R

LR 2L TR AR

T . 2 I

Thé Process of Learning LISP

Frederick G. anrad and John R. Anderson
Department of Psychology

Carnegie-Mellon University

Modern research on skill acquisition is dominated by two broadly defined schools. One of
these schools analyzes verbal protocols produced by a small number of subjects as they
perform complex tasks in unconstrained situations. The other school measures the time and
accuracy of larger numbers of subjects performing simplified tasks in controlled experiments.
While protocol studies can provide rich detail about the acquisition of useful skills (Ericsson
& Simon, 1985), the small numbers of subjects, the free ranging quality of their reports, and
the theory laden interpretation of the data make reliability and generality unrealistic. The
experimental approach, in contrast, yields precise, objective findings, but the distilled tasks
given to subjects jeopardize the everday relevance of these findings (Neisser, 1976). In the
current paper we report a series of analyses that exploit the power of both protocol and
experimental methods while, we hope, transcending their limitations. We have tracked the
acquisition of a complex skill, LISP programming, by examining student performance with the
LISP Intelligent Tutoring System (Anderson & Reiser, 1985). This tool provides us with
detailed, continuous records of student performance, much like protocol data; however, the
nature of these data allows us to analyze them with the quantitative methods typically
applied to experimental results. By converging these research methods, our goal is to
present a more complete and accurate picture of learning LISP than is possible through
either approach alene.

Students interact with the LISP tutor as they solve programming exercises in a one
semester, introductory LISP course. Every exercise in the curriculum is decomposed into a
sequence of production rules (Anderson, 1983), most of which correspond to typing LISP
code. The student’s input stream is segmented into separate productions when he or she
types a delimiter key (space bar, carriage return or closing parenthesis). The input
bracketed by each pair of delimiters is treated as the action of an underlying production
rule. For each student action, the tutor tries to generate a corresponding piece of code by
applying a relevant production rule. If the student and tutor code match, the student
progresses through the problem. For each such match the tutor records the student's coding
time, measured from delimiter to delimiter. A discrepancy between student and tutor code is
recorded as the student’s error and triggers a tutorial dialogue. The student then receives
subsequent opportunities to produce the correct code. In the analyses that we report
below, we restrict our discussion to latency measures. We further narrow our data by
considering latencies from only those trials on which productions are executed without errors.

We are taking the production model in the LISP tutor as the simulation of each student
and are using the LISP tutor to automatically analyze the student’'s protocol and determine a
correspondence between that protocol and the production model. This paper will be
concerned with how systematic the data appear under such an analysis. We expect that

454

CONRAD AND ANDERSON

students will improve as they go through the LISP tutor. To the extent that this improvement
is systematic, this will both support the production model and provide evidence about the
nature of skill acquisition.

A single LISP symbol (piece of code):can corrspond to several different production rules.
What differs are the conditions on the rules. For example, one rule corresponds to car when
used simply to retrieve the first element of a list; another rule is applied when car is called
in conjunction with cdr to produce the second element of the list. The mean coding times
for these rules in the first lesson are about 19 seconds and 45 seconds respectively. This
example and many similar ones support the idea that psychologically, there is a fundamental
ditference between distinct rules with identical actions. While the mapping between surface
behavior and underlying rule is usually one to one, the student must still acquire on the
order of 200 production rules throughout the term. The various combinations of ruies
throughout the coding exercises produce about 3400 data points per student. We would like
to identify the factors that influence performance at essentially each of these points.

Regression Analysis

We will restrict our analyses to 43 students who used the LISP tutor in courses taught in
the fall of 1985 and spring of 1986. Because the data supplied by the tutor are continuous
and quantitative, they lend themselves to analysis by multipie regression. Our goal Is to
formulate a regression model that allows us to predict coding latency at any point in the
125 problems that our students are required to solve. We considered a large number of
potential predictors but only a few made independent contributions to predicting the variance.
We have been most successful in accounting for coding latencies using three predictor
variables: (1) lesson number -- the material covered by the tutor is presented in 12 lessons.
(2) log number of opportunities to code a production within a lesson, and (3) log absolute
serial position of a production within a problem. Our criterion is actually log seconds. We
chose a log scale for the dependent measure and two of the independent variables and a
linear scale for the remaining independent variable because this combination of scales
accounted for significantly more variance than other possible combinations.

We have subdivided our data into "Old” and "New" productions and performed separate
analyses on each group. An observation is analyzed as an Old production if the associated
rule is Introduced In an earlier lesson. If the observation is made within the lesson in which
the rule is introduced, it is a New production. So for example. conditionals are introduced in
Lesson 3. The production code-cond is therefore New when used in Lesson 3. but Oid
when used in Lessons 4 - 12. Our regression model for Old pindnctions ie presented in
Equation. 1 below and our model for New productons in Equation 3. To make these more
interpretable, we have derived equations from 1 and 3 in which the same independent
variables, scaled in linear units, predict latencies in actual seconds. These are presented in
Equations 2 and 4 for Old and New items respectively.

455

A At W2t PPN 1

CONRAD AND ANDERSON

log latency = 1.31 - .01(L) - .25(log O) - .26(log P) (1)

latency = 20.6 (.97Y (0~25) (p~26) ()
log latency = 1.36 - .03(L) - .30(log O) - .15(log P) 3)
latency = 23.0 (.84') (0~39) (P~15) (@)

where L is lesson number, O is opportunity number and P is position.

Both regression equations account for highly significant proportions of the variance (R =

17, p < .001, for Old productions; # = .18, p < .001. for New productions) and all of
the regression coefficients are significant (p < .001). The first thing to notice is that the
intercept term, expressed in log seconds. is greater for New productions than for Old
productions. On intuitive grounds, rules that are in the process of being learned should be
used more slowly than well known rules. Overall, mean log latencies are in fact siower for
New productions than Old (F (1, 840], = 8.87, p < .001). A second feature of these
equations is that all the coefficients are negative. This means that as the values of our
predictor variables increase, students’ coding latencies decrease. It is interesting that both
regression analyses identified the same independent variables. Among the predictors that we
congidered and rejected are the rated prior familiarity of productions, the number of goals
pending in the problem for a particular observation, the depth of the symbol being coded
within embedding function calls, and the position of the symbol on its line of pretty printed
code. We will now consider each of the three independent variables that we have included
in the models.

Lesson Effect: Learning to Learn.

Our students clearly improve over the course of the 12 lessons. The linear trends due to
Lesson alone are negative and close in size to the Lesson coefficients in the three term
modeis presented above ({6409] = -7.29, p< .001, for Old productions: 13350] = -12.73.
p< .001, for New productions). Mean coding time in seconds is presented for each lesson
in Figure 1. Although the curves show somewhat of an upturn in the final few lessons,
their important feature is a general negative trend. The speedup due to lessons cannot be
a simple practice effect. If it were. New productions would not show improvement: By
definition, performance on these items is ‘measured in only one lesson. namely the one in
which they are first presented. Yet, the advantage of additional lessons is greater for New
productions than Oid items (19758] = 7.47. p < .001). A second possibility is that the
Lesson effect is an “interface effect.” The more experience students have with the tulor's
display properties, for example, the more rapidly they can enter code. While the
improvement on Old items may well be due to increased familiarity with the interface. we
interpret the greater lesson effect for New items as evidence of yet another learning
process.

Instead of an interface effect. we may be observing students' acquisition of schemas for
coding LISP functions. For example, students may come to know that a LISP function must
start with the function name foliowed (typically) by a fixed number of arguments. As the

456

CONRAD AND ANDERSON

25r !
o——0 new productions
o——o 0id productions
4\20"
S
c
6
]
® (S
£
- 0}
£
3
o st
O——3 3 a4 5 €6 7 8 9 10 I =

Lesson
Figure 1: Mean coding time for Old and New productions as a function of lesson.

student encounters new functions, new productions can be created as instantiations of this
general tendency. The benefit of assimilating new information with the help of schemas s
well documented (e.g. Bransford, Barclay & Franks, 1872 Bower, Black & Turner, 1979). In
the current context, we refer to this as the "learning to learn” phenomenon. One implication
of the phenomenon is that learning certain LISP constructs will require students to update
and elaborate their function schemas. If there is no longer a correspondence between the
schema and the code students must write, then the benefits of the schema for learning New
rules should be reduced until students revise their schemas. This should occur when the
conditional structure and recursive structures are introduced. This material is presented in
Lesson 3 (conditionals), Lesson 7 (numeric recursion), Lesson 8 (cdr-recursion) and Lesson
10 (car-cdr recursion). It is at these points in Figure 1 that we see the peaks for New
productions, suggesting that the Lesson effect is modulated by lesson content and
presumably the impact of content on student schemas.

Opportunity Effect: Knowledge Compilation.

The second term in both of our regression models is log opportunity to code a production
within a lesson. An opportunity is essentially a trial in experimental terminology. It is
therefore not surprising that students apply particular rules more quickly with practice.
However. we have theortetical reasons for expecting that the improvment dua 1o Mactice
not strictly linear. On the first opportunity to execute a New production. the student has
only read the information that will form the basis of the rule. Within the framework of ACT®
(Anderson, 1983), this declarative knowledge must be proceduralized. i.e. compiled into a
production rule. Proceduralization explicitly builds certain long term information into the
production that previously required maintenance in working memory. Because of the reduced
demand on working memory. the student can apply the rule more efficiently. If this is so.
we should see a sharp improvement in coding latencies early in the history of a production.
followed by more gradual speedup: Once the new information is proceduralized, the resulting
rule can be funed, either facilitating or impeding its use, but the greatest change in & rule's
performance is associated with its transformation from declarative 1o procedural knowledge.

457

T

CONRAD AND ANDERSON

6.0 \
[O0——0 new productions
K40+ o——ao oid productions
" 5
°
§ 12 0F
[]
e L
Swoo}
[]
E i
—
o 80
€ N
b=l
[+
O 60}
1 I —. | e N 1 J
| 2 3 4 5 6
Opportunity

Figure 2: Mean coding time for Old and New productions as a function of
opportunity.

This is largely the picture that emerges from our data. Students improve more on New
productions than on Old ({9758] = 5.88, p < .001) as you would expect if the New items
refiect the transition from declarative to procedural kowiedge. While we have performed our
regression analyses on log coding latencies and log opportunity, the dramatic shifts in
performance that we are looking for should be most evident in the untransformed data. In
Figure 2, we plot coding time in seconds against actual opportunity count for Old and New
productions. The most salient aspect of the Figure is the steep drop in coding time between
the first and second opportunity. The improvement is on the order of 33% for New rules
versus 20% for Old rules. It seems reasonable to us that this is the difference between
proceduralization and tuning. It is also worth noting that at their siowest, Old productions fire
about as fast as well practiced New productions. The suggestion is that there is a
fundamentai difference between the knowledge driving performance on the first opportunity
for New productions and the remaining points on the graph. We would expect this if
students are using declarative knowledge on this first observation alone.

Serial Position Effect: Plan Rehearsal.

Ahsolute serial position is the final performance factor that we will consider. This is simply
the ordinal value of a production in the sequence of rules comprising a function definition
So for example, defun will typically be in the first serial position. specify-function-name in the
second, and so on.! The negative regression coefficients for log absolute serial position tell
us that the further into an exercise a student proceeds, the faster he or she will apply
production rules. However, a closer examination of the data reveals systematic deviations
from the linear trend captured by the regression models.

'Ot course most rules can appear. n a variety of positions.

458

CONRAD AND ANDERSON

- N [\ [V
w» o 3] o
T T T]

Coding Time (in seconds)
<]
]

0 1 1 1 i 1 1 1 1 i | —
defun nome params | 2 3 4) 6 7 BJ
¢ body
Serial Position (within function)
Figure 3: Mean coding time across serial positions in Lesson 2 functions.

We have assembled a profile of coding performance over serial position for the 12
exercises of Lesson 2. Both Old and New productions are included in this analysis which is
presented in Figure 3. Latencies and serial position are untranstormed in the plot to
accentuate the non-linearity of the curve. We have distinguished the first three serial
positions, which correspond to the same productions across problems, from the remaining
positions, which are used to code the function body. What is striking about this curve is the
twin peaks. The first peak likely refiects the final comprehension of the problem description
and planning of the solution that precedes coding. The drop over the next two positions is
not surprising since these productions are the only permissable actions at these points. We
then see the second peak followed by a fairly systematic and negatively-accelerated speed
up across serial positions as our regression analysis implies. We think this reflects an effect
of formulating and rehearsing the plan. Repeated access and use of the plan should
strengthen its encoding in working memory and so speed access to it. 1t should be noted
that in our search for predictors log serial position proved to be a better predictor than

other possible variables such as number of pending goals or depth of embedding of the
code.

Conclusion

The LISP tutor has enabled us to analyze a complex skill in greater detail than is possible
with more conventional methodologies. We feel there is a bright future for tutoring systems
in psychological research. Despite the volumes of data and the fine grain size of our
analyses, the picture we come away with is actually rather simple. Students’ mastery of LISP
is best captured by their progress through the curriculum (the lesson effect). the amount of

459

CONRAD AND ANDERSON

practice they receive on a particular production rule (the opportunity effect). and the location
of that rule within the particular function that they are coding (the serial position effect). This

simplicity is particularty striking.

We think that each of the three variables is in the main quite interpretable although they
may aiso be picking up subtie complexities. The lesson effect seems to reflect the schema
for working in LISP both with respect to the interface and the structure of LISP functions.
The opportunity effect is a simple learning effect. It Is noteworthy that the linear relationship
between log latency and log opportunity indicates we have another instance of a power-law
learning function (Anderson, 1982). The prediction is not as good if we use either linear time
or linear practice. Finally, the Serial Position effect Indicates the development of an Initial
plan which becomes rehearsed as it is used in writing the function. Each of these
phenomena are hardly news in cognitive psychology. It is this fact that we regard as the
news of our paper: Under appropriate decomposition . (i.e., as provided by the LISP tutor)
acquisition of a complex skill is a matter of simple learning processes.

References

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369 - 406.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, Ma.. Harvard University
Press.

Anderson. J. R. & Reisser, B. J. (1985, April). The LISP tutor. Byte. pp. 159 - 175.

Bower. G. H., Black, J. B. & Turner, T. J. (1979). Scripts in memory for text. Cognitive
Psychology, 11, 177 - 220.

Bransford, J. D., Barclay. J. R. & Franks, J. J. (1972). Sentence memory: A constructive
versus interpretive approach. Cognitive Psychology. 3, 193 - 209.

Ericsson, K. A. & Simon, H. H. (1984). Protocol analysis: Verbal reports as data.
Cambridge, Ma.: The MIT Press.

Neisser. U. (1976). Cfognirion and reality. San Francisco: W. H. Freeman and Company.

460

