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Understanding the interaction of a user with a designed device such as a GUI requires
clear understanding of three components: the cognitive, perceptual and motor capabili-
ties of the user, the task to be accomplished and the artefact used to accomplish the task.
Computational modeling systems which enable serious consideration of all these con-
straints have only recently begun to emerge. One such system is ACT-R/PM, which is
described in detail. ACT-R/PM is a production system architecture that has been
augmented with a set of perceptual-motor modules designed to enable the detailed
modeling of interactive tasks. Nilsen's (1991) random menu selection task serves two
goals: to illustrate the promise of this system and to help further our understanding of the
processes underlying menu selection and visual search. Nilsen's original study, two
earlier models of the task and recent eye-tracking data are all considered. Drawing from
the best properties of the previous models considered and guided by information from the
eye-tracking experiment, a series of new models of random menu selection were construc-
ted using ACT-R/PM. The "nal model provides a zero-parameter "t to the data that does
an excellent, though not perfect, job of capturing the data.
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¹he Psychology of Human}Computer Interaction (Card, Moran & Newell, 1983) is often
credited with the creation of the "eld of human}computer interaction and is, at the very
least, one of its most central early in#uences. This book introduced the Model Human
Processor (MHP) as an engineering model of human performance and goals, operators,
methods and selection rules (GOMS) as a method of task analysis. The conceptual basis
for GOMS and, at heart, the underlying belief about the best way to #esh out the MHP,
is production rule systems. Since that time, the dominant production rule systems have
been the ACT family of systems (Anderson, 1983, 1993; Anderson & Lebiere, 1998) and
the Soar architecture (Newell, 1990). EPIC (Kieras & Meyer, 1997) is a more recent, but
promising and in#uential, entry into this arena.

The applicability and success of GOMS and its MHP-inspired extension, CPM-
GOMS (see John & Kieras, 1996, for a review), has clearly indicated that this is a fruitful
approach for desktop-style user interfaces. However, the future of the human}computer
interface is not on the desktop. Increasingly, computers with user interfaces are appear-
ing in tasks where they previously have not been present, such as automobile navigation
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systems. These new applications provide signi"cant challenges, both practical and
theoretical, to traditional analyses. These interfaces are increasingly multimodal and
time critical. While a 200 ms di!erence in execution times for a simple operator in
a desktop application may be inconsequential, the same di!erence in an in-car navi-
gation system can have serious safety implications. Thus, it is incumbent on researchers
in HCI to develop methods for dealing with the full complexity of high-performance
multimodal interfaces. Traditional GOMS analysis will not be enough.

This paper presents a theoretical framework and computational modeling system
designed to address such applications. The system is ACT-R/PM, for ACT-R Percep-
tual-Motor, and is based on the most recent ACT-R production system architecture
(Anderson and Lebiere, 1998). The goal of this paper is to describe the ACT-R/PM
system in detail and provide an example of the kind of analysis and modeling that this
architecture enables with a model of an apparently simple task, the selection of single-
character items from a randomly ordered menu. While this task is somewhat arti"cial, it
provides some insight into the issues involved in high-performance user interfaces. Before
delving in detail into ACT-R/PM or the menu selection task, a general framework for
analysing interactive tasks will be described.

1. The embodied cognition+task+artefact (ETA) triad

Gray (in press; Gray & Altmann, in press) describes the beginnings of a framework for
understanding interactive behavior, the Cognition}Task}Artefact triad, and the ETA
framework is based on that idea with some modi"cation. The central notion is that
interactive behavior of a user interacting with an interface is a function of the properties
of three things: the cognitive, perceptual and motor capabilities of the user, termed
Embodied Cognition, the Task the user is engaged in and the Artefact the user is
employing in order to do the task (see Figure 1).

As Gray and Altmann describe, traditional disciplines have generally considered these
pairwise rather than as a triad. Computer scientists have traditionally considered the
design of artefacts to support particular tasks, but often ignored constraints imposed by
the capabilities and limitations of the user. Conversely, the experimental psychology
community has typically considered the user, but often with arti"cial tasks or in context
that minimize or eliminate the role of the artefact. Ethnographic analysis typically
considers the context of artefacts and the tasks, but often overlooks issues rooted in the
capabilities and limitations of the human element.

Cognitive modeling forces the analyst to consider all three at once. A modeling system
such as Soar or EPIC provides a description of the capabilities and limitations of the
user, but contains no task or artefact. However, for a simulation model to run based on
such a system, it must be given both a task to perform and a complete and detailed
description of the artefact being used.

First, interactive behavior depends upon the user's Embodied Cognition. Gray has
referred to this member of the triad simply as &&Cognition'', but this route has not been
taken here because it is not just the cognitive capabilities and limitations of the user that
matter, but the perceptual-motor as well. Traditional AI and cognitive science systems
have made the mistake of treating people as purely cognitive entities. While that may
su$ce for abstract tasks such as chess, neglect of perceptual-motor capabilities and
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FIGURE 1. The embodied cognition}task}artefact triad.

limitations will not serve in high-performance applications such as air tra$c control and
in-car navigation systems. As computer systems become increasingly embedded and
mobile, the demands they place on our perceptual-motor systems are likely to become
increasingly central to understanding interactive behavior. Thus, we need theories and
applications that pay more than lip service to these issues.

The second component is the task. Issues in determining the true task to be analysed
are overlooked with surprising frequency. For example, recent studies of WWW behav-
ior (e.g. Nielsen, 1997; Tauscher & Greenberg, 1997)*certainly a &&hot'' topic*have
failed to consider whether the tasks they ask users to do are typical of the tasks users
actually try to accomplish in their normal use of the Web. Optimizing interfaces for tasks
for which they are not actually being employed is a waste of designers' time and users'
e!ort. Methods like protocol analysis, contextual inquiry and ethnographic analysis can
be valuable in understanding the actual tasks in which users are engaged.

A second important issue is the way by which success in performing a task is measured.
Is it time, user satisfaction or some other metric? In high-performance systems, time and
errors are likely to be the most central measures with things like user preference and
satisfaction being less critical (though still not completely unimportant). Mismatches
here can be costly. For example, Landauer (1995) argues that despite the vast prolifer-
ation of information technology into the business world, minimal gains in productivity
have been realized because system designers and purchasers were not sensitive to
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end-user productivity. Even though this particular situation may have improved, this is
still a critical issue.

In general, HCI researchers are much better at understanding and augmenting the
artefact. The artefact, in conjunction with the user, determines which operators the user
can apply to reach their goals and often plays a central role in maintaining state
information for the task. The artefact is the component that is most subject to design*it
is often much easier to redesign the device than to change the underlying task or change
the cognitive, perceptual or motor characteristics of the user. The design of the artefact is
typically fraught with tradeo!s, such as the tradeo! between the goal of making
information available to the user and limitations of screen space. In fact, one of the
central potential uses of performance analysis such as computational modeling is to help
evaluate such tradeo!s.

One of the important pieces of this framework is "delity to true artefacts. In computing
systems, the artefact in the analysis is more often than not a piece of software. In that
spirit, one goal of researchers in computational modeling and HCI is the use of the same
software both by users and by the computational cognitive models. This can require
solving non-trivial software integration problems, some of which have been solved in
a limited way in ACT-R/PM.

This framework for analysis of interactive behavior is not entirely novel. In particular,
agent-oriented AI researchers have been concerned with many of these issues for some
time (e.g. Agre & Rosenschein, 1996), particularly the &&behavioral ecology'' approach of
Cohen, Greenberg, Hart and Howe (1989). These approaches are similar, though gene-
rally less concerned with understanding human behavior in a human factors context.

Overall, the approach is intended to be an engineering approach. That is, absolute
precision in prediction, which is the goal of much of the modeling work in cognitive
psychology, is not the goal here. Instead, the goal here is to develop a framework which is
capable of generating predictions within 20% of the true value with as few free para-
meters as possible. Obviously, more precise predictive ability will be required for
high-performance applications; however, the initial goal is a system that will provide
good predictions with little parameter-tweaking, and can then be re"ned as necessary in
cases where more precision is required.

2. ACT-R/PM

ACT-R/PM ("rst presented in Byrne & Anderson, 1998) is an e!ort to augment a system
that has been remarkably successful at describing and predicting human behavior in
primarily cognitive domains with a perceptual-motor system. This makes the coordina-
tion of perception, action and cognition, rather than just cognition itself, the central
problem. There are several motivations for such a system. For present purposes, the
central motivation is this: real-world tasks with real-world artefacts depend on these
capabilities. Beyond that, the theoretical and empirical challenges of constructing such
a system are themselves formidable and fascinating. One thing many researchers in
cognitive science have failed to keep in mind is that perceptual and motor capabilities
came "rst; there are plenty of organisms that function quite well with extremely limited
cognitive machinery. By failing to consider the perceptual-motor aspects of the human
system, the baby has been thrown out with the bath water. This does not mean cognition
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FIGURE 2. ACT-R/PM system diagram.

is unimportant, quite the contrary, the cognitive system has the bulk of the responsibility
in coordinating the three. However, it does mean that the focus of cognitive analysis will
often be slightly di!erent, rather than a pure analysis of problem spaces (as per the
&&classic''Newell and Simon paradigm), the analysis will center on control and coordina-
tion of resources that are not always cognitive.

What follows is a detailed description of ACT-R/PM. This level of detail is necessary
in order for the presentation of the models later in the paper to be entirely unambiguous,
and there is no other description of the full system in the literature that is entirely
adequate.

ACT-R/PM is organized as depicted in Figure 2. In many ways, this system is similar
to, and was certainly heavily in#uenced by, the Kieras and Meyer (1997) EPIC system. In
ACT-R/PM, there are four perceptual-motor modules which communicate with central
cognition, which is realized as a production system (in this case ACT-R). Central
cognition is more or less serial (spreading activation processes work in parallel) and each
module is itself more or less serial, but the various components all run in parallel with
one another. Thus, the production system could be retrieving something from long-term
declarative memory while the Vision Module is shifting attention in the visual array and
the Motor Module is preparing to press a key. This is in agreement with the original
MHP, which consisted of a collection of serial processors acting in parallel with one
another.
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FIGURE 3. Flow of information in the ACT-R production system. After Figure 1.2 in Anderson and Lebiere
(1998).

2.1. ACT-R PRODUCTION SYSTEM

The "rst four chapters of ¹he Atomic Components of ¹hought (Anderson & Lebiere, 1998)
thoroughly describe ACT-R, so only a cursory description will be presented here. The
#ow of information in ACT-R is summarized in Figure 3, which is adapted from
Anderson and Lebiere (1998). ACT-R has essentially three memories, a declarative
memory which contains chunks, which are facts like &&3#4"7'', a production (or
procedural) memory which contains production rules, IF}THEN condition-action map-
pings and a goal stack which also contains chunks, these encoding intentions. These are
all organized around the current goal, which is also a chunk.

Production rules' IF sides are matched against the current goal and contents of
declarative memory. One of the productions that has its conditions matched is selected
to "re. The basic computational increment is the production cycle, which consists in
matching productions against memory, selecting a production to "re and then executing
the THEN side of the selected production.
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The process of determining which production to "re on a given cycle is called con#ict
resolution. This is one of many features that distinguishes ACT-R from EPIC and Soar;
in ACT-R, only one production "res per cycle and in Soar and EPIC all matching
productions "re on a particular cycle. Con#ict resolution is based on a rational analysis
(e.g. Anderson, 1990) of the expected utility of a production vs. its costs, which are in
terms of time. Con#ict resolution will be considered in more detail in Section 4.2.

Productions may request the retrieval of a chunk from declarative memory and the
time to complete this operation is a function of the activation of the chunk to be
retrieved, which in turn is a function of the estimated need odds of the chunk, represented
by an activation value. A substantial body of work has gone into the equations which
determine chunk activation and that work has been fruitful in describing human memory
(e.g. Anderson, Bothell, Lebiere & Matessa, 1998; Anderson & Reder, 1999). References
to retrieved chunks are often added to the current goal, hence the &&retrieval result'' arrow
going from declarative memory to the current goal in Figure 3.

The goal memory is itself a stack, onto which new goals can be pushed and satis"ed
goals popped. Goal structures are important in directing the behavior of the system and
are a useful place to begin an analysis of errors (Byrne& Boviar, 1997; Gray, 2000). Goals
that are popped o! the goal stack do not simply vanish into the bit bucket, but rather
reside in declarative memory and are subject to the same activation processes a!ecting
other chunks.

ACT-R is also a learning system. Declarative memories can be compiled into produc-
tions, and both productions and chunks have various numerical quantities associated
with them that can be learned. These quantities are used primarily in the con#ict
resolution and chunk matching process. A much more detailed description of ACT-R
and its various mechanisms and parameters can be found in Anderson and Lebiere
(1998) and the interested reader is strongly encouraged to read the "rst four chapters of
that volume.

Finally, communication between central cognition and the perceptual-motor modules
takes two forms. Production actions can request that a particular module perform
a certain command, and modules can modify ACT-R's declarative memory, primarily by
creating declarative chunks.

The basic time parameter for the production system is 50 ms. That is, a basic
production cycle takes 50 ms, though the cycle can take longer if there are retrievals from
declarative memory involved. Seemingly small di!erences in the availability of declara-
tive memory elements can have a large impact on the system's performance, particularly
under multiple-task conditions (Byrne & Anderson, in press).

2.2. VISION MODULE

Given the visual nature of most current user interfaces, the Vision Module is fairly
central in modeling most HCI tasks. As one might expect, the Vision Module is used to
determine what ACT-R/PM &&sees''. How this is managed by the Vision Module is
depicted in Figure 4. Each object on the display will be represented by one or more
features in the Vision Module's icon. The Vision Module creates chunks from these
features which provide declarative memory representations of the visual scene, which can
then be matched by productions. Generally, each icon feature maps to one chunk in

ACT-R/PM FOR HCI 7

IJHC 20010469



FIGURE 4. Flow of information in the Vision Module.

declarative memory, though this is not always the case. In particular, text is often
represented not at the level of letters, but as a set of primitive visual features of which the
letters are composed (more details on letter features will be provided in Section 4.1).

For the Vision Module to create a chunk representing an object, visual attention must
"rst be directed to the location of that object. In order to do that, the Vision Module
supports a MOVE-ATTENTION operator. However, in order to shift attention to
a location, ACT-R/PM must also have a representation for visual locations. The state of
the visual array (the icon) is re#ected in &&virtual chunks''which can be matched by the IF
side of production rules.When ACT-R/PM is &&looking'' for an object on the display, one
or more locations may be matched by this process, depending on the number of objects
on the display and the speci"city of the chunk match.

The Vision Module represents basic information about the visual features in the
display such as their location, their color, their size, etc. A production may specify values
(or ranges of values for continuous properties such as location or size) that are acceptable
for a match. When a match is found, the location chunk is no longer virtual; a full-#edged
chunk is added to ACT-R's declarative memory, and this chunk represents the know-
ledge that there is something at a particular location. Note that all locations assume
a static observer; the same point on the screen is always represented with the same
coordinates.

This location chunk can then be passed back to the Vision Module along with
a request to move attention to that location. Attention shifts happen asynchronously
with respect to the production system and have a duration that is a settable system
parameter but defaults to 135 ms, based on previous research with the predecessor to
ACT-R/PM, the ACT-R visual interface (Anderson, Matessa & Lebiere, 1997). If there is
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anything in the icon still at that location when the attention shift completes, then a chunk
will be created which represents that object (a visual-object chunk), and that chunk is
considered the focus of visual attention.

Being the visual focus has rami"cations for the activation of that chunk and its
properties. In particular, the properties of the focus are highly active and should be
retrieved rapidly. Since ACT-R's declarative memory system is complex, including decay
and associations between declarative chunks, the integration of a visual system and the
declarative memory system is not entirely straight-forward. Unlike other simulated
visual systems (e.g. EPIC), it is not possible to simply delete declarative memory elements
that represent objects which are no longer visible. Thus, the visual system has to
designate a particular chunk as being &&current'' so that the object currently being
attended can be discriminated from memories of other objects.

If there is more than one object at a location when an attention shift completes, then
the Vision Module will encode*create chunks representing*all the objects at that
location. However, only one of those objects can be the focus of visual attention, so
one object must be selected. The selection is based on the properties of the feature
that was originally used to generate the location chunk. Thus, if the request to shift
attention is based on a location originally speci"ed to have a red object, then if there is
a red object at the location when a shift completes, it will tend to be preferred as the focus
of attention.

The basic assumption behind the Vision Module is that the visual object chunks are
episodic representations of the objects in the visual scene. Thus, a visual object chunk
with the value &&3'' represents a memory of the character &&3'' available via the eyes, not the
semantic THREE which is involved in arithmetic facts*some retrieval would be neces-
sary to make that mapping. The same thing applies to words and other objects. Note also
that there is no &&top-down'' in#uence on the creation of these chunks; top-down e!ects
are assumed to be a result of ACT-R's processing of these basic visual chunks, not
anything that is done in the Vision Module. Pylyshyn (1999) provides a compelling
argument for such modularity.

The Vision Module also supports rudimentary visual tracking. Once an object has
been attended to, the Vision Module can be told to track it with a START-TRACKING
operator. This will update the location chunk associated with the visual object on every
production cycle, which also provides a simple memory for where the object has been.

2.3. MOTOR MODULE

ACT-R/PM's Motor Module is based directly on the description of EPIC's Manual
Motor processor found in Kieras and Meyer (1996). While the Vision Module is the most
complex module internally, it is not the most complex in terms of the number of timing
parameters and commands supported. That description best "ts the Motor Module. The
Motor Module represents ACT-R/PM's hands, and therefore supports a wider range of
actions, and contains a number of parameters for representing movement.

Since most output (e.g. key presses and mouse clicks) in using a computer interface are
manual, they will go through the Motor Module. The Motor Module receives com-
mands from the ACT-R productions to perform actions. In general, movement speci"ca-
tion requires speci"cation of a movement type, called a style (which is speci"ed by the
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command name) and one or more parameters, such as the hand/"nger that is to make the
movement.

When a command is received by the Motor Module, the Motor Module goes through
three phases: preparation, initiation and execution. In the preparation phase, the Motor
Module builds a list of &&features'' which guide the actual movement (Rosenbaum, 1980,
1991). The amount of time that preparation takes depends on the number of features that
need to be prepared*the more the features that need to be prepared, the longer it takes.
Each feature takes 50 ms to prepare.

The Motor Module has a small bu!er which contains the last set of features that it
prepared. The actual number of features that need to be prepared for a new movement
depends upon two things: the complexity of the movement to be made and the di!erence
between that movement and the previous movement. On one end of the scale, if the
Motor Module is simply repeating the previous movement, then all the relevant features
will already be in the bu!er and will not require preparation. On the other hand,
a production could request a movement that requires a full "ve features and they may
not overlap with the features in the Motor Module's bu!er, in which case all "ve features
would need to be prepared.

Movement features are organized into a hierarchy, with the movement style at the top
of the hierarchy. If the movement style changes, then all of the features required for
a movement must be prepared once again. Then, if the movement styles are the same but
the hand for the movement di!ers, all features at and below the hand level require
preparation. Di!erent movement styles have slightly di!erent hierarchies, but in general
the hierarchy is style'hand'"nger'direction"distance. That is, if the style, hand,
"nger and distance for an aimed movement do not change, but only the direction
changes, only the direction needs to be prepared anew. If the "nger changes, however,
three features need to be re-prepared: "nger, direction and distance. Not all movements
have all these levels, for instance, a &&punch'' movement (described below) only requires
the hand and "nger to be speci"ed.

When feature preparation is complete, the Motor Module executes the speci"ed
movement. The "rst 50 ms of movement execution is termed movement initiation. The
amount of time that a movement takes to execute depends on the type and possibly the
distance the movement will traverse. Simple movements have a minimum execution time
(also 50 ms, called the &&burst time'') and more complexmovements (such as pointing with
the mouse) have a longer execution time based on Fitts' Law.

The Motor Module can only prepare one movement at a time (though it can be
preparing features for one movement while executing another). If the Motor Module is in
the process of preparing a movement and another request is sent, the later request will be
ignored and the Motor Module is said to be &&jammed''. ACT-R/PM prints a noti"cation
of this event for the analyst. The way to avoid jamming the Motor Module is to include
a left-hand side test of the Motor Manager's state, which is represented in another
&&virtual chunk''.

The ability to prepare one movement while executing another gives the Motor Module
an elementary ability to pipeline motor operations, and aggressive scheduling of this
pipeline can be an important aspect of high-performance tasks (e.g. Chong, 1998; Byrne
& Anderson, in press). Simple scheduling decisions can have a surprisingly large impact
on performance in rapid tasks, and the issue of scheduling should not be taken lightly.
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The Motor Module includes several movement styles, again based on EPIC's Manual
Motor Processor. They are as follows.

(1) Punch. This is a simple downstroke followed by an upstroke of a "nger, for pressing
a key that is already directly below a given "nger. A punch has two features: the
hand (left/right), and the "nger (e.g. ring, middle). The punch takes a total of three
bursts to execute: one to initiate the movement, one to complete the downstroke
and one to complete the upstroke. However, the key below the "nger being
punched does not register simply at the bottom of the downstroke. Instead, there is
another parameter which controls how long after movement initiation begins that
the mechanical switch will actually close, which is called the key closure time. This
time is estimated at 10 ms.

A mouse click is simply a punch of the "nger that is over the relevant mouse
button.

(2) Peck. This is a directed movement of a "nger to a location followed by a keystroke,
all as one continuous movement. This movement style has four features: the hand,
the "nger, the direction of the movement and the distance of the movement.
Movement execution time is governed by a modi"ed version of the Welford (1968)
formulation of Fitts' Law, which is

time"max �t� , k log�
d

w
#0.5�� , (1)

where t
�

is the minimum aimed movement time (default: 100 ms), k is a constant
(75 ms for a peck), d is the distance to be moved and w is the width of the target.
Thus, no aimed movement can take less than t

�
, and other than that the duration

is a function of the ratio of the distance to be moved to the width of the target. In
most cases these are keys. Target width is computed by taking the width of the
chord through the target region taken on the line drawn from the starting point of
the movement through the center of the object, as recommended by MacKenzie
(1992).

(3) Peck-recoil. This is essentially identical to a peck, except that the "nger returns to
its original starting position at the end of the movement.

(4) Ply. This moves a hand, generally the one holding the mouse, to a known location
in space. This movement style has three features: the hand, the direction of the
movement and the distance of the movement. Movement time for a ply is also
governed by Fitts' Law, but with a di!erent constant k (100 ms).

Typically, the target of a ply is an object on a display. The object is typically
represented by a visual object chunk, and a reference to that chunk is passed to the
Motor Module when a ply is requested. However, not all movements are made to
objects, so the Motor Module will also accept a chunk representing a visual location.

In order to make modeling more convenient, the Motor Module also accepts
a PRESS-KEY command, which then is translated into the appropriate punch or
peck-recoil movement with the assumption that the hands are in the &&home row''
position. This also assumes a touch-typist, so if either assumption is invalid this
command need not be used.
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2.4. AUDITION AND SPEECH MODULES

The Audition and Speech Modules are somewhat less developed than their Vision and
Motor counterparts, and are not critically important for the menu search task that is the
primary concern of this work. More information about these Modules can be found in
Byrne and Anderson (1998).

2.5. THE ARTEFACT

Another critical component of ACT-R/PM is its connection to the artefact. ACT-R/PM
is implemented in Macintosh Common Lisp (MCL) and can directly communicate with
many of the standard interface objects in MCL's graphics library, such as buttons and
text "elds. The Vision Module's icon is generated by querying the data structures of the
interface objects, and ACT-R/PM generates keystrokes and mouse movements and
clicks to which the interface responds. In many ways, ACT-R/PM acts as a &&virtual user''
and in fact interacts with the same (or very slightly modi"ed) software that human
experimental subjects do. This removes a degree of freedom in the modeling work,
because all ACT-R/PM models use the same kinds of representations and timings across
all models. There is much less opportunity to &&hide'' the work of the model in the visual
perception or motor output processes.

ACT-R/PMdoes not currently &&see'' every single aspect of the display*for example, it
does not distinguish between Helvetica and Times fonts, though it does &&know'' that the
fonts have di!erent sizes*but it sees enough to produce qualitatively and quantitatively
realistic behavior. As described earlier, the display is represented by a set of visual
features, and ACT-R/PM &&sees'' those features. The Speech Module can communicate
with the MacOS's built-in speech synthesizer and does produce synthetic speech,
though this is not likely to be mistaken for human speech. Audio perception is more
or less entirely simulated, but present interfaces are still primarily visual. As the underly-
ing computer technology improves, so hopefully will ACT-R/PM's abilities in these
areas.

This has not been realized in as many languages or designed to be as general as the
Sim-eye and Sim-hand of Ritter, Baxter, Jones and Young (2000) but is more percep-
tually accurate. ACT-R/PM at present only works with interfaces written in MCL, and
requires code-level access to the data structures representing the display. However, work
has been done integrating ACT-R/PM with non-Lisp-based applications via serial
communication, and it may be possible in the future to integrate ACT-R/PM with more
general bitmap-based approaches (e.g. Zettlemoyer & St. Amant, 1999; see also St.
Amant & Riedl, this issue). At the moment, however, ACT-R/PM's integration with the
Artefact is somewhat limited.

2.6. SUMMARY

ACT-R/PM is a production system architecture that has been augmented with a set of
perceptual-motor modules designed to enable the detailed modeling of interactive tasks
which have cognitive, perceptual and motor components. This does not represent so
much a modi"cation of ACT-R but an extension of it. ACT-R was chosen as the
underlying production system speci"cally because we did not want to reinvent a theory

12 M. D. BYRNE

IJHC 20010469



TABLE 1
ACT-RıPM main system parameters (not including audition and speech)

Parameter Module Value

Burst time Motor 50 ms
Feature preparation time, per feature Motor 50 ms
Fitts' coe$cient for Peck Motor 75 ms/bit
Fitts' coe$cient, mouse movement Motor 100 ms/bit
Minimum aimed movement time Motor 100 ms
Attention shift latency Vision 135 ms

of cognition to model interactive behavior, but instead wanted to build on ACT-R's
successes in areas such as problem solving and memory.

The process of extending ACT-R with perceptual-motor capabilities introduced
a number of issues, such as the management of declarative memory and vision, as well as
new system parameters. Table 1 presents a summary of the relevant parameters in
ACT-R/PM and their default values. Note that these are actually mean values; ACT-
R/PM actually draws each value from a rectangular distribution which has the para-
meter as the mean and a coe$cient of variation of 1.3. Randomization may be turned o!
for debugging purposes, but this is the default for simulation runs, and generally requires
that Monte Carlo simulations be run to obtain predicted values from models. Stochastic-
ity plays multiple roles. First, the human perceptual-motor system being modeled is itself
noisy. Stochasticity prevents the model from producing exactly the same response time
from trial to trial. Second, averaging over &&noisy'' Monte Carlo runs tends to produce
smoother responses to change than the sharp discontinuities produced by non-stochastic
models. Third, the system's behavior when timing is stochastic is not always identical to
that when times are "xed. For a more thorough discussion, see Byrne and Anderson
(in press). While individual modelers are free to change the default parameters, this
violates the spirit of using ACT-R/PM as a predictive tool and changing these para-
meters is not a recommended practice.

3. Random menu selection

In order to demonstrate both the application of ACT-R/PM and the complexity
underlying even simple, rapid tasks that can be found as components of more complex
high-performance tasks such as air tra$c control, the task of random menu selection will
be considered. While this exact task is somewhat arti"cial, designers impose similar
searches for speci"c targets in displays that appear randomly ordered. For example,
consider the display of options when using an automated teller machine when on an
international trip. The interface is likely to be unfamiliar, and even well-known options
(e.g. &&withdraw from checking'') can generate searches through options that are ordered
more or less arbitrarily.

First, the task itself and the original data from Nilsen (1991) will be described. Two
models of this task already exist, one using ACT-R/PM's predecessor, ACT-R with the
visual interface (Anderson et al., 1997) and one based on EPIC (Hornof & Kieras, 1997).
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FIGURE 5. Procedure in the Nilsen menu experiment.

Both of these models will be described, and then an eye-tracking experiment "rst
presented in Byrne, Anderson, Douglass and Matessa (1999) and its results will be
described. This raises a number of issues with both of the models. Since all of these are
discussed elsewhere, presentation of each item will be kept as brief as possible.

In the light of the previous models and new eye-tracking data, a new model of the task
based on ACT-R/PM will be presented. This model is slightly di!erent in spirit from the
other models and explores the issue of learning in this task.

3.1. THE NILSEN (1991) EXPERIMENT

Menus of one form or another have been a central feature of the user interface for some
time (see Norman, 1991 for a review). Mouse-based pull-down (requiring that the mouse
button be held down) and click-down (which stay open once clicked until another click
occurs) menus are more recent advances that have become ubiquitous in the modern
graphical user interface.

Nilsen (1991, Experiment 2) performed an experiment which provided detailed enough
data to constrain computational cognitive modeling. In this experiment, users were
presented with a single digit on the screen and a &&Go'' button. They clicked the button,
and then searched for that digit in a menu of randomly ordered digits that appeared as
a result of the button click. This procedure is shown in Figure 5. Users "rst saw the
display in panel (a), then clicked in the &&Go'' box and saw a display like the one in panel
(b). Nilsen used three menu lengths, 3, 6 and 9.

Results of the experiment are displayed in Figure 6. Users' response time is an
approximately linear function of serial position in the menu, with each successive
position being approximately 100 ms slower than the last. This suggests that search is
serial through the menu, and no &&pop-out'' e!ects are occurring (Triesman & Gelade,
1980).
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FIGURE 6. Results of the Nilsen experiment. The dotted curve underneath the data represents the movement
time as predicted by Fitts' Law.

The exception to the linear slope is serial position 1 or the "rst menu position. Time for
this position is slightly higher than response time for position 2. This will be termed the
&&Nilsen e!ect''. There also appears to be a small overall e!ect of menu length, with longer
menus being slower.

The data further suggest that Fitts' Law, while being an excellent predictor of mouse
movement time, is not a good characterization of the menu search process. Users took
much longer and had steeper slope as a function of target position than would be
predicted by Fitts' law. Thus, it was argued by Nilsen that the bulk of the time users
spend on this task is time for visual search.

3.2. THE ACT-R VISUAL INTERFACE MODEL (ANDERSON, MATESSA & LEBIERE, 1997)

This model was originally presented in Anderson et al. (1997) and a revised model and
some new data were presented in Anderson, Matessa and Lebiere (1998). The model is
fairly simple, but generates a number of interesting predictions. The model has a visual
system similar to the one in ACT-R/PM and is based on the idea that letters are
composed of primitive visual features. The target letter is attended and a feature in the
letter randomly chosen. A search production then tests for an unattended location that
contains that feature with the lowest y-coordinate (towards the top of the display) and
shifts attention to that location. If the letter there is the target, then the target is clicked. If
not, then the search process continues down the menu. This is represented in two
productions, HUNT-FEATURE and FOUND-TARGET.

HUNT-FEATURE
IF the goal is to "nd a target that has feature F

and there is an unattended object below the current location with feature F
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THEN move attention and the mouse to the closest such location

FOUND-TARGET
IF the goal is to "nd a target

and the target is at the currently attended location L
THEN move the mouse to L and click

This model does a reasonable job of accounting for the slope of the line, but does not
account for the menu length e!ect or the Nilsen e!ect. However, because the search is
guided by visual features, it predicts that search for a letter target on a background of
numbers should be faster than search for a number target on a background of numbers.
This is because the average feature overlap is smaller for letter targets than for number
targets against a number background, and thus the search hits fewer distractors on the
way to the target. Indeed, Anderson et al. (1998) found that search for a letter target
among numbers is reliably faster than a search for a number target among numbers.

Assuming that attention shifts manifest themselves in saccades, the ACT-R Visual
Interface model predicts the following.

(1) Eye movements should be exclusively top to bottom. The model never backtracks.
(2) The distance moved on each saccade should vary from trial to trial and menu to

menu*items which do not share features with the target will be skipped over and
thus not every item is examined. In that sense, the search is not exhaustive and
many items will be skipped.

(3) The eye should never overshoot the target.

These predictions are empirically testable, but eye-tracking is required to test them.

3.3. THE EPIC MODEL (HORNOF & KIERAS, 1997)

Hornof and Kieras (1997) present several versions of a model of this task; the "nal one
presented in the paper is termed the &&Parallel Processing Dual Strategy Varying
Distance Hybrid Model'', but for the sake of brevity will simply be referred to as &&the
EPIC model''. The long title is a result of this model being a blend of several simpler
models.

First, EPIC di!ers substantially from ACT-R/PM in two critical areas: the visual
system and the cognitive system. The cognitive system in EPIC is also a production
system, but is di!erent in numerous ways. Most relevant to the current concern, EPIC
can "re multiple productions at once. Thus, if more than one item can be placed in
working memory by the visual system, they can all be evaluated in parallel. (This is the
&&parallel processing'' aspect of the model.)

Not surprisingly, EPIC's visual system allows it to create declarative representations
for multiple objects in parallel, but is limited to items that can be simultaneously
foveated. Thus, the search time will be a function of how many items EPIC can examine
in parallel, which will in turn be a function of how many items can be foveated at once.

Since Nilsen did not record the viewing distance to the monitor, it is not certain how
many menu items users could "t into a 23 fovea (this is EPIC's foveal diameter). Thus, the
EPIC model is a 15/85 blend of being able to foveate only one item at a time and being
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FIGURE 7. The two strategies in the EPIC model. Panel (a) describes the systematic strategy, and panel (b)
presents the random strategy. Based on Hornof and Kieras (1997).

able to foveate three items at one. This is the &&varying distance'' aspect of the model. The
source of the 15/85 ratio is unclear and appears to be a free parameter in the model.

The EPIC model is also a 50/50 blend of two search strategies, random and systematic.
These two strategies are described in Figure 7, which are based on "gures in the original
Hornof and Kieras (1997) paper. This is the &&dual strategy'' aspect of the model.
Systematic searches move exclusively from top to bottom, while random searches
proceed starting anywhere and moving anywhere. It is not clear from the Hornof and
Kieras (1997) paper whether the results are based on averaging the results from the two
strategies or whether the model randomly selects which strategy to use before each trial,
or what the basis for that selection would be if it did so. Again, the source of the 50/50
ratio is unclear and this also appears to be a free parameter in the model.

Regardless, this model makes a number of predictions about eye movements.

(1) Eye movement patterns should conform to a pattern that consists of 50% sequen-
tial top to bottom searching and 50% randomly ordered searching.

(2) In cases of serial top to bottom search, the users' eyes should move down the menu
a constant distance in each saccade, which is exhaustive in that every item of the
menu from item 1 to the target item is examined.
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FIGURE 8. Example menu used in the Byrne et al. (1999) eye-tracking experiment.

(3) The eye should &&overshoot'' the target item by one saccade with some regularity,
since users are examining multiple items in parallel.

This model is substantially more complex than the ACT-R Visual Interface model, but
does do a better job of accounting for the original data. It does predict both the length
e!ect and the Nilsen e!ect. However, this model does not make use of feature informa-
tion and thus does not predict that searches for letters with number distractors should be
faster.

3.4. EYE-TRACKING DATA (BYRNE et al., 1999)

Since the two models were somewhat mixed in regard to how well they accounted for the
reaction time data and they both make very speci"c predictions about eye movements,
Byrne et al. (1999) conducted an experiment on random menu search and collected not
only reaction time data, but eye-tracking data as well. Some of the results presented here
were "rst presented in the original Byrne et al. (1999) paper and some of the results
presented here are novel. This is not the "rst time eye-tracking has been employed in
a visual search experiment (e.g. Findlay, 1997; Zelinsky & Sheinberg, 1997; Motter
& Belky, 1998a, b; Shen & Reingold, 1999). Generally, what these experiments have
shown is that saccades can indeed be guided by the features present in non-foveal
regions, and that eye-tracking does reveal important information about the visual search
process. The search task used here is not as straight-forward as the ones used in the
majority of the previous work (most of them included a very salient color di!erence
between targets and non-targets), but eye-tracking for this experiment seemed the best
way to di!erentiate between the two models.

3.4.1. Methods. The task used was very similar to Nilsen's and the Anderson et al. (1998)
followup. Users were "rst shown a screen containing a rectangle with the word &&Target'':
followed by a target character. When the user clicked on this rectangle, a menu of
characters and a bounding rectangle appeared (see Figure 8). Users then searched for the
target item in the menu and clicked on it. Visual point-of-regard (POR) and mouse
position were tracked throughout the entire trial, and response time and accuracy were
also recorded for each trial.
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Eleven undergraduate participants were paid for their participation in the study, and
had normal uncorrected vision and were familiar with the use of computer menus.

There were two primary within-subjects factors in the experimental design: menu
length and target location. Three menu lengths were used: 6, 9 and 12 items. Longer
menus than those used in the original Nilsen experiment were used because pilot data
showed a general lack of interesting eye movements for 3-item menus. All target
locations were used for each menu length.

There were other within-subjects factors in the design as well: target type and
distractor type. Targets could be either letters or digits, as could non-target distractors.
Thus, there were a total of 108 trials in the experiment: six 6-item menu trials (one for
each target location) #nine 9-item menu trials #twelve 12-item menu trials�2 target
types�2 distractor types. The 108 trials were randomly ordered by the experimental
software. Participants also received 36 practice trials with randomly chosen values on all
factors. There was also a between-subjects manipulation. In one condition, the &&Target''
"eld remained on the screen when the menu appeared (as in Figure 2) and in the other,
the &&Target'' button disappeared when it was clicked. Due to the time and e!ort involved
in running the eye-tracking study, not enough data are available to reveal e!ects of target
type, distractor type and the presence of the target button. Thus, these e!ects will not be
considered.

The eye tracker used was an ISCAN RK726/RK520 HighRes Pupil/CR tracker with
a Polhemus FASTRACK head tracker. Head-mounted optics and a sampling rate of
120 Hz were used in this experiment. This system, like many other laboratory eye
trackers, works by shining an infrared light on the eye and taking a video image of the
eye. From that image, it is possible to determine the pupil center and the point on the
cornea closest to the camera (the corneal re#ection) and take the vector between them.
This vector changes as the eye orients to di!erent positions on the screen and with
calibration to known points, it is possible to compute visual POR. The magnetic
polhemus is used to compensate for head movements. POR reports by the eye-tracking
equipment are typically accurate to within one-half degree of visual angle.

POR and mouse position were recorded approximately every 8 ms by the experi-
mental software. Stimulus and POR/mouse data for each trial were recorded so that all
individual trials could be &&replayed'' at various speeds. An experimenter monitored each
experimental trial and recalibrated the eye tracker if there appeared to be sizable
disparity between reasonable expectations about where users would look (in particular,
users needed to look at the target on each trial) and the position reported by the tracker.

Users were seated approximately 30 in from a 72 ppi computer display. Characters
were 13 pixels high (approximately 0.343 of visual angle) with 26 pixels (approximately
0.693 of visual angle) separating characters. Thus, simultaneously foveating three charac-
ters would require a fovea of approximately 2.43 visual angle in diameter. (EPIC assumes
that the fovea covers 23 of visual angle and characters must be foveated to be recognized.)

Sampling at 120 Hz, despite short trials, generates a great deal of raw data over 108
trials. However, from these raw data it is possible to compute where and when "xations
have occurred. This can be done either by assuming that any eye position within a given
region for more than some threshold number of milliseconds is a "xation (dwell-based)
or assuming that any period of time showing relatively low velocity is a "xation
(velocity-based). For the current data set, both methods were initially used and both
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methods yield approximately the same result. Since the velocity-based method yields
slightly less noisy data, the results presented here are based on that method of post-
processing. For each trial, the location of each "xation (with location 1 being the top item
in the menu) was recorded.

This experiment is not a completely faithful replication of Nilsen's original experiment,
in several ways. First, the menu items used here were spaced further apart which was
necessary to make it possible to discriminate "xations on adjacent items. Nilsen's
subjects had many more trials (1440) than our participants, because wearing the eye-
tracking equipment is uncomfortable over long periods of time and this would have
entailed frequent re-calibrations. Third, as previously mentioned, we did not use the
same menu lengths as Nilsen, because eye movements with pilot subjects for 3-item
menus showed little of interest. Further, Nilsen's original experiment was all number
targets with number distractors; we used a mixture of letters and numbers for targets and
distractors in an attempt to reproduce the results of Anderson et al. (1998). Finally, the
menus used here were surrounded by a bounding rectangle, unlike the original Nilsen
experiment. This again was done on the basis of pilot data; it was hoped that this
manipulation would keep participants' "xations more &&on target'' in the horizontal
plane.

Of course, because this experiment is not identical to the original Nilsen experiment,
there may be concerns about the applicability of the original EPIC and ACT-R models.
On the other hand, the basic task is virtually identical, and there is no reason to believe
that the fundamental strategy for attentional control adopted by either model would be
di!erent under these conditions. The ACT-R model would clearly not be a!ected by
these changes, though some of the performance parameters in the EPIC model might
change slightly due to the increased certainty about character spacing and viewing
distance.

3.4.2. Results. The results for response time are presented in Figure 9(a). Clearly,
response time is a function of target location, with higher locations generating longer
response time. This is consistent with the Nilsen data. However, other aspects of Nilsen's
data set were not reproduced as clearly. First, the slope of the function for the two larger
menu sizes is somewhat shallower, around 75 ms (as opposed to 103 observed by Nilsen)
and is even shallower for 6-item menus. Further, there appears to be very little main
e!ect of menu size (controlling for position), as opposed to what Nilsen found. This may
be a function of the larger spacing between items used here. A second distinct possibility
is that this is a practice e!ect (Nilsen's subjects had more practice). Notice also that the
Nilsen e!ect is larger here than in the original experiment, and seems to apply to the
second item as well as the "rst item. Error rates were negligible in all conditions and will
not be discussed.

Results for "xations/saccades di!er very slightly here from what was presented in the
original Byrne et al. (1999) paper due to slight di!erences in how "xations were assigned
to items; the current results use an improved algorithm designed to compensate for
systematic bias introduced by the magnetic head-tracking system. The results for average
number of "xations is presented in Figure 9(b). Neither the response time data nor the
number of "xations do an especially good job of discriminating between the ACT-R
model and the EPIC model, but they will provide a basis for comparison with the
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FIGURE 9. Response time of subjects [panel (a)] and number of "xations of subjects [panel (b)] as a function of
menu length and target position in the eye-tracking experiment: *�*: 6; ---�---: 9; *�*: 12.

ACT-R/PM model to be presented later. More interestingly, the "xation data and the
response time data match each other very well. The overall correlation between the mean
response times and the mean number of "xations is r (26)"0.97, p(0.001, which
suggests that the primary determiner of response time in this experiment is indeed the
visual search process. (This correlation is reduced somewhat when the data are not
aggregated by condition; the overall correlation between number of "xations and
response time for the raw trial data is r(1179)"0.71, p(0.001. This is still impressive.)

The most informative data from the perspective of model evaluation come from an
analysis of the direction and distance of the saccades. Recall that the ACT-R model
predicts that the "rst saccade should go to the "rst item if it has a feature match. On
average, given that the experiment used both letters and digits as both targets and
distractors an equal proportion of the time, the feature model on which the ACT-R
Visual Interface is based predicts that, on average, the probability of a random character
matching a randomly selected feature is 0.44. Based on that, it is possible to derive the
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TABLE 2
Proportion of initial saccades of each distance, observed and predicted by the ACT-R visual
interface model (Anderson et al., 1997) and the EPIC model (Hornof & Kieras, 1997)

Distance Observed ACT-R EPIC

1 0.182 0.440 0.310
2 0.239 0.246 0.310
3 0.264 0.138 0.060
4 0.190 0.077 0.060
5 0.079 0.043 0.060
6 0.025 0.024 0.060
7 0.010 0.014 0.049
8 0.005 0.008 0.049
9 0.003 0.004 0.049

10 0.001 0.002 0.042
11 0.001 0.001 0.042
12 0.000 0.001 0.042

FIGURE 10. Histogram for the distribution of the initial saccade. Item 1 represents the top menu item.

model's predictions for the distribution of the landing point of the "rst saccade. It is also
possible to derive the landing location predicted by the EPIC model. When the model is
executing the systematic strategy, which is half the time, the model should look at item 1,
the top item. However, because users could possibly foveate two items, it is perhaps more
fair to distribute the "rst "xation equally between items 1 and 2. The other half of the
time the model predicts that the "xation should have a rectangular distribution across
the items. Due to varying menu lengths, this yields a distribution which tails o! slightly.

Figure 10 presents a histogram of initial saccades, and Table 2 presents the same data
along with the predictions of the ACT-R model and the EPIC model. Neither model
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fares particularly well here, the r-squared of the EPIC predictions is 0.37 and the
r-squared for the ACT-R model is 0.52. The ACT-R model is closer because it predicts
fewer long initial saccades but neither model is especially impressive. The apparent bias
further down the menu may be what is referred to as a &&global e!ect'' (Findlay, 1982),
which is the tendency for the initial saccade to target the visual center of gravity of
the display. This tendency seems to be quite robust, including in visual search
through strings of characters when the target character is cued (Coe!e & O'Regan,
1987). However, it is unlikely that is the full story, because the e!ect does not appear
stronger for the longer menus, which obviously have a more distant visual center of
gravity.

Figure 11(a) presents a histogram of &&middle'' saccades, all those saccades between the
"rst one and the last one. Some trials contribute no observations here, but most trials
contribute more than one. Positive distances indicate a saccade down (in the top to
bottom direction) the menu and negative numbers indicate saccades up (in the bottom to
top direction) of the menu. This is a clear indictment of the ACT-R model, which predicts
zero bottom to top saccades. It instead predicts a distribution identical to what it
predicts for the initial saccade, which is presented in Table 2.

The EPIC model makes somewhat more complex predictions here. Roughly 50% of
the saccades should be down one (or two) item(s), since the model should run the
systematic strategy on half the trials. While the modal saccade distance is indeed a 1, the
total proportion is nowhere near what the EPIC model predicts. The other 50% of the
trials should be completely random, and the distribution of saccades should be approx-
imately rectangular (there should be some tailing o! for extreme positive and negative
values, but it should be perfectly symmetric with a mean of zero). Thus, the distribution
should look something like a rectangular distribution with spike up to 25% for saccades
of length 1 and 2 (or 50% at length 1). The empirical distribution does not seem a good
match to the pattern predicted by either ACT-R or EPIC, though the EPIC model is
somewhat closer here.

Figure 11(b) presents the histogram for the last saccade made on each trial. The
ACT-R model again makes the same prediction, which is again clearly wrong. The EPIC
model predicts a distribution that is 50% one type of saccade and 50% random. For
systematic searches, the eye should overshoot the target since it processes the items
looked at in a "xation during the following saccade. Thus, the terminal "xation under
this strategy ought to always be !1 or !2, and this should be the case on 50% of the
trials. On the remaining trials, the distribution should again be approximately rectangu-
lar (at the very least, symmetric), since the saccade will be completely random. Again the
EPIC model's predictions are better, but neither model is especially close.

What these data do not re#ect, and what is hard to express in a graph, is the experience
of watching all the trials replayed. Watching even a small sample of the over 1000 trials it
is apparent that neither model represents what users actually do. Both models essentially
impose a global strategy which is rigidly followed by users until the end of the trial. The
strategy is either strictly top to bottom or entirely random. Individual trials are rarely,
though occasionally, strictly top to bottom. Very few trials appear entirely random,
either. Users appear to have some predisposition for top to bottom saccades, but by no
means is this followed rigidly. However, when users deviate they rarely appear to be
completely random, particularly with the initial "xation. What the protocols appear to
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FIGURE 11. Histograms for the distribution of middle saccades [panel (a)] and "nal saccades [panel (b)].
Positive numbers represent the top to bottom direction, negative numbers the bottom to top direction.

re#ect is very local decision-making on the part of the users, rather than a global strategy
which is held throughout the trial.

Overall, the results of the eye-tracking are fairly clear with respect to the models:
neither is a good characterization of the visual search process actually employed by
users. It is important to note that this is not a claim that it is impossible to construct
a good characterization of the menu search process with EPIC or ACT-R with the visual
interface. Rather, this is an assessment of the existing models. Certainly, given these new
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data, it is possible*even likely*that better-"tting models could be constructed with
either system. ACT-R/PM, is, in many ways, itself a synthesis of the two systems, and the
next section of the paper presents a new set of ACT-R/PM models of this task. However,
the goal of these models is not so much to provide the best possible "t to the data, but to
attempt to understand how such a local and complex strategy could be developed.

4. An ACT-R/PM model of random menu selection

The perceptual-motor machinery surrounding ACT-R has changed since the ACT-R
Visual Interface; ACT-R/PM is signi"cantly more complex, but this richness enables
ACT-R to be extended into more sophisticated tasks and with a substantially improved
ability to handle high-performance situations such as multiple-tasking (Byrne & Ander-
son, 1998, in press). Beyond that, however, is the larger promise of ACT-R/PM: that
of a full-#edged cognitive architecture along with sophisticated perceptual-motor
machinery.

Probably the best demonstration to date of the power of this union comes from Ehret
(1999). Among other things, Ehret developed an ACT-R/PMmodel of a fairly simple, but
subtle, experiment. In that experiment, subjects were shown a target color, and asked to
click on a button that would yield that color. The buttons themselves had four types:
blank, arbitrary icon, text label and color. In the color condition, the task was simple:
users just found the color that matched the target, then clicked the button. In the text
label condition, the task was only slightly more di$cult: users could read the labels on
the buttons, and select the correct one because the description matched the color. In the
arbitrary icon condition, more or less random pictures appeared on each icon (e.g.
a mailbox). Users had to either memorize the picture to color mapping, which they had
to discover by trial and error or memorize the location of each color, since the buttons
did not change their function over time. The hardest condition, the blank condition,
users simply had to memorize the mapping between button location and color, which
they had to discover through trial and error. After performing the task for some time, all
the labeling was removed. Not surprisingly, the amount of disruption was di!erent in the
di!erent conditions, re#ecting the amount of incidental location learning that went on as
subjects performed the task.

The ACT-R/PM model that Ehret constructed did an excellent job of explaining the
results. The model, through ACT-R's associative learning mechanisms, also learned the
mappings over time, and learned them about as well as the users, and su!ered very
similar disruptions. This was not only a clever experiment and modeling exercise, it also
demonstrated the power of pairing a perceptual-motor system with a cognitive architec-
ture having connectionist-style subsymbolic learning mechanisms. EPIC includes no
learning mechanisms, and thus could not model these results. It is unclear how a hybrid
like EPIC-Soar (Chong, 1998) would fare, as this kind of incidental and continuous
association learning seems much more naturally suited to ACT-R's learning mecha-
nisms.

The ACT-R/PM menu models use a di!erent kind of learning than Ehret's location
learning model, and the reasons for this will be described shortly. First, however, there is
the issue of representation. One of the problems with the original ACT-R visual interface
model was the feature set employed. This set assumes that characters are LED-style, e.g.
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FIGURE 12. Representation of the letter &&E'' in the default feature set used by the ACT-R Visual Interface.

an &&E''would be represented by several line segments, as in Figure 12, and that the visual
system was sensitive to each of the line segments. This is also the default in ACT-R/PM.
However, the characters used in the experiment were presented in a much more standard
typeface (Courier), which includes curvature and strong diagonals and does not break up
the line segments.

Alternative feature sets were employed, including a letter feature set generated by
Gibson (1969) and one from Briggs and Hocevar (1975). Given the strategy of the ACT-R
Visual Interface module and all the default timing parameters in ACT-R/PM, it turned
out that the various feature sets were in fact all approximately equivalent. All the ACT-
R/PM models described in this paper make use of the Briggs and Hocevar (1975) feature
set, which was extended to include digits.

4.1. THE EPIC-INSPIRED MODEL

Instead of employing a global strategy like the original ACT-R model or the EPIC
model, a model was constructed with multiple options at the level of each saccade. In this
model, the task is divided into two phases, which includes the initial saccade and all other
saccades. The reason for considering the initial saccade separately is that some protocols
show users beginning (and even occasionally completing) the "rst saccade before even
clicking on the button which opens the menu. In this case, users clearly are not sensitive
to the features of the characters, because they can not yet see the characters. This saccade
is also clearly not sensitive to the length of the menu, because they cannot yet tell how
long the menu is. In the light of this, the initial saccade was controlled by "ve produc-
tions, each of which simply directed attention to one of the "rst "ve locations. All "ve
productions were allowed to compete on each trial.

For all subsequent saccades, two productions were in competition. These two produc-
tions represented two local strategies: move down to the nearest unseen character with
a feature match and move to any random unseen character. Thus, this model is much like
the EPIC model, except that the decisions are made at the local (saccade) level, rather
than the global (trial) level. The two productions can be described as follows.

DOWN-NEAREST-HIT
IF the goal is to "nd a target that has feature F

and there is an unattended object below the current location with feature F
THEN move attention to that location
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LOOK-ANYWHERE
IF the goal is to "nd a target

and there is an unattended object anywhere
THEN move attention to that location

There is also a third production that "res when the target is found which is essentially
the same as the FOUND-TARGET production in the ACT-R Visual Interface model.

Before presenting the results of this model, some discussion of con#ict resolution in
ACT-R is required. When multiple productions have their condition satis"ed, ACT-R
needs to make a decision about which one to "re. This decision is based on a &&rational
analysis'' (Anderson, 1990) of costs and bene"ts. Each production has an expected value,
E, which is computed based on the formula PG!C. P is the estimated probability that if
the production "res, the goal matched in the production will be satis"ed.G is the value of
the goal, which is by default 20. C is the cost, in terms of time, of reaching the goal. By
default, each production will have the same PG!C value, but this can change through
learning.

ACT-R also includes some degree of stochasticity. On each cycle, the PG!C value is
perturbed with noise that has a mean of zero and is distributed logistically. The
probability that production i will be selected on a particular cycle is a function of its
expected gain E

�
, according to the following equation:

p(i)"
e�� ��

�
�
e�� ��

, (2)

where t is a positive linear function of the standard deviation, �, of the noise. For more
details, see Anderson and Lebiere (1998). t is thus a free parameter in the model, but the
model's behavior is relatively stable across variations in this parameter, particularly
when this parameter is constant for both learning and execution. The model's predictions
do not critically depend on particular values for this parameter as long as it is non-zero.
A more or less arbitrary value of t (0.141) was chosen for all models presented here.

In this particular model, since all productions in competition will have the same
expected gain, then they will all e!ectively have equal probability. Thus, each one of the
"ve productions that compete for the "rst "xation should "re about 20% of the time, and
each of the two productions in competition thereafter should "re 50% of the time. These
ratios are not free parameters, they represent ACT-R's default behavior.

Results of running the EPIC-inspired model are presented in Figures 13 and 14.
A histogram for the initial saccade was omitted because it is uninteresting*it is
essentially a #at graph with positions 1}5 each getting very close to 20%. Overall, the
model does a poor job of accounting for the data. The average absolute error for
response time is 24.38% and the average absolute error for number of "xations is
22.80%. However, the pattern of saccades, while not in an absolute sense a great "t, is
qualitatively much closer than the previous ACT-R or EPIC models. Like the actual
data, the mode for both middle and "nal "xations is 1 position down the menu and the
positive side of each distribution is somewhat heavier than the negative side.

A quantitative look at the saccade predictions vs. the data supports this analysis. Since
many of the actual data points are at or near zero, average absolute error percentage is
not a good metric for "t. R-squared will be used instead. The r-squared for the model is
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FIGURE 13. Fit of the EPIC-inspired model to the empirical response time data [panel (a)] and "xation data
[panel (b)]. Filled points and solid lines represent the model, open points and dashed lines the data. Vertical

bars represent 95% con"dence intervals. ---�---: 6; ---�---: 9; ---�---: 12; *�*: 6; *�*: 9; *�*: 12.

0.82 for the initial saccade, 0.83 for the middle saccades and 0.65 for the "nal saccade.
While the "t, particularly to the reaction time data, is not exceptional, at the level of
control of individual saccades, this in an improved model. Clearly, something resembling
a random component is important in capturing the saccade data.

However, this model makes use of the default con#ict resolution parameters. With the
default parameters, when both the DOWN-NEAREST-HIT and LOOK-ANYWHERE
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FIGURE 14. Histogram of saccade distances for middle saccades [panel (a)] and "nal saccades [panel (b)] for
the EPIC-inspired model. The empirical distribution is indicated by the gray line and boxes.

productionsmatch, each one has an approximately equal probability of "ring, as do each
of the "ve productions which determine the destination of the "rst saccade. It is entirely
likely that these productions are not always equally good, and thus uniform "ring
probabilities may not be optimal.

ACT-R has the ability to learn the parameters that control con#ict resolution; two of
the three parameters in PG!C are decomposable and can change over time if learning
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FIGURE 15. Learning curve for the "ve productions which direct the initial saccade of the EPIC-inspired
ACT-R/PM model.

is enabled in ACT-R. P, the probability of success, is the product of two other quantities,
q and r. q is the probability that the production, if selected in con#ict resolution, will "re
successfully. Productions fail when they attempt to retrieve a chunk from declarative
memory that are below the activation threshold. Since this model never attempts such
a retrieval, q is always estimated by the system as 1.0. r is ACT-R's estimate of the
probability that if the production "res, the goal will eventually be popped successfully.
Since no matter which production is selected, the model eventually does still "nd the
target, r is also stable at 1.0. Thus, P is always 1.0 for this model.
C, however, does not stay constant. C is decomposed into two parameters, a and b,

which are summed to form C, the estimated total cost (in time). a is the time that the
production itself takes to "re. The default time for a production is 50 ms, plus the time
taken for any retrievals from declarative memory. Again, because this model does not
make any retrievals from declarative memory, the a parameter for all the productions in
this model does not change. On the other hand, b is the estimated total time after the
production "res until the goal is popped, and does get learned by this model. This is the
&&downstream'' cost of a production "ring, and should generate within the model
a preference for productions which minimize the estimated downstream cost.

Figure 15 presents ACT-R's estimate of b for each of the initial saccade productions
over 5000 trials. On each of the 5000 trials, each aspect of the trial was randomly selected:
menu length, target position, target type (digit or letter) and distractor type (digit or
letter), so the environment was similar to the one experienced by the users in Byrne et al.
(1999). Notice the rapid divergence at early trials, then the convergence around 800, then
a slow divergence. The ATTEND-FIRST-POSITION production is eventually prefer-
red (lowest curve), but this preference is not clear until after 3000 trials or so.
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FIGURE 16. Learning curves for the DOWN-NEAREST-HIT production (lower curve) and the LOOK-
ANYWHERE production for the "rst 2000 learning trials in the EPIC-inspired model.

TABLE 3
Final b values for the xve productions which compete for control of the initial saccade in the

EPIC-inspired model after 5000 learning trials

Production name b-value Probability

Attend-"rst-position 1.5989 0.256
Attend-second-position 1.6267 0.210
Attend-third-position 1.6271 0.210
Attend-fourth-position 1.6412 0.190
Attend-"fth-position 1.6909 0.134

The "nal values of b for each production, and the probability of selection according to
Equation (2) that value represents, are presented in Table 3 (lower values of bmean lower
cost, and therefore higher expectation value and thus higher probability of being
selected). The model learns to favor productions that move shorter distances down the
menu on the initial saccade, and this improves the "t of the model to the initial saccade
data (r-squared 0.89), though the model's mode is still not correct.

The model also learns to prefer the DOWN-NEAREST-HIT production over the
LOOK-ANYWHERE production. Figure 16 presents the learning curve over the "rst
2000 learning trials; the remaining trials are fairly stable. The "nal b for DOWN-
NEAREST-HIT after 5000 trials was 1.412, for LOOK-ANYWHERE it was 1.509.
When both are competing in con#ict resolution, DOWN-NEAREST-HIT should "re
66.5% of the time, and LOOK-ANYWHERE the remaining 33.5% of the time. The
distribution of the middle saccades of the model, which is presented in Figure 17(a), is
a slightly worse "t, from an r-squared of 0.83}0.81. The distribution of "nal saccades is
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FIGURE 17. Histogram of saccade distances for middle saccades [panel (a)] and "nal saccades [panel (b)] for
the EPIC-inspired model after 5000 learning trials. The empirical distribution is indicated by the gray line and

boxes.

presented in Figure 17(b), and the "t again is not exceptional with an r-squared of only
0.62.

The small changes in "t quality for the saccade distributions were accompanied by
a small improvement to the overall reaction time data and the number of "xations. The
"t to the reaction time and "xation data is presented in Figure 18. These "ts are still
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FIGURE 18. Fit of the EPIC-inspired model to the empirical response time data [panel (a)] and "xation
data [panel (b)] after 5000 learning trials. Filled points and solid lines represent the model, open points and
dashed lines the data. Vertical bars represent 95% con"dence intervals. ---�---: 6; ---�---: 9; ---�---: 12;*�*: 6;

*�*: 9; *�*: 12.

relatively poor overall (average absolute error for RT data is 21.27% and 21.28% for the
number of "xations), particularly with targets near the top of the menu. This is because
the model is unlikely to reverse itself if the target is high on the menu and it is initially
skipped. On the other hand, this is more or less a zero-parameter "t.
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So, while learning does make a small improvement to the performance of the model,
the gains are not large, and the overall "t of the model is still not particularly good.
However, the content of the two productions in the model is somewhat odd. The
DOWN-NEAREST-HIT production speci"es three constraints on the next item "xated:
it must have greater serial position than the current item, it must contain the feature
randomly selected at the beginning of the trial and it must be the nearest (if multiple
items match the "rst two). The competing production, LOOK-ANYWHERE, has no
constraints of any kind. This is not much of an exploration of the possible strategy space.
The next model is an attempt to more thoroughly examine that space.

4.2. THE INCLUSIVE MODEL

As mentioned, the two productions in the previous model are strikingly di!erent.
DOWN-NEAREST-HIT includes three constraints: direction, distance and feature
match. LOOK-ANYWHERE includes no constraints. These are the only two produc-
tions allowed to compete. However, there are productions that fall in between these two
levels of constraint. This raises an obvious question: what happens when a more
complete set of productions is included?

Just such a model was constructed. Besides the "ve productions which control the
initial saccade, which were identical to those used in the EPIC-Inspired model, this
model contains productions which range in their constraints from the three included in
DOWN-NEAREST-HIT to the zero in LOOK-ANYWHERE. There are three con-
straints, direction, distance and feature match, each of which could be enforced or
ignored by each production. Thus, there are 2�, or eight, productions. These eight
productions are as follows.

(1) DOWN-NEAREST-HIT, which is identical to the production in the previous two
models.

(2) DOWN-NEAREST, which saccades to the previously unseen item on the menu
which is below the current item and nearest, but ignores whether or not the item is
a feature match.

(3) DOWN-ANY-HIT, which saccades down the menu, and all previously unseen
items with a feature match are equally likely to be selected.

(4) DOWN-ANYWHERE, which will randomly select any previously unseen item
below the current item.

(5) ANY-NEAREST-HIT, which will saccade to a random previously unseen item
with a feature match in either direction, but will prefer the one nearest to the
current item.

(6) ANY-NEAREST, which will saccade to the nearest previously unseen item. If
there is a tie, then the choice will be random.

(7) ANY-HIT, which will randomly saccade to any previously unseen item with
a feature match.

(8) ANYWHERE, which is identical to the LOOK-ANYWHERE production in the
previous model.

The goal was to give the model a large strategy space, and then rather than attempt to
tweak the preferences for various productions by hand to maximize "t, allow the model
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FIGURE 19. Fit of the before-learning inclusive model to the empirical response time data [panel (a)] and
"xation data [panel (b)]. Filled points and solid lines represent the model, open points and dashed lines
the data. Vertical bars represent 95% con"dence intervals. ---�---: 6; ---�---: 9; ---�---: 12;*�*: 6;*�*: 9;

*�*: 12.

to learn the preferences itself. The ACT-R defaults for each production will be a b of 1.0,
so they will initially all have equal probability of "ring in any situation in which they all
match. As it turns out, the default behavior of this model is actually not bad. The
before-learning "t to the reaction time and "xation data is presented in Figure 19. The
average absolute error for response time is 17.86%, with no "t parameters. The model is
too slow at short target locations, but otherwise not exceptionally poor. The "t to the
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FIGURE 20. Histogram of saccade distances for middle saccades [panel (a)] and "nal saccades [panel (b)] for
the inclusive model, before learning. The empirical distribution is indicated by the gray line and boxes.

number of "xation data is also quite good for a zero-parameter "t. The average absolute
error is again within 20%, at 14.46%.

Fit to the saccade distributions is not quite as good. Again, the model generates an
approximately uniform distribution across locations 1}5 for the initial saccade, and like
the EPIC-inspired model this generates an r-squared of model to data of 0.82. Fits to
middle and last saccades, however, are not as encouraging. The model's saccade behavior
is presented in Figure 20. The "ts here generate r-squareds of 0.68 for middle saccades
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FIGURE 21. Learning curve for the "ve productions which direct the initial saccade of the inclusive model.

and 0.79 for "nal saccades. Thus, while the default behavior of the model is somewhat
reasonable in terms of response time and number of "xations made, those "xations do
not appear to be distributed correctly. In particular, the mode of 1 is far too dominant for
the middle saccades.

The inclusive model was run through 5000 learning trials which were randomized in
the same fashion as the learning trials used in the EPIC-inspired model. Figure 21
presents the learning curve for the "ve productions which participate in con#ict resolu-
tion for the "rst saccade. Again, the curves initially diverge, then re-converge around
1000 trials, then diverge and #uctuate thereafter, with no production clearly favored. The
most favored production after 5000 trials targets the "rst item and should "re 21.9% of
the time, while the least favored production is the one which targets the second item,
which should "re 18.0% of the time. Overall, the model develops very little in the way of
preference for the initial production, and in fact the "t to the empirical data is slightly
worse (r-squared of 0.76).

Learning data for the eight productions which control search after that point are
presented in Figure 22. Here the model clearly develops fairly decisive preferences.
b values at the end of the 5000 trials, and the probabilities they should generate when all
eight productions compete, are presented in Table 4. One of the most striking trends in
the learning data is the clear preference the model generates for productions which
specify a feature match. The four productions which specify a feature match are clearly
preferred to the four that do not. However, the model does not learn that the
less-restrictive productions are useless; in fact, the model will "re one of these four
productions almost a quarter of the time (26.4%).

The second preference that is clear is the preference for the ANY-* productions over
the DOWN-* productions. The ANY-* productions are the model's only way to back up
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FIGURE 22. Learning curve for the eight productions which direct the search after the initial saccade for the
inclusive model.

TABLE 4
Final b values for the eight productions which compete for control of the initial saccade in

the Inclusive model after 5000 learning trials

Production name b-value Probability

Down-nearest-hit 1.3868 0.143
Down-any-hit 1.3954 0.135
Down-nearest 1.5300 0.052
Down-anywhere 1.4959 0.066
Any-nearest-hit 1.3170 0.234
Any-hit 1.3230 0.225
Nearest 1.4789 0.075
Anywhere 1.4857 0.071

if a DOWN-* production overshoots, and are #exible in that they can lead either up or
down the menu, so this preference is not wholly surprising. However, given that the
EPIC-inspiredmodel developed a preference for DOWN-NEAREST-HIT, this might be
regarded as at least somewhat surprising. The e!ect of the *-HIT appears to override
other preferences. The third preference exhibited by the model, though only a mild
preference, is for productions which specify NEAREST. The model learns to favor short
saccades. The reason for this is not entirely clear.

Interestingly, if the only production in the model was the one that was preferred
overall, ANY-NEAREST-HIT, the model would e!ectively behave like the original
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ACT-R visual interface model, because the only unexplored hits would always be down
the menu, since the search begins at the top. However, in the context of the other
productions, this is not the behavior this production generates. The behavior of an
ACT-R model, particularly one which learns, is dependent not only on the most favored
production, but also on the other productions involved in the competition.

Clearly, learning did in#uence the behavior of the model. The question, however, is
whether or not this learning made the model behave more like the users. Overall, it
appears that it did. The "t of the inclusive model after learning to the reaction time and
"xation data is presented in Figure 23. While the model is still too slow for some target
positions, particularly positions 2 and 3, the overall "t is better. The average absolute
error has been reduced to 12.96%, which represents a reduction of about one-third. This
is a clear improvement. The model again produces something of a Nilsen e!ect, though it
is still much less pronounced than the actual data.

However, in other areas the model has not improved the "t. Consider the number of
"xations generated by the model vs. those performed by the users. The average absolute
error has risen to 16.77%, which is not bad but is worse than the pre-learning version of
the model. This model clearly makes too few "xations, particularly for targets with high
serial positions. This is probably due to the model's reliance on feature guidance*the
model is still probably more sensitive to feature guidance than users are.

On the other hand, the "t to the distribution of saccades for the middle and last
saccades is much improved, particularly the middle saccades. Distributions for the
middle and last saccades are presented in Figure 24. The r-squared has risen from 0.68 to
0.84 for the middle saccades, primarily due to the reduction in the modal value. The
mode is still 1, but the frequency of the mode after learning is much closer to observed
frequency. The improvement in the distribution of "nal saccades is not as impressive, but
the r-squared did rise from 0.79 to 0.84. Overall, the "t of the inclusive model after learning
does appear to be better than the "t prior to learning, but there are some costs as well.

The key to the success of this model is the focus on local rather than global strategies.
The eye-tracking data certainly suggest that users do not follow global strategies from
trial to trial, or even within a trial. Instead, local decision-making appears to dominate.
ACT-R/PM is well suited to modeling decision-making at that level, and this made the
modeling relatively straight-forward. The apparently complex strategy adopted by the
model is, in fact, a relatively simple set of preferences among the possible choices in
a strategy space. This strategy space may not entirely exhaust all the possible local
decision options, but it does give a sense of the way ACT-R learns preferences within
such a strategy space.

5. General discussion

The "t of the "nal model is not perfect. However, the "t is good considering that no
parameters were changed in order to optimize the "t of the model; these "ts are
essentially zero-parameter predictions based on the system defaults for both timing
parameters and learning functions. This is also more than just a simple "t to reaction
time data; it is a "t of the observed distribution of eye movements as well. Given the
amount of constraint imposed by the rich eye-tracking data and the absence of para-
meter "tting, this represents an important step forward in our ability to model rapid
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FIGURE 23. Fit of the inclusive model after 5000 learning trials to the empirical response time data [panel (a)]
and "xation data [panel (b)]. Filled points and solid lines represent the model, open points and dashed
lines the data. Vertical bars represent 95% con"dence intervals. ---�---: 6; ---�---: 9; ---�---: 12; *�*: 6;

*�*: 9; *�*: 12.

tasks. This model is surely not a perfect model of the task and does not necessarily
invalidate other models, but it suggests that there is great power in considering tasks like
this as being driven by local rather than global strategies, and that learning plays a role in
the development of those strategies. Furthermore, while this exact task is not likely to
appear in many real-world task environments, tasks which require searchingmore or less
arbitrary displays for more or less arbitrary items are certainly common.

40 M. D. BYRNE

IJHC 20010469



FIGURE 24. Histogram of saccade distances for middle saccades [panel (a)] and "nal saccades [panel (b)] for
the inclusive model, before learning. The empirical distribution is indicated by the gray line and boxes.

An additional advantage of the ACT-R/PM approach employed here is the avoidance
of free parameters. ACT-R/PM's default parameters have performed well in other
contexts (e.g. Byrne & Anderson, 1998, in press; Ehret, 1999; Gray, Scholles & Fu, 2000),
and no numerical parameters were manipulated in order to optimize the "t between
model and data. This is in contrast with the EPIC model of the original Nilsen data,
which manipulated two such parameters (proportion of trials on which three items could
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be foveated and proportion of trials using systematic vs. random search). Of course, in
constructing production rule models, the modeler does have a certain amount of freedom
in the model selection process itself. The current paper is an attempt to document
a progression through this model-selection process, and the "nal model is a result not
just of the production rules included in the model, but also of ACT-R's learning
mechanisms. The learning mechanisms limit the impact of arbitrary inclusion of produc-
tions, since the model can e!ectively &&weed out'' ine!ective strategies.

This is not to say that all the issues have been resolved. This model employs a strategy
for mouse control that is essentially identical to the one employed by the EPIC model,
that is, no mouse movement is initiated until the target character is found. This is simply
not the strategy employed by all users at all times. While this strategy did seem to be the
dominant choice for some users, it certainly was not for others. Mouse control may well
be the source of the model's slowness for targets at positions 2 and 3 and might explain
the size of the Nilsen e!ect in these data. With longer menus, both in terms of number
of items and distance for the mouse to travel, users may have been more inclined to
make an early mouse movement, which would then overshoot the target and require
additional time to correct. The current models do not re#ect di!erences in mouse control
strategies.

Another issue to consider is the learning environment. The model learned in an
environment that closely mimicked the one experienced by users in the experiment, but
this is almost certainly not the same as the environments in which most people generally
do most of their visual searches. In particular, the largest set size employed was only 12
items. Part of the Nilsen e!ect may be due to a learning environment which includes
many longer searches, and thus the preference for making saccades further down the
menu may be underestimated by the current model.

There are other issues as well. The selection and predictiveness of the feature set used
to represent the letters almost certainly has some impact on the performance of the
model, but exactly how much and which feature set is the &&right'' one are still unclear.
A detailed discussion of this issue is beyond the scope of this paper, but several feature
sets have been explored with surprisingly little overall impact on model performance.
The reasons for this are not entirely clear, but it appears that most of the feature sets that
have been used in the psychology literature are based on character discrimination, not
character search, and this may explain why the feature sets seem somewhat too powerful.
However, the number of unresolved issues with respect to vision and visual search is
large, and this is merely one of many questions that remain unanswered.

However, ACT-R/PM provides an excellent tool for exploring such issues. The ETA
decomposition, paired with a sophisticated modeling system such as ACT-R/PM, should
allow detailed analysis of interactive systems that are much more demanding than simple
menu selection, such as military command and control, civilian air tra$c control, in-
vehicle navigation systems, emergency rooms, wearable computers in high-performance
tasks, unmanned piloting and so on. The range of potential applications is tremendous,
and until recently computational tools have been ill-equipped to meet such challenges.
The emergence of systems like ACT-R/PM and EPIC-Soar provides a sound basis on
which to pursue questions, both theoretical and practical, about the coordination of
cognition, perception and action in interactive tasks and how that coordination develops
over time.
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FIGURE 1. The embodied cognition}task}artefact triad.

FIGURE 15. Learning curve for the "ve productions which direct the initial saccade of the EPIC-inspired
ACT-R/PM model.
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FIGURE 16. Learning curves for the DOWN-NEAREST-HIT production (lower curve) and the LOOK-
ANYWHERE production for the "rst 2000 learning trials in the EPIC-inspired model.

FIGURE 21. Learning curve for the "ve productions which direct the initial saccade of the inclusive model.
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FIGURE 22. Learning curve for the eight productions which direct the search after the initial saccade for the
inclusive model.

Figures 1,15,16,21 and 22 are in colour for ideal only
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