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Abstract

Adaptivity is examined within a complex task environ-
ment: the Kanfer-Ackerman Air Traffic Corntroller Task®.
A computational model is developed in ACT-R to acount for
such adaptivity using an implicit learning mechamsm.

People demonsirate considerable flexibility in adapting their
strategies to the changing nature of the environment. Previ-
ous studies (Reder, 1987 Siegler, 1988; Lovett and Ander-
son, 1996) focused on adaptive strategy selection in the con-
text of simple tasks. For example, Lovett and Anderson
{1996) applied a model of adaptive sirategy choice to the
Building Sticks Task, an isomorph to the Luchins water jug
task. In the BST they manipulated the success of the alter-
native strategies over time. Their model accounted for the
strategy choices of subjects by using the success and failure
history of the available strategies and picking the more suc-
cessful strategy, Noise added to this selecBion process al-
lowed the model to sample the less successful strategy in
proportion to its relative success rate, a commonly observed
feature of human choice data.

Although these efforts have succeeded with simple tasks,
it is possible that complex tasks may place different de-
mands on people and make it difficult to capture the essence
of their behavior in a complex task within this type of sim-
ple computational framework. This paper reports an effort
to model adaptive strategy choice within a complex task, the
Kanfer-Ackerman Air Traffic Control Task©® (KA-ATC,
Ackerman and Kanfer, 1994). In addition, we investigate
assumptions about monitoring of strategy choice.

Many models of strategy choice are commonly thought of
as explicit models of choice, where the choice is controlled
through explicit metacognitive monitoring. Another possi-
bility proposed by Reder and Schunn (1996} is that strategy
choice is made through implicit memory and implicit leam-
ing. In this case the strategy itself may be explicit, but the
mechanism of choosing between these overt strategies is
assumed to be implicit. Alternatively, the strategy and
choice may both be implicit, and people may be unaware of
the strategies they used as well as their shifts between them
{e.g., Reder, 1987). In all these situations, leaming of the
new strategy involves success or failure with the strategy or
blame assignment.

Due to the complexity of the task environment in the cur-
rent study, blame assignment is a central issue. In a simple
task, strategy choice leads 1o immediate consequences. In
the KA-ATC task, poor strategy choices may not cause im-

mediate problems, and may instead lead to difficulties several
maoves later,

Blame assignment is a fundamental problem in artificial
intelligence, and has been explored within many frame-
works. One of the simplest representations of the problem
of optimal choice is the two-armed bandit. In this problem,
the goal s to determine the optimal payoff of a choice be-
tween two options, say A and B, where the possible payoffs
are 0 or 1. Choices A and B are random variables with a
fixed mean and variance about which we have no initial in-
formation. If we know the mean payoff of A is higher than
B then the optimal strategy is to always select A. Since we
do not know which strategy will be more successful, we
must test both. Further, no finite number of samples of
either strategy can completely determine the strategy with
the higher mean payoff. Trials therefore have two functions:
information gathering and payoff accumulation. Optimal
choice is a tradeoff between collecting enough information
to determine the more successful strategy, and exploiting the
more successfully strategy to maximize the overall payout.
Too little sampling of both strategies can make the less
successful strategy look more successful and result in selec-
ton of the less successful strategy. Excessive sampling
results in too many trals of the less successful strategy
(Holland, 1992). R

The current task is a more general case of this problem
which is complicated by a) changing relative payoffs of dif-
ferent strategies over time, b) possible multiple strategies
available at each step, c) the difficulty in determining what
constitutes a success or failure, and d) delays in finding out
whether a choice was successful or unsuccessful.

The Kanfer-Ackerman ATC Task®©

The task was designed to simulate some difficult aspects
of air traffic control. It presents the subject with a dynamic
environment in which they must artend to changing weather,
different combinations of plane types and landing restric-
tions, time pressure, and other real-time factors.

The stated goal of the KA-ATC task is to accumulate as
many points as possible across the trials of the session,
Points are accumulated by landing planes without breaking
rules. Rule infractions result in point deductions and the
amount of points deducted depends on the severity of the
infraction (crashing a plane due to low fuel is more severe
than attempting to land on an illegal runway). The KA-
ATC interface has three major screen regions: the hold area,
the weather arca, and the runway area. The hold area con-
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sists of 12 hold positions (North/East/South/West x 3 lev-
els), each of which can hold one plane. When a hold posi-
tion is occupied, it indicates the flight number, the type of
plane (747, DC-10, 727, or Prop) and the remaining fuel (in
minutes). The weather area shows the current wind speed,
wind direction, and ground conditions for the runways. The
runway area consists of two north/south runways, one long
and one short, and two east/west runways, one long and one
short. When planes are landed they slowly maove across the
runway over a 15 second period.

The KA-ATC has a concise set of rules that govern legal-
1ty of landings and other plane moves:

Planes can move only 1 hold level at a time, and only

into an unoccupied hold slot.

Planes can only land from hold level 1.

Planes must land into the wind (e.g., in a north wind

the plane must land on the north/south runway,

4. Planes with low fuel (less than 3 minutes remaining)
must be landed immediately.

Only one plane at a time can occupy a runway.

All planes can always land on the long runway. The

current weather and plane type determine whether the

short runway is legal. 747s can never land on the short
runway. DC-10s can land on the short runway when
the nainways are not icy and the wind speed is less than

40 knots. 727s can land on the short runway when the

wind speed is 0-20 knots or when the ninway is dry.

An important aspect of this task is that some feedback
about strategy success is immediate, while some feadback is
delayed. For example, if a subject chooses to land a 727 on
the long runway, that runway will be temporarily unavail-
able. Although the 727 lands successfully, it may prevent
the landing of 747s that are low on fuel, resulting in fewer
landings (because of suboptimal runway usage) and possibly
even crashes. On the other hand, violating the rules by ai-
tempting to land a DC-1( on an icy ranway causes a popup
window to provide immediate feedback.

To model this assignment of blame backwards through
time, blame is assigned to all actions on the causal path for
the current goal and subgoals. It is possible that the causal
events in this task are sufficiently remote in time that a cur-
rent predicament cannot reach back to the true cause to as-
sign blame. In this case we would expect to be unable to
demonstrate a model that adapts to the structure of the KA-
ATC task. On the other hand, if the causal events are suffi-
ciently proximal to a success or failure, we would expect
that a model could adapt to changing task conditions.

The aspect of the task we are focusing on is the behavior
involving landing planes. Other researchers have investigated
the behavior of subjects in moving planes within the queues
(e.g., John and Lallement, 1997; Lee, Matessa, and Ander-
son, 1995; Lee and Anderson, 1997). We will focus on the
choices made by subjects in assigning the different plane
types to runways under varying weather conditions and pro-
portions of plane types in the incoming flights.
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Data Set

The KA-ATC data we modeled are reported in Reder and
Schunn (in press) and Schunn and Reder (in press). Overall,
subjects demonstrate great similarity despite the task com-

plexity. Subjects land 747s on the long runway, the only
legal runway for this plane type, almost exclusively. Mis-
takes with this plane type are rare, even in the first several
trials when subjects are learning the task,

Subjects also consistently land props on the short runway
and infrequently on long runway even though either runway
is legal and landing long requires fewer keystrokes. One
possible explanation is that subjects view the long runway
as a scarce resource and choose this strategy to conserve it,
However, subjects associate props with the short runway
before they have had a chance to determine the relative scar-
city of the long runway in this task. A second possibility is
that props are the only plane type that can always land short
50 this is a cognitively simple rule. A third possibility is
participants use their real world knowledge of planes: large
planes such as jumbo jets (747s) need long runways while
small planes (props) belong on short runways.

The choices made with DC-10s are of primary interest
here. DC-10s may land on both the short and fong runway,
although they may only land on the short runway under cer-
tain wind and ground conditions. Subjects base their runway
choices for DC-10s not only the wind and ground condi-
tions, but also on the proportions of plane types in the mix
of incoming planes. Subjects land the DC-10s on the short
runway more often when there is a mix of planes that make
the long runway scarce. Specifically, Reder and Schunn (in
press) used minway preference for DC-10s to measure adap-
tivity in subjects. They varied the proportions of Props to
747s by block while maintaining a high but constant pro-
portion of DC-10s (40%} and a low constant proportion of
7275 (5%). The lower proportion of 747s in block 2 (5%)
vs. the proportion in block 1 (25%}) eases the demand for the
long runway, while the highest proportion of 747s in block
3 (50%) creates the greatest demand for the long runway.

Reder and Schunn labeled a landing ‘opshort’ when a sub-
ject chose to land a DC-10 on the short runway and both
runways were open. Hits were defined as attempting to land
a DC-10 on the short runway when legal and misses were
defined as attempting to land a DC-10 on the long runway
when it was legal to land on the short runway. False alarms
were defined as attempting to land on the short runway when
the wind and ground conditions made such a landing illegal
while correct rejections were defined as attempting to land on
the long runway when it was illegal to land on the shont
runway,

Table 1: Runway Usage for Adaptive Subjects in Block 1.

Planetype % of % short % long
total runway runway
Prop 30 75 25
DC-10 40 20 30
7217 5 30 70
747 25 0 100

Although the manipulation looks obvious from the table,
some subjects did not shift their landing patterns to take
advantage of the changing mix of planes. Reder and Schunn
Iabeled these subjects as nonadaptive. A second group of
subjects, on which we focus here— the adaptive subjects--
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differentially allocated DC-10s to the long and short runway
in response to the demands caused by high proportions of
Props or 747s. Adaptive subjects showed a pattern of short
runway usage for DC-10s that decreased from blocks 1 to 2,
when more Props and fewer 747s were included in the mix,
and increased beyond the initial level in block 1 when, in
block 3, the proportion of 747s 10 Props was significantly
increased.

The data in Table 2 report the proportion of hits to hits
plus misses and the proportion of faise alarms to false
alarms plus correct rejections for the adaptive subjects. In
the first block, hits and false alarms are not significantly
different {p > .1), indicating no sensitivity to the rules for
landing DC-10s in different weather conditions. In the sec-
ond block hits and false alarms also have similar magnitudes
{p > .5), but are decreased relative to block 1. In other
words the subjects decrease their usage of the short runway
for DC-10s during this block, when a high number of props
make the short runway a scarce resource. In the third block,
when there are a large number of 747s, subjects increase
their usage of the short runway for DC-10s relative to both
the first and second blocks (p < .01). Also, hits increase
more than false alarms in the third block, indicating that
subjects become sensitive to the weather rules for landing
DC-10s (p<.01).

Table 2: Hit and False Alarm Proportions.

Block  hits false alarms

1 31 25

2 .19 20

3 .66 38
Model

The framework we chose for the current study is the ACT-
R cognitive architecture (Anderson, 1993, Anderson and
Lebiere, in press). ACT-R consists of a production system
linked 1o a spreading activation network. These two com-
ponents provide an architectural separation for procedural and
declarative knowledge. Procedural knowledge takes the form
of individual productions and the parameters associated with
those productions. A goal stack controls the flow of control
within the system and determines which productions may
execute at any point. Declarative knowledge takes the form
of a number of chunks, or nede-link structures, contained
within the declarative memory of ACT-R.

The ACT-R theory supports blame assignment through
the goal stack mechanism. When an error state or success
state is reached, that error is propagated back to productions
that participated on the route to the error state. For exam-
ple, if a DC-10 is successfully landed on the long runway,
but the short runway is also open and the only available
plane is a 747 (which can only land on the long runway),
the production responsible for landing the DC-10 receives
part of the blame for the error (failure 0 use an open mn-
way). This feedback makes the goal structure a key part of
this modeling project. A goal structure that includes too
many prior actions will punish or reward productions that
had little to do with the cumrent success or failure. A goal

structure that includes too few productions may not allow
the system to assign blame far enough back in time to reach
the causal action.

Mode! Description The current model is an ACT-R 4.0
mode! that interfaces with a LISP simulation of the ATC
task. The aspects of the task simulated include the various
hold levels, ranways, plane types, mix of incoming planes
in the queue, weather and ground conditions, rules for mov-
ing and landing planes, and the block structure and tming of
the original task. Of the rules mentioned above, only rule 4
which requires that planes with low fuel be landed immedi-
ately, was not included in the simulation.

The schematic representation used by the ACT-R system
includes a structure of chunks that represent the various ele-
ments of the game interface, and the goal structures used in
the task. The goal types include goals to obtain information
about the current game state, to land planes, and to move
planes within the hold levels.

The productions used to simulate the behavior of subjects
fall into two categories. The first set of productions gather
or notice information in the environment such as which
planes are in the first hold, what the current wind direction
is, and whether the runways are open or busy. The second
set of productions act on the gathered information and inter-
act with the game simulation. At the highest level of ab-
straction, then, the system first examines the current game
state, and subsequently chooses an action.

An example production from the model that attempts to
land a DC-10 on the short runway is:

If the goal is to land a plane
and there is a DC-10 in hold level 1
and the short runway 1ls open

then try to land the DC-10 on that runway

There are 6 productions that choose to attempt to land the
various plane types on available runways. There are ini-
tially two enabled productions each for the DC-10 and 727
specific to the long and short runways respectively. There is
one producton for 747s, which must land long. There is
also only one producton for Props, which always land on
the short runway.

The action chosen at each step of this simulation is con-
strained by two things: 1) whether a production applies to
the current goal, and 2) the history of success and failure of
the production. The conflict set includes those productions
that match the type and values of the current goal. Each of
these matching productions has an expected gain against the
goal that is calculated by the formula E = PG -C. In this
formula P is the probability of succeeding, G is the value of
the current goal, and C is the cost of following the current
production’s path to the goal. Repeated success leads to an
increase in P and therefore the chance that this production
will be selected, while repeated failure leads to a decrease in
P and a decrease in the chance that this production will be
selected. Some amount of noise can be added to this calcula-
tion to provide variability of behavior. Variability allows
sampling of previously unsuccessful strategies, which is
necessary to confirm or refute earlier experience in a static
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environment, and to adapt and use new or more appropriate
strategies in a dynamic environment (Lovett and Anderson,
1996; see also Holland, 1992).

Success and error feedback impacts the estimation of, P,
the probability parameter for each production. Because suc-
cess and failure is the only source of adaptivity within the
mode] we are exploring, this definition is critical to the per-
formance of the model. Since the stated goal of the task is
to accumulate points, and points are gained by landing
planes while points are lost by violating rules, we used this
guideline to define success and failure for the model. A suc-
cessful trial is a sequence of actions which result in the legal
landing of a plane or planes on the open runway(s). A fail-
ure is a sequence of actions which result in a rule violation
or an inability to land a plane or plane(s) on the open run-
way(s). When neither runway is open, the system engages
in other activities from which it does not receive feedback,
such as checking the weather, moving planes within the
hold levels, and accepting planes from the queve of incom-
ing flights.

Goal Pop with
Successful
l landing
Production A Production B
Goal Pop with
Failed Landing
Production A | = | Production C

Figure 1: Blame assignment pathway

We also developed an alternative model strategy in which
we defined success as landing a plane on an open runway,
and failure as a rule violation or inability to land a plane on
an open runway. The difference between the two is subile,
but essential to the assignment of blame within this system.
By defining success or failure in terms of landing pairs of
planes, a landing on one runway that blocks other possible
landings on the other runway receives partial blame for the
failure. This means that even though a particular action
might be legal and fairly successful on its own {e.g., landing
a DC-10 on the long runway), if this action creates a subse-
quent impasse (e.g., unable to land a 747 on the now occu-
pied long runway), then it will become less likely. For a
majority of the landings, however, only one runway was

open so success and failure were attributed only to that at-
ternpt.

Through learning success and failure probabilities associ-
ated with each production, the model is able to change its
overall proportion of OpShort use over blocks. However,
there remains the issve of separation of hits and false alarms
in OpShort use over blocks (i.e., initially no differentiation
in blocks 1 and 2, followed by a large differentiation in
block 3).

There are several straightforward alternative explanations
for this change over blocks. In the first two blocks, the task
is relatively simple, and the subjects were not under heavy
pressure to use the weather information, and they were busy
learning other aspects of the task. However, in the third,
more difficult block, in order to frequently land DC10s on
the short runway, the subjects had a larger incentive to make
use of weather information. This change in use may reflect
either: 1) the creation of new productions which encode the
weather; 2) raising the estimates of probability of success
associate with productions which check the weather; 3) the
creation of new productions which actually make use the
weather information in deciding to use the short runway; or
4) some combination of the above. Changes in both encod-
ing and the introduction of new productions upon leaming
have both been used to explain adaptation within a produc-
tion system framework (e.g., Siegler, 1976).

Qur ACT-R model simulates the gradual emergence of
proper use of the rule for DC-10s by encoding the complete
weather information (wind direction, wind speed, and ground
conditions) differentially in the three blocks. In blocks one
and two, the complete weather is encoded 10% of the time
when the system checks the weather. The other 90% of the
time the wind direction is encoded, but the wind speed and
ground condition are not properly encoded. In the third
block, the complete weather information is encoded 80% of
the time. The model therefore assumes that the obstacle to
proper use of the short runway with DC-10s is insufficient
encoding.

An alternative mechanism within the ACT-R framework
that would provide similar results is the production leaming
mechanism. If the model does not have a production that
applies the rule for landing DC-10s, but has the opportunity
to leam the nle and does so for most simulated subjects by
early in the third block, parameter learning will produce a
separation in probability of success between the new produc-
tion and the existing production (and therefore hits and false
alarms) in the third block.

Model Fit to Data The key aspects of data to be cap-
tured include the overall landing pattern, and more impor-
tantly the pattern of landing DC-10s when both runways are
open. Qualitatively, the model should show a reduction in
hits and misses from block one to block two and an increase
in hits in block three with smaller increase in false alarms.
This separation of hits and false alarms can only be modeled
by sensitivity to ground conditions - otherwise hits and false
alarms will go together.

Our model provides both a good qualitative and quantita-
tive fit to the data as is shown in table 3 below:
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Table 3;: Model Hits and False Alarms.

Block hits delta false alarms  delta
i .34 -.03 22 .03
2 25 -06 .20 .00
3 .58 .08 .32 06

From the table it is apparent that the success and error in-
formation provided 10 the system placed similar demands on
the ACT-R model 1o those that subjects were responding to.
The qualitative fit emerged from two things: the pressure of
planes in the mix, and the enabling of a production sensitive
to the rule for landing DC-10s.

What the table does not say is that there were some for-
mulations of success and error feedback for which there was
no apparent easily discoverable ACT-R model that fit the
data. We experimented with several representations of the
problem and learned several things from these efforts.

First, the implementation of additional strategies resulted
in abandonment of those strategies by the model due to low
probability of success. Committing to either picking a
plane with no knowledge of the open runways or picking an
open runway to try to use with no knowledge of the planes
present in the first hold level were both ineffective strate-
gies, and resulted in general error levels that were not spe-
cific to certain planes. These strategies consistently resulied
in a reduction in use of the short runway well below levels
reached by human subjects, especially in block 3.

Second, we found that the error feedback must reach far
enough back in time to pass the blame to the productions
causing the problem. Landing planes in pairs when both
runways were open provided a sufficiently large window in
time to provide effective error feedback. Landing one plane at
a time gave error feedback only effecting the cumrent landing
that was too local in nature. As an example, landing a DC-
10 on a long runway will never fail. If the production that
performs this action only receives feedback from that land-
ing, then the model will learn to always prefer landing DC-
10s on the long runway. On the other hand, attempting to
fill both runways when they are both open does allow for
proper feedback. If landing a DC-10 on the long runway
consistently blocks a 747s from landing, as happens during
the early part of block 3, the model learns to avoid using the
long runway for DC-10s.

Finally, change in the probability of weather encoding is
necessary to allow for an increase in the proportion of hits
over false alarms. For a difference between hits and false
alarms to occur in any biock, both human subjects and the
model must encode the complete weather conditions and use
those conditions to land DC-10s on the short runway when
legal. Any model that accounts for this data must be able to
land the DC-10s on the short runway taking the rules and
weather into consideration.

Coenclusions

This modeling effert has important implications for three
different domains: the understanding of human cognition,
ACT-R, and the KA-ATC task.

We have demonstrated that implicit learning of local suc-
cess and failure can help account for the pattern of behavior

that human subjects exhibit even in a relatively complicated
1ask.  Although it seems intuitive that the only way io
solve a task and perform well is to deliberately plan the
moves, this model demonstrates that the necessary feedback
actually is present at a fairly local Jevel. This possibility
may have been overlooked in other studies where the obvi-
ous conclusion was that performance resulted from detailed,
goal oriented planning. In these cases subjects may have
been aware of their options without understanding that their
basis for choosing an action was their history of success and
failure (e.g., Lovett and Anderson, 1996).

Some structural change is necessary within the representa-
tion of the problem we chose for this model. We simulated
this by a shift in encoding from partial weather information
(wind direction) to complete weather information {wind di-
rection, wind speed, ground conditions). The inability of
subjects 1o take advantage of this information early on may
be the result of several factors. It is possible that subjects
simply cannot encode chunks to maintain the weather in-
formation early in the game. As they gain experience with
the chunks, it becomes easier to both encode, retain and use
the information. It is also possible that early on subjects
are attending to other non-informative features of the game
and do not pay attention to the complete weather informa-
tion. Alernatively, the subjects may encode the complete
weather information but may have difficulty remembering
the rule in order to apply the information. They may need
extensive practice before they can reliably recall the proper
rule. It would not be surprising if the human data is best
explained by some combination of these factors rather than
any one. '

We are currently exploring extensions to the current model
that will let it gradually accumulate experience with the rule
for DC-10s. We are also exploring accumulating experience
with the interface as the driving force behind improving the
ability to encode the information presented in the task. This
may help us to account for the gradual shift in reliance from
one strategy to another.

Another interesting lesson learned from the model is that
the strategies that have a higher percentage of success require
the model to ‘maintain more information in working mem-
ory. The mode! strategy that best simulated human per-
formance required simuMtaneous access to the current weather
conditions, runway status, and planes waiting to land.
Maintaining all of this information while choosing an op-
tion is demanding, and may explain why some human sub-
jects were not able to adapt to the changing proportions of
planes.

Finally, this model succeeded in the ACT-R framework
not because paramelers were exhaustively experimented
with, but because a representation of success and failure was
found that allowed the model to effectively assign blame.
Some representations could not provide the necessary feed-
back for ACT-R to leam the task. This demonstrates that
the probability parameters in ACT-R productions are not
free parameters that can be used to fit curves. Instead, the
production parameter learning mechanism puts realistic con-
straints on these parameter values, and therefore on the ac-
tion of the ACT-R system,
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