the basis of the student's first response at
the goal. The Bayesian expressions used to compute these probabilities are displayed

in the Appendix, The equations employ four parameters, which we estimate

empirically:

p(L@) = the probability a rule is in the learned state prior to the
first opportunity to apply the rule (i.e., from reading texi).

p(T) = the probability a rule will make the transition from the
unlearned to the learned state following an opportunity to
apply the rule

p(CIU) = the probability a student will guess correctly if the
applicable rule is in the unlearned state

p(EIL) = the probability the student will slip and make an error

when the applicable rule is in the learned state

5 Student Modeling

Mastery Learning

The tutor uses the knowledge tracing mechanism in an attempt to implement
mastery learning. Each lesson in the tutor is divided into sections in which a
handful of programming rules are introduced, organized around a theme. Students
continue working on exercises in a section until the learning probability of every
rule in the set has reached at least 95%. All students complete a minimal set of
required exercises in each lesson, selected to cover all the rules introduced. After a
student has completed the required exercises, the tutor examines the list of rules 1o
determine if more practice is needed on any. If so, the tutor will present additional

exercises that provide practice on those rules, until all rules finally reach criterion.

Design of the Study

This study assesses the internal and extemnal validity of knowledge tracing. We
are focusing on the first five of sections of the Lisp curriculum and are interested in
how well our student modelling procedure predicts both posttest performance and
performance internal to the tutor.

The Students

Forty-one students worked through this curriculum in the course of completing
an introductory programming course. This was the first college-level programming
course and first exposure to Lisp for all students. Half the students had some prior

exposure to programming.

The Curriculam
Table 1 displays the constructs introduced in the first five sections of the Lisp

curriculum, Students are introduced to two basic data types atoms (symbols) and lists

6 Student Modeling

(symbols grouped in parentheses). They learn that function calls (operations) in
Lisp are represented as lists in which the first symbol is the function (operator),
and the remaining elements are arguments (values the function operates on). They
learn about three Lisp functions, car, cdr and reverse, that extract information
from lists and three functions that are used to comstruct new lists, append, cons and
list. Finally, they are introduced to the operator defun, which is used to define new
functions in Lisp. A minimum of twenty-five tutor exercises is required to complete

this curriculum.

The Model

The cognitive model for this portion of the curriculum consists of a set of 21 rules
in the ideal student model. Table 2 diplays the rules that are introduced in each of the
five sections and a sample exercise from each section. Sections 1, 2 and 4 primarily
introduce operators, while sections 3 and 5 focus on algorithms. In the first two
sections, students practice basic extractor and constructor functions. In the third
section, no new operators are introduced. Rather, students practice algorithms
employing multiple extractors. In the fourth section they learn to define new
functions that perform such extraction algerithms and in the fifth section they

define functions that employ both constructors and extractors.

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

7 Student Modeling

In knowledge tracing, the following set of parameter estimates were held constant

across the 21 rules in the cognitive model:

p(Lg) =0.50
p(T) =040
p(CIU) = 0.20
p(EIL) =0.20

These estimates were derived from our work with earlier programming tutors. The
first two values are averages of parameter estimates obtained for a similar set of rules
in the CMU Lisp Tutor. The latter two estimates are derived from an earlier menu-

driven programming tutor.

Procedure

The students worked through the tutor exercises at their own pace, They read
about Lisp in a text that is coordinated with the tutor, After completing each section
of text, students completed a section of exercises with the tutor. At the conclusion of
the first lesson (which also included later sections on arithmetic operations) the

students completed an on-line quiz.

Results

Summary Statistics

Students completed an average of 39 exercises, with a range of 26 to 63 exercises.
Since there are twenty-five required exercises across the five sections, students
averaged 2.8 remedial exercises per section. The knowledge tracing mechanism
ensures that the learning probability of each production exceeds 95% for each

student, so there was very little variability in the final probability estimates across

8 Student Modeling

students. We computed the average learning probability estimate across the 21 rules

for each student and these averages ranged from 98% to 99%.

External Validity

The learning probabilities assigned to the programming rules in the course of
knowledge tracing should predict programming performance. Moreover, the
number of mistakes made along the way, and by extension, the number of exercises
required to reach mastery should not predict programming performance. Since
there is virtually no variability in the final probability estimates across students, the
simplest prediction is that there should be no variability in posttest performance.
This is an implausible prediction, since the quiz is in part a transfer task and since
studenis’ preparation for the quiz after having completed the tutor exercises may
have varied. Whatever variability there may be in posttest scores, we would not
predict a correlation with number of exercises required to reach mastery in the

tutor.

In fact, the knowledge tracing procedure failed this validity test. Quiz scores
correlated strongly with the number of exercises required to reach mastery, r = -0.52,
p < 0.05. The more exercises students required to achieve "mastery” the worse they
did on the quiz. Quiz performance, on the other hand, was not correlated with
average learning probability estimate (r = -0.09), although this is to be expected,

since there is little variability in these estimates.

In an earlier study, the knowledge tracing procedure passed a minimal external
validity test. Students who received extra practice through the remediation
algorithm performed better on posttests than students who only completed the

required exercises. Presumably the extra practice in the present study {(an average

9 Student Modeling

of 2.8 exercises per section) was also helpful. However, the external validity of the
learning probability estimates computed in this study turned out to be poor. We
decided to pursue the issue further by examining the internal validity of knowledge

tracing.

Internal Validity

While it is not the direct goal of the knowledge tracing mechanism, we can use the
underlying model to predict performance internal to the itutor, Students complete
158 coding goals (solution steps) across the twenty-five required exercises in the
first five sections of the curriculum. The emror rate across the 41 students for each of
these goals in displayed in Figure 2. The first six points in this figure, for example,

represent solutions to the first three tutor exercises:

{car (¢ d e))
(reverse '(x y z))

{cdr (a b ¢))

Thus, the first, third and fifth points in Figure 2 represent the students’ efforis at
coding the functions car, reverse and cdr respectively, The second, fourth and
sixth points reflect the students first three attempts to code literal lists as arguments.
We can predict students’ accuracy at each of the 158 points with the following

equation:

p(Ci) = p(L) * (1 - p(EIL)) + p(U) * p(CIU).

That is, the probability of a correct response at goal i is the sum of two probabilities:

10 Student Modeling

(1) the probability that the applicable programming rule is in the learned
state times the probability the student will respond correctly if it is, and

(2) the probability that the applicable programming rule is in the unlearned
state time the probability that the student will guess correctly in that

state.

To assess the internal validity of the knowledge tracing process we traced each
student's performance goal-by-goal through the curriculum. At each of the 158
goals in the required exercises, we first predicted the probability of a correct
response, then applied the the knowledge tracing procedure to update the
probability that the applicable rule was in the learned state. Not shown in Figure 2
are the remedial exercise goals interspersed among the required exercise goals.
Since the number and position of remedial goals varies across students, we did not try
to fit these goals (i.e., predict their accuracy). However, we did apply the knowledge
tracing procedure to remedial goals to updale leaming probabilities, just as the tutor

would,

Constant Parameter Estimates, Figure 2 displays the fit that was obtained with the
constant set of parameters employed in the course. Overall, the predicted values fit
reasonably well, r = 0.47, p < .05. However, it is apparent that the predicted values
deviate systematically from the observed values. The slip parameter, p(ElL) sets a
floor on the error estimates. Since this parameter is set to 0.2, the model predicts at
least a 20% error rate, even if all productions are learned. Similarly, the estimate of

learning from the text p(Lg), effectively sets a ceiling on error rates at 50%. It is not

11 Student Modeling

surprising that the external validity of the model is low when the internal validity is

weak.

Yariable Parameter Estimates. In an effort to improve the internal validity of the
model, we performed a second fit in which we allowed the four parameter estimates to
vary across the 21 programming rules, We employed a curve fitting program to
generate the best fitting parameter values. As before, we fit the goals in the
required exercises and traced both the required and remedial goals. Allowing
parameter estimates to vary yields a substantially better fit to the data, r = 0.87. Final
learning probability estimates also varied more widely in this fit. Average learning
probabilities ranged from 0.91 to 0.99. This enhanced internal validity had a
negligible impact on external validity, however. The leaming probability estimates

correlated 0.11 with quiz scores.

We performed one more fit to the tutor data that was restricted to the required
exercises., That is, we fit and traced the goals in the required exercises as before, but
did not trace the goals in the remedial exercises - as if the remedial exercises had not
occurred. This procedure yielded a fit to the required exercises that is very similar
to the prevous one, r = 0.87. (The fits are similar because the remedial exercises in
each section follow the required exercises). However, the final learning probability
estimates vary more widely, since they are not being driven up by remedial
exercises. Average learning probability estimates ranged from (.81 to 0.95. This fit
improved external validity dramatically; average learning probability correlated

0.43 with quiz performance.

uuuuuuuuuuuuuuuuuuuuuuuuuuuuu

12 Student Modeling

Discussion

By allowing the four parameter estimates in our statistical model to vary across
productions we were able to obtain a good fit to student's performance with the tutor.
However, the knowledge tracing mechanism only achieved reasonable predictive
validity for quiz scores when it was restricted 1o required exercises. We think there

are two reasons for the latter result,

The Cognitive Model

The curve fits suggest that there are inaccuracies in the cognitive model. As a
rule of thumb, if we have identified psychologically valid rules, we would expect
performance 1o improve systematically with practice (Anderson, Conrad & Corbelt,
1989). A straightforward violation of this expectation is displayed in Figure 4. This
figure traces the learning curve for the rule that declares a variable in a function
definition. Error rates generally decline over the first four opportunities to apply
the rule, but then rise for the fifth point and more dramatically for the sixth point
and eleventh points. The first four points represent four exercises, each of which
requires a single variable. The fifth and sixth points are drawn from the fifth
exercise that requires two variables. Similarly, the tenth and eleventh points are
drawn from the next exercise requiring two variables. In short, error rate jumps
when students need to declare a second variable in an exercise. While the ideal model
assumes that the same rule applies at all twelve goals, many students seem to be
learning a more specific rule that applies in the first four exercises (e.g., always
declare one variable in a function definition) and as a result have trouble in the

fifth and ninth exercises.

13 Student Modeling

More serious violations of the cognitive model concemn the three rules involving
extractor algorithms in sections 3 and 5. The learning curves for these rules are
quite irregular, suggesting that they are too general. Moreoever, these points are
not fit well by the learning model. If students had an ideal undersianding of the
extractors car, c¢dr and reverse, it might be reasonable to trace various algorithms
involving multiple extractions with a small set of general rules. More realistically, it
appears that we need to decompose these rules into a larger set of algorithm specific

rules.

Mastery Learning

The learning probability estimates derived from just the required exercises
predict posttest performance moderately well, The estimates derived from required
and remedial exercises together are unrelated to postiest performance. Thus, the
tutor's knowledge tracing mechanism appears to be successful at identifying
difficulties students are having, but less successful at remediation. We suspect that
this pattern of results reflects inaccuracies in the underlying cognitive model as
described in the previous section. We anticipate that modifying the cognitive model
will enhance the validity of knowledge tracing. However, this pattern may also
reflect a certain insensitivity in knowledge tracing. In knowledge tracing we can
track a student's ability to successfully manipulate symbols in specific contexts, but
we cannot directly track the student's understanding of those manipulations.

Knowledge tracing may insure that students are leaming rules that enable them to

14 Student Modeling

complete the exercises, but they may not be the rules assumed in the ideal studem

model.

Figure 5 provides evidence that students who are performing comparably may, in
fact, be learning different rules. This figure displays error rates for simple
extractor rules. The first six points in the figure are drawn from the first six
exercises in the tutor. In each of these exercises students need to select one of the
three extractor functions. (The second goal in each exercise, in which students code
a literal list, is not displayed in this figure). In this figure, the 41 students have been
partitioned into three groups, based on overall error rate in the tutor. As can be
seen, error rate at each of these six goals is quite similar across the three groups.
The last three points in the figure are drawn from three exercises in the final
section of the lesson. In each case, students need to code a simple exiractor as an
argument to a combiner function. At this point, there are sizeable differences
among the groups. Thus, while students in the three groups have demonstrated
comparable "mastery" of the extractor rules in the first section, they apparently
have a different understanding of the rules that leads to differential transfer to new

contexts.

More generally, it may be that the number of opportunities required to master a
rule is inversely related to the probability of acquiring an optimal understanding.
In that case, the present pattern of results may emerge, particularly when postiests
involve substantial retention intervals and/or transfer tasks. The relationship of
learning probability estimates to postiest performance will be weakened while the
number of opprtunities required to achieve mastery will be inversely related to

posttest performance.

15 Student Modeling

These observations do not lead us to dismiss the utility of "mastery learning” as
described here. Mastery of symbol! manipulations, even with suboptimal semantics,
should enhance skill acquisition, since it is at least a co-requisite of oplimal learning.
These observations do pose two challenges: to create an environment that fosters
appropriate understanding with practice and to enhance the tutor's student modeling
capability, We expect that three types of modifications can enhance that capability:
(1) revising the cognitive model as described in the previous section, (2) revising the
statistical model, so that p(T), the probability of transition to an optimal learning

state, changes over practice and (3) monitoring retention and transfer directly.

16 Student Modeling

References

Anderson, J.R. (1983). The architecture of cognition. Cambridge, MA: Harvard

University Press.

Anderson, J.R., Conrad, F.G. and Corbett, AT. (1989). Skill acquisition and the Lisp

Tutor. Cognitive Science, 13, 467-5035.

Anderson, J.R,, Corbett, A.T., Fincham, J.M., Hoffman, D. and Pelletier, R. (in press).
General principles for an intelligent tutoring architecture. In V. Shute an W.

Regian (eds.} Cognitive approaches to automated instruction

Anderson, J.R. and Reiser, B.J. (1985). The Lisp Tutor. Byte, 10, (4), 159-175.

Atkinson, R.C. (1972). Optimizing the learning of a second-language vocabulary.

Journal of Experimental Psychology, 96, 124-129,

Corbett, A.T. and Anderson, J.R. (1990). The effect of feedback control on leaming 1o
program with the Lisp Tutor. Proceedings of Twelfth Annual Conference of

the Cognitive Science Society, Cambridge, MA.

Goldstein, I.P (1982). The genetic graph: A represeniation for the evolution of
procedural knowledge. In D. Sleeman and J.S.Brown (eds.) [ntelligent

tutoring systems. New York: Academic,

17 Student Modeling

Appendix

Each time the student has the opportunity to apply a rule, we need to estimate the
probability that the rule is in the learned state, contingent on the accuracy of the

student's response,

The probability p(Lp!Cp), that a production is in the leamed state following a
correct response at the nth opportunity to apply the rule is expressed in equation (1)
This probability is the sum of two probabilities: (a) the probability that the rule was
already in the leamed state, given a correct response and (b) the probability the rule
was acquired, if it was not already in the leamned state. The first of these

probabilities is expanded in equation (3).

Similarly, the probability p(LplEp) that the production is in the learned state
following an error is expressed in equation (2). This probability is the sum of 1wo
probabilities: (a) the probability that the rule was already in the learned state, given
an error and (b) the probability the rule was acquired, if it was not already in the

learned state. The first of these probabilities is expanded in equation (4).

Equations

(11 p(LnlCn)
(21 p(LnlEn)
[31 p(Ln-11Cn)
(41 p(Ln-11En)

p(Ln-1iCn) + (1 - p(Ln-11Cn)) * p(T)
P(Ln-11En) + (1 - p(Ln-11En)) * p(T)
p(Ln-1) * p(CIL} / (p(Lpn-1) * p(CIL) + p(Un-1) * p(CIU))
p(Ln.1) * p(EL} / (p(Ln-1) * p(EIL) + p(Un-1) * p(EIU))

[

(See next page for symbol definitions).

Definitions

p(Ln)

p(La-1)

p(Un-1)

Cn

En

p(CIL)

p(EIL)

p(CIL)

p(EIU)

p(T)

18 Student Modeling

The probability a production rule is in the learned state following
the nth opportunity to apply the rule

The probability a production rule is already in the learned state
at the nth opportunity to apply the rule

The probability a production rule is in the unlearned state

at the nth opportunity to apply the rule

A correct response at the nth opportunity to apply a rule.

An error at the nth opportunity to apply a rule.

The probability of a correct response if the rule is currently in
the learmed state.

The probability of a slip (an error) if the rule is currently in
the learned state.

The probability of a correct guess if the rule is currently in

the unlearned state,

The probability of an error if the rule is currently in

the unlearned state.

The probability a rule will transit from the unlearned to

unlearned state given the opportunity to apply the rule.

19 Student Modeling

Table 1

12 Constructs Introduced in the Curriculum

QONSTRUCT. EXAMPLE
Data Structures
Literal Atoms (symbols) king
Literal Lists (king queen bishop)

Extractor Functions

car (car '(a b c))
cdr {cdr '(a b c))
reverse (reverse ‘(a b ¢))

Combiner Functions

append (append '(a b) '(c d))
coens (cons "a '(b ¢ d))
list (list 'a b 'c 'd)

Function Definitions
defun (defun second (lis) (car (cdr lis)))
function name
variable declaration

variable reference

RESULT

(bc)
{cba)

(abcd)
(abecd
{abcd

20 Student Modeling

Table 2
21 Rules in the Ideal Student Model
Section 1: _E .

Rules: Code-Car-Extract-First-Element
Code-Cdr-Remove-First-Element
Code-Reverse-Flip-List
Code-Literal-List-Argument

Sample Exercise: (car '(a b ¢))
i ; iner

Rules: Code-Append-Merge-Lists
Code-Cons-Insert-Element
Code-List-Group-Expressions
Code-Literal-Atom
Delete-Extra-Editor-Node

Sample Exercise: (cons 'a '(b ¢))
Section 3: . Exiractor Algorithms

Rules: Code-Extractor-Start-Algorithm

Code-Extractor-Complete-Algorithm
Sample Exercise: (car (cdr '(a b c)))
Section _4: Function Definitions - Extractor Algorithmsg

Rules: Code-Defun
Code-Function-Name
Declare-Variable
Code-Variable-Reference
Delete-Variable-Declaration-Node
Delete-Top-Level-Editor-Node

Sample Exercise: (defun second-of-first (lis) (car (cdr (car lis))))

21 Student Modeling

Table 2 (cont).
ion Definiti - mbi i
Rules: Code-Append-Combine-Extractions
Code-Cons-Combine-Extractions
Code-List-Combine-Extractions
Code-Extractor-Argument-to-Combiner

Sample Exercise: (defun ends (lis) (list (car lis) (car (reverse lis))))

22 Student Modeling

Figure Captions

Figure 1. The computer screen near the beginning of an exercise.

Figure 2. Actual and predicted error rates across 41 students at each goal in the
required tutor exercises. (Remedial exercises are traced, but not {it).

Figure 3. Actual and predicted error rates across 41 students at each goal in the
required tutor exercises. (Remedial exercises are not traced).

Figure 4. The Leamning Curve for the production rule that declares a variable in a
function definition.

Figure 5. Error rates for simple extractor functions in the first six exercises and in

three more complex exercises drawn from the last section of the lesson.

~ 2 o)
H
WIH " . |
_ . _ sug-adhif
o) .h.mm"
[3]
dessr
(w83 e hvosd i
Caieea)
(Cden)
D)

Av3 Bujpo) [CImSrmmmEEIIES

4 ¥a) Buypo)y TR

35M3A3d Bulpo] Co——rETEDEm
1 1841 teteyig @ Buipo) e (@ D 2) VSHI S} WO1j 3 SWINIEL 18U} 110D UBIIUN) dsi| @ LM
. juawojels Wgesd

13)01 HINS

Constant Parameter Estimates

All Ss Actual
All Ss Expected

— v)

T
o=

[« 3 14

_,éi
_g--%

o...'*. - — Ol o
= e =y I e o D)
B
o A e B W e - amu&--uo

O e

_,__nno--—--q—-p——-—
[2 e Mar Rt S N S —

v

Q

0-ZEsIEatD.

“-0g
o

o O

O s

w2l .

S

1
1
H
1§
b

""'""-'6":.---0

—grumgemgh R L il

100

' : z ' r T
ejey Jol3 UGl

80 -
80

100

Goal Number In Lesson (25 Exercises)

blaqore 2

Variable Parameter Estimates

Required Exercises Only

All S8 Actluat

LTl e LT

All Ss Expected

-
O=unzzo -
=

Oronnppmsol Y

rrwl)

e S D S U

100

@led Jol3 uesn

100

Goal Number In Lesson (25 Exerclses)

ny

1

1&Gue

Fi

Variable Declarations

Aclual Error Rate

e Expected Error Rale

-

-0

o018y Joliy uvow

10

F%&xurtﬁ L{

S mvspm_u

aweN uoploung

g B B

JOMT WP --ecteeense

ouzybiy —a—

IOMI MO} o

ISHIATY ‘HAD ‘HVYD

isi032ea1Xg ajduns

ajey Joug uBal

