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INTRODUCTION

To iterate is human. To recurse, divine.
-Logout message on the Carnegie-Mellon CMUA computer

Learning to write recursive programs is notoriously difficult. It is likely that
students learning to program LISP would almost unanimously agree that
writing recursive functions is the biggest hurdle they face. This chapter dis-
cusses (a) why learning recursive programming is so difficult, and (b) how
it is successfully mastered.

To provide a framework for later discussion, we first describe how the
recursive programming behavior of an expert is modeled in GRAPES (Goal-
Restricted Production System), a production system developed (see Ander-
son, Farrell, & Sauers, 1982, 1984) to model programming in LISP. Second,
we will discuss why recursive programming is so difficult to learn. To fore-
shadow this, our conclusion will be that it is difficult both because it is a
highly unfamiliar mental activity and because it depends on developing a
great deal of knowledge about specific patterns of recursive programs. Third,
we will offer a general proposal as to how recursive programming is typi-
cally learned. In line with the learning of other aspects of LISP, recursive
programming seems to be learned by analogy to example programs and by
generalization from these examples. Fourth and last, we will discuss a se-
ries of protocols used by one subject trying to learn recursive programming,
We discuss these protocols in the light of GRAPES simulations of her be-
havior. This last exercise is intended to provide evidence both for our
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proposals about recursive programming and for our GRAPES model of LISP

programming behavior. ‘ . S T e R

[

SIMULATION OF LISP PROGRAMMING
We developed GRAPES to model how subjects write functions (i.
grams) in the LISP language, and how subjects learn from sig”
solving episodes. GRAPES is a production system architecture. -
lates certain aspects of the ACT* theory. Each production in GRAPES has’
a condition which specifies a particular programming goal and various 3
problem specifications. The action of the production can be to embellish
the problem specification, to write or change LISP code, or to set new sub-
goals. The details of the GRAPES production system are described in Sauers
and Farrell (1982). The architecture of GRAPES differs from that of other
production systems (e.g., Anderson, 1976; Newell, 1973), primarily in'th
way it treats goals. At any point in time there is a single goal being focused
upon, and only productions relevant to that goal may apply. In this fea-
ture, GRAPES is like ACT* (Anderson, 1983) and other recent theories
(Brown and Van Lehn, 1980; Card, Moran, & Newell, 1983; Rosenbloom
and Newell, 1983). e M
To give a sense of what a GRAPES production system is like, let us co!
sider some examples of productions that have been used in our simulations.’
A representative example of a production’ that a pre-novice might have is:

Wl TR

R1: " 1IF the total is to write a structure R i
and there is a template for writing the structure “* 48
THEN set a goal to map that template to the current case.”
R1 might be invoked in a nonprogramming context such as _\ﬁhé'fiya_n uses
another person’s income tax form as a template to guide how_'l'_'tfc')?fﬂ}:&i{
own. Productions like R1 serve as a basis for subjects’ initial performan
in LISP. A production that a novice might have after a few | '
ing is: . e
R2: IF the goal is to add List]l and List2
THEN write (APPEND Listl List2) )
This production recognizes the applicability of the basic LISF |
PEND. With experience, subjects become more and more
about how and when to use LISP functions. A rule that an
have is: :

wrovio

rules. A technical specification of these rules (i.e., a computer listing) can b
writing to us. Also available is a user’s manual (Sauers & Farrell, 1882) that de T
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5. LEARNING TO PROGRAM RECURSIVE FUNCTIONS 155

R3: IF the goal is to check that a recursive call to a function will
terminate and the recursive call is in the context of a MAP
function -

'THEN set as a subgoal to establish that the list provided to the
MAP function will always become NIL after some num-
ber of recursive calls R \r;__l T

All programs in LISP take the form of functlons t.hat calciulate various
input-output relations. These functions can call other funcﬁons or call them-
selves recursively. A programming problem is solved in GRAPES by decom-
posing an initial goal of writing a function into subgoals, and dividing these
subgoals into others, and so on, until goals are reached which correspond
to things that can be directly written. The decomposition of goals into sub-
goals constitutes the AND-level of a goal tree— each subgoal must be suc-
cessful for the goal to be successful. Alternative ways of decomposing a goal
constitute the OR-level of the goal tree — any deoomposmon can be sucocmfu.l
for the goal to be successful.

One of the basic observations we have made, of leammg to program in
LISP, is that subjects do not seem to learn much from the abstract instruc-
tion they encounter in textbooks. Rather they learn in the process of trying
to solve problems. Our GRAPES simulations have therefore focussed on
modeling problem-solving and the resultant learning (see Anderson, Far-
rell, & Sauers, 1982, 1984). We have developed in GRAPES a set of
knowledge compilation learning mechanisms which create new production
operators from the course of problem solutions (Anderson, 1983; Ander-
son, Farrell, & Sauers, 1984). Knowledge compilation summarizes exten-
sive problem-solving attempts into compact production rules, These
knowledge compilation mechanisms have successfully simulated a number
of the learning transitions we have observed in our subjects, We will dis-
cuss in this paper some other simulations of learning transitions.

Simulation of a Recursive Solution B

Here we would like to describe the GRAPES simulation of an expert’s solu-
tion of a particularly interesting recursive problem called POWERSET.
GRAPES’ solution to POWERSET is arguably the prescriptively “ideal” so-
lution. Having this ideal solution as a reference point, we will be in a posi-
tion to make a number of important points about the nature of writing
recursive programs.

Figure 5.1 illustrates the POWERSET problem as we present it to sub-
jects. The subject is told that a list of atoms encodes a set of elements, and
that he or she is to calculate the powerset of that set— that is, -the list of
all sublists of the list, including the original list and the empty list NIL,
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(POWERSET (A BChH
={aABCIABIIAQC) (B C) (A} (B) {Cl { n

FIGURE 5.1. The POWERSET problem requires the student to write a recur-
sive program that produces all possnble subsets of an input set. )

Each subject is given an example of the POWERSET of a three—element
hst All subjects come up with basically the same solution. T s solution
is given in Table 5.1. The definition in Table 5.1 involves a secondary func-
tion ADDTO which takes as arguments a list-of-lists and an atom. ADD-
TO returns a list of lists composed by adding the atom to each list in the
original list-of -lists argument. We have not proyided a definition for ADD-
TO because the definition varies with the level of expertise of the
programmer?. The basic structure of the POWERSET definition,
however, does not change with expertise although there is easily a greater
than a 10:1 ratio in the time taken by novices versus acperts to generate

EXSIN VEW

the code. =
Figure 5.2 presents the goal tree for the solution to the POWERSET

problem produced by GRAPES. Each node in this tree (e.g., “try CDR-
recursion”) is a specific programming goal. Arrows show the decomp051-
tion of a goal into subgoals. For example, the goal “try CDR-recursion™
decomposes to the subgoals “do terminating condition” and “do recursive
step.” The goals in this tree are set in a left-to-right, depth-first manner.
The code presented in Table 5.1 is the product of earrymg out the plan

specified in Figure 5.2. -
With the first goal set to code the function POWERSET (the topmost

goal in Figure 5.2), the first GRAPES production to apply is:

Pl: IF the goal is to code a function LR
and it has a single level list as an argument o
THEN try to use CDR-recursion and set as subgoa.ls to:

1. Do the terminating step for CDR-recumon R

2. Do the recursive step for CDR-recursion.

TABLE 5.1
Powarset solution

{Defun powerset (I}
{cond (inull Mlist nilh
{t {append {powerset (cdr 1))
(addto (car I) (powerset (cdr NN

WRITE POWERSET (L)

WRITE POWERSET {L)

l
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CDR-recursion is a type of recursion that can apply when one of the argu-
ments of the function is a list. It involves calling a function recursively with
successively smaller lists as arguments. It is called CDR-recursion because
it utilizes the LISP function CDR which removes the first element of a list.
Thus, each recursive call is passed the CDR of a current argument list.
Production P1 sets up the plan to call (POWERSET (CDR LIST) within
the definition of (POWERSET LIST). The standard terminating condition

- for CDR-recursion involves the case in which the list argd.fent becomes

NIL. In this case a special answer has to be returned. So notgy that this “ex-
pert” production is relatively specialized — it is only concerned with a spe-
cial case of recursion and only applies in the special condition that the
argument list is a one-level list. Production rules are selected for applica-
tion by conflict resolution principles in GRAPES, and one of these princi-
ples involves specificity: Productions with more specific conditions {i.e.,

more conditions and/or less variables) tend to be selected over productions
with less specific productions. Because of this specificity principle, P1 would
not apply in many situations where there was a one-level list argument.
For instance, if the goal was to write a function that returned a list of the
first and second elements in a list argument, other more speclal case produc-

tions would apply.

Activating goals in a left-to-right, depth-first manner, GRAPES turns
to coding the terminating condition. In the case of CDR-recursion this
amounts to deciding what the correct answer is in the case of an empty
list— that is, when the list becomes NIL. The answer to this question re-
quires examining the definition of POWERSET and noting that the
POWERSET of the empty set is a set that contains the empty set. This can
be coded as (LIST NIL). Each goal decomposition under “do terminating
condition” is achieved by a production. We have just summarized their ap-
plication here. The important feature to note is that coding the terminat-

ing condition is extremely straightforward in a case like this, where the

answer can be derived from a semantically correct definition of the func-
tion. In particular, writing such code does not requn'e an ana]ys:s of the
recursive behavior of the function.

After coding the terminating condition, GRAPES tums to coding the
recursive step. This is decomposed into two subgoals. One is to character-

ize the recursive relationship between POWERSET called on the full list

and POWERSET called on the CDR or tail of the list. The other goal is
to convert this characterization into LISP code. The only nonroutine aspect

of applying the CDR-recursion technique is discovering the recursive rela- “

tionship. Figure 5.3 illustrates what is involved. In that figure the symbol
X denotes the result of POWERSET on a typical list and ¥ denotes the result

of POWERSET on the CDR of that list. The critical insight involves notic-
ing that Y is half of X and the other half of X is a list, dencted Z, which
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L =(ABC) : Y = (POWERSET (CDR L))
: = {(B C)
X = (POWERSET L) (B}
= {{A B C) a3]
(A B} (N .
(A C) Lorgie
(A) - ok 4
{B C:' :‘1&’\“!
{B} '
)
in . .
X=Y+Z WHERE Z=1[(ABC)
{A B)
(A C)
(AY)
Z IS FORMED FROM Y BY ADDING A TO EACH
MEMBER OF Y,

FIGURE 5.3. The POWERSET insight involves determining"\}\’rhat must be
done with the result of the recursive call, {POWERSET (CDR SETT), in order
to get the resuit for the current function call (POWERSET SETT).

can be gotten from Y by adding the first element of the list (A in Figure
5.3) to each member of Y. Thus, X = Y + Z. We have developed GRAPES
simulations which will produce this “correct” POWERSET characteriza-
tion if given the goal to compare concrete examples of X, Y, and Z. Gener-
ally, novice LISP programmers consider this comparison only after
performing many other types of comparisons of concrete examples. In con-
trast, experts often do not need to consider any concrete example; when
they do, they typically choose almost immediately to compare a concrete
example of X, the POWERSET of a whole list, and Y, the POWERSET
of the CDR of the list, and search for an appropriate characterization of
this relationship. o s

The actual coding of the recursive relationship is extremely straightfor-
ward. One production recognizes that the LISP function APPEND is ap-
propriate for putting the two sublists ¥ and Z together to form the answer
X. This leaves the subgoals of coding the first and second arguments, Y and
Z, for the function. Another production recognizes that Y can be calculat-
ed simply as a recursive call - (POWERSET (CDR L)). There is no LISP
function that will directly calculate Z, and this evokes a default produe-
tion which sets a subgoal to write an auxiliary function, ADDTO, which
will calculate Z given the first element of the list L and given Y.
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160 ANDERSON, PIROLU, FARRELL .

POWERSET is one of a large class of recursive functions that lend them-
selves to straightforward solution in this manner. There are 2 number of
standard recursive paradigms in LISP in addition to CDR-recursion but
they all have the same straightforward character, It is the case that not all
LISP recursive functions are so straightforward. One reason for complexi-
ty is that the function may not have as precise a semantics as POWERSET,
and part of the problem-solving is to settle on that semantics. Part of the
trick is to settle the semantics in a way that makes the coding »A,nother
reason for complexity concerns recursion in nonstandard pa.ra . For
instance, production R3 described earlier deals with one such nonstandard
recursion. However, the important observation is that standard recursion
as in POWERSET causes novices great difficulty. The students we have
looked at spent from just under two to over four hours arriving at the solu-
tion to POWERSET that an expert can produce in under ten minutes.

WHY IS RECURSIVE PROGRAMMING DIFFICULT?

A starting point for understanding the difficulty of recursive programming
is to note that recursive mental procedures are very difficult— perhaps
impossible — for humans to execute. For instance, center-embedded struc-
tures in language, while perhaps grammatical, are impossible to understand.
Interestingly, the same degree of difficulty does not arise when different
types of constructions are embedded within each other — only when the same
construction is embedded within itself (Anderson, 1976; Dresher & Horn-
stein, 1976). For instance, sentence 1 below involves the embedding of two
relative clauses; sentence 2, the embedding of two complement clauses; sen-
tence 3, the embedding of a relative clause within a complement clause;
sentence 4, the embedding of a complement clause within a relative clause.

Sentences 1 and 2, which involve self-embedding, are much more dlfﬁcult
to understand: i

1. The boy whom the g'lrl whom the sailor Ilked h1t Tan away

2. The fact that the shepherd said that the farmer had given the book
to the child to the police was to be expected. :

3. The fact that the shepherd reported the girl whom the saﬂor ll.ked.;

to the police was to be expected. R
4. The boy who told the girl that the farmer had read the book ran away

This pattern makes sense if we assume that distinct procedums are rwpon
sible for understanding distinct expressions. The human mind seems incapa-
ble of doing what LISP does— creating a copy of a procedure and beddmg
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5. LEARNING TO PROGRAM RECURSIVE FUNCTIONS 161

it within itself, and keeping track of what is happening in both copies. It
is also interesting that right embedding of one linguistic construction with-
in itself does not create the same difficulty. It seems that the mind can treat
such tail recursive procedures with an iterative control structure.
Indeed, it seems that it is a typical “programming trick” in the mind to
change what is naturally a recursive procedure into an iterative one. A good
example is the evaluation of arithmetic expressions like 4 * {3 -2 +(5
+ 7)). The “logical” procedure for evaluating such expr@ohs would be
a top-down recursive evaluation as one would perform in EISP. The actu-
al procedures that people use are iterative. For instance, a frequent proce-
dure is to scan for an embedded expression that has no embeddings (e.g.,
3 — 2), evaluate it, replace the expression by its evaluation, and rejterate.
In observing how students mentally simulate recursive functions in LISP,
we see some of the clearest evidence for the difficulty of recursion. The evi-
dence is particularly clear because the evaluation process is sufficiently slow
that it can be traced as it progresses in time. Students frequently show no
difficulty in simulating a function making recursive calls to itself and pass-
ing control down. However, when they have to simulate the return of results
and combine the partial results they get completely lost. It seems that the

human mind, unlike the LISP evaluator, cannot suspend one process, make -

a new copy of the process, restart the process to perform a recursive call,

and return to the original suspended process. In particular, it seems impos-
sible to hold a suspended record in our mind of where we were in a series
of embedded processes.

If it is the case that minds can iterate and not recurse, then it might seem
obvious why recursive programming is difficult— the mind is not capable
of it. We have frequently heard various forms of this argument, but they
all have a serious fallacy: Writing a recursive procedure is not itself a recur-
sive procedure! Consider that the construction of the definition of POWER-
SET in Figure 5.2 was not performed by a recursive mental procedure. We
would like to claim that the human inability to execute recursive proce-
dures is not the direct source of difficulty in programming recursive
functions. o

The Unfamiliarity of Recursion et

We feel that the fundamental reason for the difficulty of recursive program-
ming is the unfamiliarity of the activity. People have had prior preprogram-
ming experience with following everyday procedures (e.g., recipes) and,
more importantly, with specifying such procedures to others. However, be-
cause these preprogramming procedures typically had to run in human
heads, they were never recursive. Therefore, recursive programming is most
people’s first experience with specifying a recursive procedure. Interesting-
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, A major source of daffleulty in learmng recursion is an instructional one. For exar
\ ' Every textbook we have examined gives students no direct help in how to produce
; generate a recursive function. Textbooks explain what recursion is, explain call. Th:
' how it works, give examples of recursive functions, give tracesdf recursive where o
. functions, and explain how to evaluate recursive functions; buil ey never the recu:
: explain how to go from a problem specification to a recursive function. Thus, function
: students have a major induction problem: How to go from the information cause th
5 they are given to a procedure for creating recursive functions. Textbooks of contr:
; are no more lucid about how to create iterative procedures, but here the than cor
.' student has prior experience in structuring such an induction problem.
. Another difficulty is that students often think of iterative procedures for
¢ solving recursive problems. For example, many novices coding POWER- Compiexit
! SET solve the problem at hand according to the following procedure: Place of Aecurs
M the null set in the result list, then all subsets of length one, followed by ail There a-
; subsets of length two and so on, until the whole set is reached®, This proce- se but w-
1 dure of successively gathering all subsets of length N is radically different hextbool.
! from the ideal POWERSET procedure in LISP. Such a plan is difficult to for Ttorat
! achieve in code and tends to interfere with seeing the easy-to-code solu- son. Stu
P tion. Thus, having nonrecursive solutions to problems tends to bhnd stu- output r-
4 dents to recursive solution. ing this
A further exacerbating factor is that there are really many dlfferent typw difficult
of recursive functions in addition to CDR-recursion. Integer recursion re- famili
i quires recursively calling the function with a progressively smaller integer cal to C
ﬁ argument. CAR and CDR recursion requires calling a function recursively been sho
# on the CAR (first element) and the CDR of the list. Soloway and Woolf Sifficult
- (1980) have argued that each of these major types of recursion has many So. in
_ subtypes. The student is not going to be an effective recursive programmer it is an 0
2 until he learns to deal with each type. Again, typical textbooks offer the in am unf
3 student no help; they encourage the belief that there is just one type of sive proc-
! recursion —a function calling itself. sive proc
Havir
o The Duality of a2 Recursive Cail . problem
K difficult:
‘3 Another source of difficulty (especially in LISP) is the dua.hty of meamng debuggis
e in a recursive procedure call. On the one hand the call produces some resul- sample a
tant data; on the other hand it specifies that an operation be carried out program
repeatedly. Thus, the written form of a recursive call is the sy'mbollc ana- sive evalt

ate resul
IThe ordering varies somewhat from student to student. i



1learning
tudent in
: function

ional one.
in how to
is, explain
‘ recursive
‘hey never
ion. Thus,
formation
Textbooks
t here the
problem.
redures for
POWER-
ure: Place
wed by all
“his proce-
r different
lifficult to
-code solu-
blind stu-

arent types
2ursion re-
iler integer
-ecursively
and Woolf
1 has many
agrammer
5 offer the
ne type of

£ meaning
-ome resul-
:arried out
tholic ana-

e - g P e AL PR

B .,

b {EARNING TO PROGRAM RECURSIVE FUNCTIONS 163

YT b e T R

log to a Necker cube: It can be data or complex operations, depending on
your view. o o e
Because students often perseverate on one view of recursion, they are
often blinded to solutions that could be easily attained from the other view.
For example, it is often useful to determine what has to be done to the result
. produced by a recursive call in order to get a result for the current function
call. This is a key component in the POWERSET insight (see Figure 5.3)
where one must determine what has to be done with the list produced by
the recursive call, POWERSET (CDR SETT)), in ordek. to get the current
function result, (POWERSET SETT). Students often thlss such insights be-
cause they perseverate on the view of the recursive call as a complex flow
of control. They will often attempt to trace out the flow of control rather
than consider what result will be produced by a recursive call.

Complexities Which Exacerbate the Dilﬁculty
ot Recursive Programming

There are other factors that really have nothing to do with recursion per
se but which nonetheless complicate recursive programming. For instance,
textbook probléms for recursive programs are typicaily more difficult than
for iterative ones. The POWERSET example is an instance of this phenome-
non. Students frequently have problems in fully understanding the input-
output relations in the first place, and then face the difficulty of maintain-
ing this complex relation in memory. Apother, presumably independent
difficulty is that the data structures being operated upon are often un-
familiar. For instance, students’ prior experience with list structures (criti-
cal to CDR-recursion and some other forms of recursion) is weak. It has
been shown (Anderson & Jeffries, 1985) that making one part of the problem
difficult impacts on the difficulty of a logically separate part.

So, in summary, recursive programming is difficult principally because
it is an unfamiliar activity, with hidden complexities, that must be induced
in an unfamiliar and difficult domain. The unfamiliarity of creating recur-
sive procedures can be traced to the mental difficulty of executing recur-
sive procedures, but the mental difficulty is not the primary reason.

Having said all this, we should point out that there is one secondary
problem in recursive programming that is directly related to the mental
difficulty of creating recursive procedures. This concerns checking and
debugging recursive programs. This requires evaluating the programs with
sample arguments, and evaluation is a recursive procedure— in contrast to
program generation. Of course, students learn procedures that convert recur-
sive evaluation into an iterative procedure, such as writing down intermedi-
ate results and states in linear stack-like structures. However, dealing with
logically recursive evaluation does make it harder for students to detect er-
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rors in recursive programs. So, though initial program generation does not
involve the mental difficulties of recursion, program debugging does.
However, it needs to be stressed that the major problems of novices are with
initial program generation, and not with debugging. - & . .o

PROPOSAL FOR THE LEARNING OF RECURSIVE Pnos%ﬁns

So how do students learn the unfamiliar procedure of generating recursive
programs? Explicit procedures are not given to the student. In the absence
of explicit procedures, our hypothesis is that the primary means available
to students is learning from examples. By this, we mean two things. First,
students can try to look at worked-out examples, and map by analogy the
solution for these problems to a solution for the current problem. This is
learning by analogy. Second, they can try to summarize their solution to
one problem by new problem-solving operators (GRAPES productions), and
apply these operators to another problem. This is learning by knowledge
compilation. We believe that these two learning mechanisms are logically

‘ordered — that the first problems are solved by analogy and that solutions

to these early problems give rise to the operators that can apply to later
problems. The following protocol analyses provide suppert for our appli-
cation of this analysis to recursion. For successful application to other do-
mains of learning LISP, see Anderson, Farrell, and Sauers (1984).

T,

PROTOCOLS AND SIMULATIONS

We will discuss the behavior of one subject, S8, as she solved her first three
recursive functions. The first recursive function was SETDIFF which tock
two list arguments and returned all the members in the first list that were
not in the second list. The second was SUBSET, a function of two list argu-
ments which tested if all the elements of the first list were members of the
second. The third function was POWERSET. All three functions may be

solved by the CDR-recursion technique. (The first two are easily and more

efficiently solved by iterative techniques, but §5’s textbook, in the manner
typical of LISP pedagogy, does not introduce iteration until after recursion. }

85 textbook was Siklossy’s (1976) Let’s Talk LISP, which is a somewhat
singular book in regard to the amount of discussion it contains of program-
ming technique issues. It is also designed for the programming novice and
attempts a very careful introduction to all relevant concepts. It does not,
however, instruct directly on how to write recursive functions, but rather
it instructs on “considerations” relevant to good recursive functions and gives

many examples— many of which involve set theory. 88 had spent over 15 =
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- 6. LEARNING TO PROGRAM RECURSIVE FUNCTIONS 1656

hours studying LISP at the time of these protocols. In this time she had
studied basic LISP functions and predicates, condlt:lonals a.nd funchon defi-
nitions.

Solving these three problems took SS a total of five hours In following
SS through this protocol, we can see her improving from one function to
the next. We cannot say that by the end she had induced all the compo-
nents required to do CDR-recursion — although she had some of them. S5
continued to do LISP problems long after we finished & dymg her, and
she eventually became quite effective at writing a wide v of recursive
functions. We can only guess that she reached her proficiency by use of more
learning steps of the variety we were able to document in these protocols.
It is clear that it takes a great deal of time to learn recursive programming
in the traditional learning situation,

SETDIFF

The first function SS tried to write was SETDIFF. She took a little over
an hour to solve the problem. Table 5.2 gives a schematic protocol of her

TABLE 5.2 -
55's SETDIFF Protocol ’

1. S8 reviews code for INTERSECTION1 function {previous problem}.

2. 58 reads SETDIFF prablem and forms the analogy )
SETDIFF:INTESECTION::CDR:CAR. S8 also proposes the following relation:

SETDIFF (SET1, SET2)
=MINUS (SET1, INTERSECTION(SET1, SET2})

Writes (DEFUN SETDIFF {SET1 SET2).
Decides to code SETDIFF by rearranging INTERSECTION1 code.
Decides to code simple cases found in INTERSECTIONT.

® A s w

Considers case (NULL SET1], decides the action wilt be NIL. Code is now

(DEFUN SETDIFF {SET1 SET2)
(COND (INULL SET 1) NIL)

7. Considers case (NULL SET2), decides action wili be SETT. Code is now

(DEFUN SETDIFF {SET1 SET2)
{COND ({NULL SET?3) NiL)
(INULL SET2) SET1)

8. S8 farmulates plan to check each element of SET1 to see rf it is NOT a member of
SET2. Gives up on this plan. =

-fContinued)

i I . .
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TABLE 5.2 COND

{Continued) consists

9. Decides to code the relation MINUS (SET1, INTERSECTION(SET1, SET2)}. Realizes action ¢

; that MINUS is equivalent to SETDIFF and gives up on this plan. .~ . by - true. T.

¢ 10. Returns to using INTERSECTION?T code as an analogy. Consnders case tMEMBEFI by | last dswi‘f'
. {CAR SET1} SET2}, decides action should be **something with nothn:&gﬂdyd to it.’” g seti

5 1S €1

: 11. Refines action te the code (SETBIFF {CDR SET1) SET2). Code is namﬁﬂ"* g ty set;

" {DEFUN SETDIFF (SET1 SET2) ) ' % ! return &

{COND ({NULL SET1) NIL) - call wit

' {(NULL SET2) SET1) S S _ g recursiv

({(MEMBER {CAR SET1) SET2} : , isan un.

(SETDIFF {CDR SET?1) SET2)) R : unusual

: 12. Considers case in which {CAR SET1) is not 2 member of SET2. Formulates plan to IN%;L‘

: add {CAR SET1) to the answer for SETDIFF. .

\ SETDIF

i 13. Decides to look at INTERSECTION1 code again. Notes that 4th action of INTERSEC- ) ecogniz

i TION maps onto 3rd action of SETDIFF, penders whether 3rd action of di-

INTERSECTIONT will map onto 4th action of SETDIFF. Decides that the code will ?mslng

15 :

i . work. Final code is:

{DEFUN SETDIFF (SET1 SET2)

: (COND {(NULL SET1) NIL)

y ((NULL SET2) SET1)

((MEMBER (CAR SET1) SET2)

i (SETDIFF (CDR SET1) SET2)

i (T (CONS (CAR SET1)

§ (SETDIFF (CDR SET1) SET2)

3 14. Checks code visually and on the computer.

g solution to the problem. This is an attempt to identify the critical steps in
- that problem-solution episode. Very important to her solution is the exam-
¥ ple which just precedes this problem in Siklossy’s book It is a definition
3 for set intersection and is given as:

3 (INTERSECTION1 (LAMBDA (SET1 SET2)

) (COND {{NULL SET1) ()

9 {(NULL SET2) (}}
3 {{IMEMSET (CAR SET1} SET2) co

i {CONS (CAR SET1) {INTERSECTION1 (CDR SET‘H

SET21 : .
(T (INTERSECTIONY {CDR SET1}) SET2}}}H o

The basic LISP control construct in this function is the condltional
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COND. It evaluates a set of conditional clauses. Each conditional clause
consists of a condition test and an action. The COND function executes the
action of the first conditional clause it encounters whose condition part is
true. There are four clauses here with the condition of the last T which
stands for true. So if none of the preceding three evaluate to true, then the
last will. The logic of the function is presented in Figure 5.4: If the first
set is empty return the empty set; if the second set is empty return the emp-
ty set; if the first member of the first set is a member’¢f the second set,
return a set consisting of the first member added to the result of a recursive
call with the CDR of the first set; otherwise just return the result of the
recursive call. Note that INTERSECTIONTI is a bit unusual in that there
is an unnecessary test for SET2 being empty. Significantly, $S carries this
unusual test into her definition of SETDIFF. '-

Our GRAPES simulation of §§ was provided with a representation of
INTERSECTIONI at multiple levels of abstraction, a specification of the
SETDIFF relation and a somewhat quirky relationship that our subject
recognized as she read the problem. This latter relation, which later caused
some difficulty for SS, was stated as: The SETDIFF of SET1 and SET2
is SET1 minus the intersection of SET1 and SET2. Our simulation was then

INTERSECTIONT [ SET1, S5ET2} is:

G | — [0
e ] —> (0]

First ol SET1 Add 1irst SETY
n SET2 —» | (o recursive step

—
SEYDIFF-(SET1, SET2 ) is: . .

—

— [=

First ol SET1

= | —
; Add first 8SETY -

{0 recursive step

FIGURE 5.4. A schematic view of the logic of the INTERSECTION1 and SET-
DIFF functions. Arrows point from conditions 1o actions. Conditions ate exa-
mined from top to bottom. The first condition that is true triggers iis
corresponding action 10 be evaluated.

3




¥ ‘f
e i in Tt e .__M_.__a..._»w.n.l..tm ¢ :

168 ANDERSQN, PIROLLI, FARRELL

given the goal of writing SETDIFF. Since it did not have any means of
directly solving the problem, the following default rule applied:

IF the goal is to to write a structure o _« : - ,
and there is a previous example . . o :
| THEN set a5 subgouls B T

R L I P,

1. Check the similarity of the example to the current pﬁlem 0 =
2. Map the example structure onto the current problem } g :

PR

: This production sets goals to first check the similarity of the spemflca-
! tions of INTERSECTION] and SETDIFF; and then map the code struc-
ture of INTERSECTION1 onto the SETDIFF code. This is an instance of
setting AND subgoals. If the first subgoal fails the second subgoal is not
attempted.

A set of comparison productions matched features from INTERSEC-
TION1 and SETDIFF. These productions found that both functions take
two sets, both perform some membership test, and both are recursivet.
These productions found a sufficient similarity (the criterion is arbitrarily
set in GRAPES) between INTERSECTION1 and SETDIFF, so the first
subgoal was satisfied. Next, the following structure-mapping production
matched the goal to map INTERSECTION’s conditional structure and
the fact that such structures generally have several cases:

PRDWISIIE

e i

IF the goal is to map an example structure
onto the current problem
and that structure has known components
THEN map those components from the example
to the current solution

e o . .
LT o 1 N SRS NN RS

This production sets up subgoals to map each INTERSECTION]1 condi-
tional clause. Our subject gave clear evidence in her protocol of also in-
tending to map the cases of the conditional. The basic rule we assume for
mapping each conditional clause is; -

IF the geal is to fnap a conditional clause
THEN map the condition of that clause
and set as subgoals:

Subjects frequently state that they know a solution will be recursive because the problem 3
is in the recursion section of the text.
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1. To determine the action in the current case
given the mapped condition.

2. To code the new condition-action clause. )

There is some evidence that SS had acquired this rule from earher problems
involving non-recursive conditional functions.

Her mapping of the first two clauses of INTERSECTIONI were rela-
tively straightforward. For the first clause she decided the condition would
be (NULL SET1) and the action NIL. This is a verbatim &py of the first
clause of INTERSECTION]I, but from her treatment of later clauses we
do not think she was simply copying symbols. The second clause had (NULL
SET2) as its condition, just as in INTERSECTION]I, but for the action she
put SET1 which does not match INTERSECTIONI. Her protocol at this
point included “. . . if there are no elements in SET2 then all the elements
in SET1 will not be in SET2, so if SET2 is the null set the the value of SET-
DIFF is SETL.” So, it seems pretty clear that she was reasoning through
the semantics of the condition of the clause and what the implications were
for the action of the condition. Qur simulation, working with mappings
of meaningful abstractions of the conditional clauses of INTERSECTIONI,
produced the same problem-solving behavior as did §§. - *

Our GRAPES representation of the meaning of the third clause was “test
if the first element should be added to the answer” —which is a rather liberal
interpretation of the third condition. Our principal justification for this
representational assumption is that it allows us to simulate the behavior of
the subject. Both the simulation and S$S refined this condition further to
the condition “test if the first element is NOT a member of the second set.”
The problem with this representation of the condition is that neither the
simulation nor the subject can directly code this in LISP, and thus the at-
tempt fails. This led both to try to refine the alternate “quirky” definition
in working memory: The SETDIFF of SET1 and SET2 is SET1 minus the
INTERSECTION of SET1 and SET2. This led both the subject and simu-
lation to set a subgoal of trying to refine “minus.” In trying to refine the
semantics of minus, both simulation and subject realized that it was equiva-
lent to SETDIFF, the function they were trying to define. Thus the subject
had refined the goal of defining SETDIFF into the goal of defining SET-
DIFF. This is another failure condition, and so simulation and subject at-
tempted to map another representation of the third clause of SETDIFF.

At this point both simulation and subject mapped a very literal transla-
tion of the INTERSECTIONI clause: “Test if the first element of SET1
isin SET 2.” Thus, the third clause of INTERSECTION1, (MEMSET (CAR
SET1) SET2), was used nearly literally as the clause for SETDIFF. Using
the specification of SETDIFF, both simulation and subject declded that
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the output result should not contain the currently tested first element of
SET1, and that SETDIFF should repeat over all elements of SET1. SS decid-
ed to simply call SETDIFF on the rest of SET1 in this case. Thus, her ac-
tion became (SETDIFF (CDR SET1) SET2). The coding of the action was
produced in GRAPES by another structure-mapping production:

PG A . 2 B o 4.

- IF the goal is to code a relation

and a code template exists for relation
THEN map the code template.
This production matched to a template which states: “To repeat a function !
over the elements of a set, call the functlon, again with (CDR set) The 3 ceo:

resulting code matched that of SS.
8S and the simulation then turned to coding the last eondmona] clause
of SETDIFF. Both were still mapping a relatively literal copy of
INTERSECTION1 and consequently both copied the T as the condition Tt
for the fourth clause of SETDIFF. The semantics of this condition were
refined by both SS and the simulation to the case “the first element of SET1

is NOT is SET2.” Again working from the semantics of the SETDIFF specifi- The £
cation, both GRAPES and SS decided that this condition implies that “the single .
tested element should be added to the resuit.” Our subject floundered at third cla
this point because, once again, she did not know how to code the relation Note hov
she had refined. She inspected the superficial structure of the relationship SS conce
between SETDIFF as she had written it and INTERSECTION1. She no- Tt sho
ticed that, while the conditions of clauses 3 and 4 of INTERSECTION1 : recu.rsior-
could be mapped onto the conditions of clauses 3 and 4 of SETDIFF, the the case

action of INTERSECTION] clause 4 had been mapped onto the action of sive comt
SETDIFF clause 3. She solved the structural analogy and wrote the action we saw

from the third clause in the position of the fourth clause. We gave GRAPES

the goal of solving the structural analogy between the last two clauses of j
the production. Having this goal given, it then set about solvmg the analo- ' Conclusion
gy just as had our subject. %

After solving the problem, GRAPES goes into a knowledge compnlat:lon 3 There ar
phase during which it compiles into single production segments of the i we see th
problem-solving episode. The details of compilation are discussed in An- 1 f’“l“ﬁ‘m-
derson, Farrell, & Sauers (1984). For present purposes, we are interested ! Is never
in the products of the compilation process. A number of production rules i tage of t
were formed but two important ones that were mvoked in the later probl- ' ing of wt
solving are the following: LT L ;I’T

vial.
Cl: IF the goal is to code a relation on two sets SET1 and _SET2 The se
and the relation is recursive T : solvinge

THEN code & conditional and set as subgoals to: o .' problem.
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1. Refine & code a clause
to deal with the case when SETI is NIL
2. Refine & code a clause .
" to deal with the case when SET2 is NIL.
3. Refine & code a clause
to deal with the case when the flrst .
element of SET] is a member of SET2 A

R
4. Refine & code a clause ) d ..i
to deal with the else case. - -».?" e
C2: IF the goal is to code a relation causing a functlon

to repeat on the rest of a list
and this occurs in the context of writing a functmn
that codes the relation on the list -
THEN insert & recursive call of a function with the argument
the CDR of the list .

The first production compiles the analogy to INTERSECTIONI into a
single rule. The second production was learned in the context of coding the
third clause of SETDIFF. It is the first recursive rule that the subject has.
Note however that its condition does not have a recursive semantics. Rather,
SS conceives of the recursive call as causing the function to repeat.

It should be noted that C1 and C2 above constitute a fragment of CDR-
recursion, and an approximation at that. Cl is the first step to setting up
the case structure that is needed in CDR-recursion. C2 provides the recur-
sive control. However, this is a long way from the control structure that
we saw in the ideal model’s solution to POWEHSET

Conclusions

There are three important conclusions that this example llustrates. First,
we see the absolutely critical role that analogy plays in enabling the problem
solution. The analogical mapping from INTERSECTIONI to SETDIFF
is never a mindless symbol-for-symbol mapping. Rather, it takes advan-
tage of the subjects” knowledge of LISP and a representation of the mean-
ing of what is mapped. Still, we see the subject struggling with exactly what
representations to map. The process of problem-solving by analogy is hardly
trivial.

The second conclusion is the importance of oompllatlon of this problem-
solving episode to future performance. In looking at the solution to the next
problem, SUBSET, we will find the compiled productions C1 and C2 ab-
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solutely critical. The related third conclusion is about the development of
recursive programming skill. It is developing piecemeal and by approxi-
mation. With successive problems, we will see the simulation developing
a set of productions that handle recursive programming with increasing com-
pleteness, Lz

g
I

SUBSET _
The SUBSET problem is specified in Siklossy as: -

P )
Define a predicate SUBSET of two sets SETI and SET?S. The value of (SUB-
SET SET1 SET?) is T if SET1 is a subset of SETZ; otherwise it is NIL. SET1
is a subset of SET2 if all elements of SET1 are members of SETZ. o

The schematic protocol of SS solving this problem is given in Table 5.3.
SS§ took under half an hour to solve this problem in contrast to more than
one hour that she spent on SETDIFF. . 3
The first production to apply in simulating this protocol was C1 formed
in SETDIFF. It sets out the case structure for the conditional. Both subject
and simulation consulted the semantics of the subset relation and determined
that the answer for the first case, when SETL, should be NIL. SS consid-
ered the case when SET2 is NIL but decided to omit this case for reasons
that are unstated in her protocol. At the analogous point in our simulation
we simply deleted the goal to refine and code the second conditional clause,
The third case is one in which the first element of SET1 is 2 member of
SET2. Both subject and simulation, consulting the definition of SUBSET,
decided that the program must go on to check whether the other members
of SET1 are part of SET2. Setting this goal evoked C2 in the simulation
and led it to code the recursive call (SUBSET (CDR SET1) SET2). Finally,
the program and subject determined that in the else case, the correct value
is NIL. ' oL
Thus, we see that the coding episode progresses without the search as-

i |."i'".I.h;"i"""*'i&""' -h it RO R w1y WSt e e

quate to handle a small set of CDR-recursive functions, of which SUBSET
is one. From this episode one additional relevant production was compiled
to reflect the three-clause solution to this problem: C e

C3: IF the goal is to code a relation on two sets SET1 andSE
and the relation is recursive R
THEN code a conditional and set as subgoals to: . . ..

1. Refine & code a clause S
to deal with the case when SET1 is NIL.

{DEF

Code
{DEF

8. Checks
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TABLE 5.3
$5's SUBSET Protocol

. Considers case [NULL SET1). Decides action should be T. Cod I

. Reviews SETDIFF soiution.

. Reads SUBSET problem.

. Writes
(DEFUN SUBSET (SET1 SET2} ”,
(COND 'y fzb
LAl - ,‘

Ul"

(DEFUN SUBSET (SET1 SET2)
{COND (INULL SETH) T} y

. Decides not to worry about the case {NULL SET2).

. Considers case {MEMBER (CAR SET‘!].SETZI, Decides that the function must go an

to check the rest of SET1 to see if it is a SUBSET of SET2. Code becomes:

(DEFUN SUBSET (SET1 SET2)
(COND {(NULL SETT) T)
{{MEMBER (CAR SET1} SET2)
(SUBSET (CDR SET1) SET2)

. Considers T case—{CAR SET1} is not a member of SET2. Decidas value is just NIL.

Code is:

(DEFUN SUBSET (SET1 SET2)
(COND ((NULL SETH T)
({MEMBER (CAR SET1) SET2)
{SUBSET {CDR SET?1) SET2})
{T NIL))

. Checks code visuafly and an the computer.

2. Refine & code a clause to deal with the case when the first
element of SET1 is a member of SET2.

3. Befine & code a clause to deal with the e]se clause.

POWERSET |
The POWERSET problem is specified in Siklossy as:

Define the POWERSET of a set SETT to be a function that calculates the
set of all subsets of SETT. _ .
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Example: (POWERSET (QUOTE (YALL COME BACK))) has as value the

set ((YALL COME BACK)(YALL COME)(YALL BACK)(COME —_—
BACK)(YALL)(COME)(BACK)()). o ) 1. Reads prot
Hint: If a set-has N elements, its POWERSET has 2—to-the—n elements _j 2. Writes (DE

' o . 3 Usesthe e
The schematic protocol for S§’s solution is given in Table 5. .4. In con- set of all s-

trast to the SUBSET problem, SS took three hours to solve the POWER- 3 the null bs:

SET problem. We take this as evidence that she was rather shq;f on general g 4. Considers
: recursive programming skill. | (DEFUN
Our GRAPES simulation was presented the goal to write POWERSET H
and production C3 partially matched in this situation. It was only a par- ¥
tial match because Cl applies to two-argument functions and POWER- n 5. Considers ~
: SET takes only one. The second goal set by C3 involved a test of whether {CAR SET-
. the first element of SETT was a member of the uninstantiated second list. ; tion of the
' SS actually did momentarily consider a test of the first element when she & {DEFUN
reached this point in her coding. However, she gave up and turned to the i
; else case. Note that the evidence is that C3, formed after SUBSET, was |
i the one to apply here, and not Cl, formed after SETDIFF. If Cl had ap- !
plied we would also have expected to see mention of the (NULL SET2) test i res the
in her protocol — which had been considered and rejected in the SUBSET 6. Realizes th:
: protocol. Instead, we only saw consideration and rejection of the (MEM- 7. Decides thz
_ BER (CAR SET1) SET2) test from C3. As with any protocol evidence this T (SETT
! is of course only circumstantial. ‘
: Not surprisingly, the case that caused SS difficulty was the else clause. 8. Realizes th:
_5 She originally failed with efforts to enumerate all members of the answer. 9. Attempts tc
< Eventually, the experimenter led her through an inspection of the relation- UNION of <
ship between (POWERSET (SETT) and (POWERSET (CDR SETT). She yond exarr
‘ came to the insight illustrated in Figure 5.3 and clearly articulated that 10. Decides the
A insight. Our simulation was similarly interrupted and given the goal toin- with all suc.
2 duce the POWERSET relation by performing the same comparison. It also combinatic-
’ came up with the critical POWERSET insight. ' 11. Tutor gives
3 The experimenter intervened to tell SS to assume she had a magic func- would it wc
# tion, CONST, which ealculated Z in Figure 5.3 from Y—that is, it adds 12. Tutor asks ¢
§ the first member of the input list to Y. The effect of this intervention in _ 13. Tutor instr.
i the simulation is to have GRAPES postpone the coding of CONST and com- " SETh.
3 plete the coding of POWERSET — which corresponds with the ﬂow of con-" )
§ trol that we see in our subject. 14. SS realizes -
4 The subject, in trying to code the recursive step, at first ]ust wrote comaining
kA (CONST (CAR SETT) (POWERSET (CDR SETT)})). Only when the ex- 15. Tutor instr.
perimenter pointed out that this would not include the subsets without (CAR_ SET(COR <
B SETT) did she change her code to (UNION (POWERSET (CDR j 16. SS realizes -
5 SETT)){CONST (CAR SETT)(POWERSET (CDR SETT)))). We were able (CAR SETT

to simulate this in GRAPES by letting the insight X = Y + Z in Fi_ ire
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TABLE 5.4
§5's POWERSET Protocol

L

10.

13.

12,
13

14,

15.

. Reads problem.

Writes (DEFUN POWERSET (SETT}.

Uses the example POWERSET { {(YALL COME BACK) ) to define the answer as the
set of all sets of one element, all combinations of two elements, the whole list and
the null list. ,:ﬁ,

Considers case (NULL SETT). Decides that result wiill be NIL. . ‘1"‘ kg

(DEFUN POWERSET (SETT) T
{COND ({(NULL SETT} ()

. Considers T case. Decides result will be the set containing SETT, the null list, the

{CAR SETT} and the IPOWERSET {CDR SETT). Omits the null list since it is the ac-
tion of the first ciause. Code is:

(DEFUN POWERSET (SETT)
(COND ((NULL SETT) {}}
(T (SETT {CAR SETT) -
{(POWERSET {CDR SETTHHH

. Realizes that function will not obtain all combinations of two elements.

. Decides that (CDR SETT) is one combination. Begins to rewrite final clause as

(T (SETT (CAR SETT} (CDR SETT)

. Realizes that other combinations of twao elements will not be easily obtained.

. Attemnpts to plan a way of getting the combinations of two elements by taking the

UNION of each pairwise combination of set elements. Has difficulty generalizing be-
yond example.

Decides that for N-element list, the result contains the UNION of the (CAR SETT)
with all successive CDAs of the list and all CARs of the CDRs, and with all of the
combinations of each. 5till cannot plan a way of getting the combinations.

Tutor gives a hint: Assuming that POWERSET works for a set of a certain size, how
would it work for the next larger size? §5 doesn’t use hint.

Tutor asks 55 to write out the answer for the POWERSET of the (COR SETT).

Tutor instructs SS to compare the POWERSET (CDR SETT} with the POWERSET
(SETTI. .

SS realizes that POWERSET {SETT is the POWERSET {(CDR SETT) plus all the sets
containing the {CAR SETT).

Tutor instructs SS to make an explicit comparison between the sets in the POWEFI-
SET (CDR SETT) and all the sats containing the (CAR SETT).

. 85 realizes that the sets ¢ontaining the {CAR SETT) can be obtained by CONSing the

{CAR SETT| into sach set in the POWERSET (CDR SETT).

{Continued}
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TABLE 5.4
{Continued)

SR it

17. S8 wonders how she is going to CONS the {CAR SETT} into each element in a list
of lists. Tutor tells S5 to assume that she has a subfunction that will do this.

18. At the tutor's prompting S5 names the subfunction CONST, specifies that it will take
two arguments (an atom and a list of lists), and returns a list of lists in which each
element list contains the atom argument. NP

19. Decides that the value of POWERSET in the T case will be S S
(CONST (CAR SETT) (POWERSET (CDR SETT}HH

20. Begins to work through examples. Tutor points out that the POWERSET of () is not
just {) but 1)), 7 g

21. Tutor points out that the current function will not return the sets in POWERSET that
don’t contain the (CAR SETT).

22. SS decides that the T case should resuit in the unicn of the POWEHSET {CDR SETT}
with the (CONST {CAR SETT) {(POWERSET {CDR SETT))). Code is:

{DEFUN POWERSET (SETT)
(COND (iNULL SETT) (1)}
{T (UNION (POWERSET (CDR SETT))
{CONST (CAR SETT)
(POWERSET {CDR SET))in

23. Tries out examples of length one and two. Hand solutions work.

24. Realizes that CONST is undefined as POWERSET is being typed in. Begins definition
of CONST.

25. Formulates plan to CONS the first argument to CONST into each element of the sec-
ond argument. Writes:

{DEFUN CONST {SIL LIS}

26. Decides that function does n.ot need any conditional statements. )

27. Decides that the value of CONST will be the UNION of the {CONS SIL (CAR LIS))
with (CONST (CDR L_ISI}. Coda is:

(DEFUN CONST (SIL LIS}
HﬂWONICONSSHJCARLBH[CONST{CDRLBH

28. Whiie typing in function, realizes that recursive call to CONST ié missing an argu-
ment. Replaces ICONST (CDR LIS) with (CONST SIL (CDR LISH.

29. Works through examples by hand. Types in CONST. .

30. Tries out example on computer. Gets an error message indicating an infinita recur-
sion taking place. ; . - :

{Continued)
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{Continued)

31.

32,

33.

34,

35.
36.

37.

38.
30.

40.
41,

Traces CONST. Realizes that function does not stop when second argument is
empty,

Decides to use conditional statements. Considers case of (NULL LIS) and decides
that result will be (CONS (SIL ()1). Then decides that this resul( is equal 10 (SIL).

Code is: L
s
(DEFUN CONST (SIL LIS) ﬁ},.«

(COND {{NULL LIS} (SILh

Considers T case and realizes that the result will be returned by the pre\-.;iousiy writ-
ten code. e
(DEFUN CONST (SiL LIS)
(COND {{NULL LIS) (SIL})
(T (UNION {CONS SIL {CAR LIS)}
(CONST SiL (COR LIS

Trigs out function on computer. Gets etror message stating that SIL is an undefined
function. Changes {SIL} back to {CONS SIL {)).

Tries out function again. Answer is not the right list of lists.

Traces UNION and CONS and tries function again. Cannot understand why the func-
tion is not returning the desired result,

Tutor intervenes and prods S§ into reconsidering the first condition—(NULL LIS).
Convinces 55 that action should be ().
(DEFUN CONST (SIL LIS)
(COND {(NULL LIS) ()
(T (UNION (CONS SIL {CAR LISH
(CONST SIL {CDR LISHIN)

Tries out function on the computer. Answer is still not in right form.

Tutor prods S8 into realizing that UNION should be CONS. SS has difficulty because
she believes that CONS takes an atom as its first argument. Code is:
(DEFUN CONST (SIL LUS)
(COND ((NULL LIS) (1
(T (CONS {CONS SIL {CAR LIS
{CONST SIL (CDR LISH N

Tries out CONST on computer and it works.

Tries out POWERSET on computer and gets error message saylng that NIL i 1s an
undefined function.

{Continued)
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TABLE 5.4
“AContinued)

42. Quotes the list of {} in the first condition of POWERSET. Code is: _

(DEFUN POWERSET {SETT) '
(COND {{NULL SETT) “tt)) ) e
(T {UNION {POWERSET {CDR SETT)).
(CONST (CAR SETT) 3" %
(POWERSET (CDR.SET))IN)

43. Tries out POWERSET again and function works.

/

5.3 degrade to X = Z. This was produced simply by a loss of features in
the working-memory representation of the insight. The experimenter’s in-
tervention was simulated by replacing the full X = Y + Z into working
memory.

The simulation formed a production rule to summarize the two-clause
solution to this problem: '

£

C4: IF the goal is to code a relation on one list SET1
.and the relation is recursive
THEN code a conditional and set as subgoals to:

1. Refine & code a clause
to deal with the case when SET1 is NIL.

2. Refine & code a clause to deal with the else case.

This is very much like the production for setting up CDR-recursion in the
ideal model, but we will see that there still is a critical issue of having it
evoked in the right situations.

For purposes of our analysis of recursion, the important observation is
that the recursive calls to POWERSET were not generated by the produc-
tion €2 compiled in the context of doing SETDIFF. Rather the code was

generated by structure-mapping over the representation built up in the for- .

mation of the POWERSET insight.

Another production learned in the POWERSET episode has an impact |

on future performance:

C5: IF the goal is to add result] and result? to form a list
THEN write (UNION resultl result2) e

N TR

This production is a compilation of the problem-solving involved in coding
the final action of POWERSET, and it applies when there is a goal to com-
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bine the results of two function calls into 2 list. As we will see in the coding
of CONST, this production is overly general. Often in synthesizing recur-
sive function one must consider more specific details concerning the results
of function calls and the form of the list being constructed

CONST : e '

After defining POWERSET, SS went to the solutlon of C.ONST Here she
immediately saw an iterative plan for performing CONSTE; “Fve got to take
successive CARs of the second argument and each time"CONS the CAR
of SETT into that set and the final value of CONST will just be the set
of all those CONSes.” SS refined this iterative conception further into a plan
to perform a CONS operation with the first element of the input list and
to make the function CONST repeat on the rest of the list. She then wrote
two separate segments of code to instantiate this plan. First, she wrote
{CONS SIL (CAR LIS)), which satisfies the first component of her plan.
Next, she wrote the recursive call (CONST SIL (CDR LIS)) which satisfies
the plan to make CONST repeat. Our simulation, which was provided with
a representation of 88s plan for iterative solution, wrote the same code seg-
ments. The simulation first applied a production coding CONS and its ar-
guments (learned in previous sessions). It then applied the production C2
learned in SETDIFF to code the recursive call. We should point out that
the semantics of production C2 imply “something that causes repetition to
happen,” and this appears to be the meaning 58 associated w1th the recur-
sive call that she coded.

At this point in her protocol, S8 decided to combme the results produced
by her two code segements and she used UNION to perform this operation,
Our simulation also selected UNION to combine function results by apply-
ing the newly learned production C5. The code pmduced by SS and the
simulation was:

(DEFUN CONST (SIL LIS}
{UNION (CONS SIL {CAR LISH(CONST SIL (CDF{ LIS}}H

This solution lacks a feature critical to all recursive programs It l:loes not
specify a terminating condition for the recursive process. Without a ter-
minating condition the above function leads to an infinite recursion. It is
interesting that the subject notes that her definition of CONST differs from
previous recent function definitions in that it does not have a COND struc-
ture, but is adamant that such a structure is not needed.

Note that the application of C4 in this case would have led to the correct
control structure. We have assumed that the reason why C4 did not apply
can be traced to the way SS identified recursive programs from problem

o . B, 5 1P GRS ¥ G
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specifications. We believe that she characterized SETDIFF, SUBSET, and
POWERSET as recursive functions because they were implicitly identified
as such in the textbook’s problem section on recursion. CONST, however,
was sitnply identified by SS’s tutor as a helper function to POWERSET.
It has been noted in other studies (e.g., Larkin, McDermott, Simon, & Si-
mon, 1980) that novices often have the skills required to solve a problem,
but are inept at characterizing the problem features in an appropriate man-
ner to evoke those skills. Thus it is not enough to just haye the right opera-
tors; they have to be invoked in the right circumstandés,™ .. -

S8 and our simulation tried out the above version of CONST, and an
€ITor message was generated indicating infinite recursion. By using LISP
facilities which trace out the recursive-operation of a function, SS's tutor
pointed out that the function did not stop when the input list LIS was empty.
This led SS and the simulation back to the goal of redefining the function.
This time SS characterized the function as having two cases: when the in-
put set is empty, and in the else case, She and the simulation then each
set goals to determine and code the conditional clause for the (NULL LIS)
case, and to simply copy the already written recursive code into the action
for the else case, o

The remainder of the protocol was devoted to working through her mis-
conceptions about the code. One of §§'s misconceptions concerned the use
of UNION to combine the results of (CONS SIL (CAR LIS)) with the recur-
sive call to CONST. The function UNION combines the elements from two
lists into a single list. However the appropriate action in this case is to in-
sert the result of (CONS SIL (CAR LIS)) into the result of the recursive
call. To illustrate this more clearly, the UNION of the lists (A B) and (C)
is (A B C). CONSing the same lists yields ((A B) C). This difference often
confuses students {(Anderson & Jeffries, 1985), When SS ran the version of
CONST which contained UNION » she obtained an output list that differed

{DEFUN CONST (SIL LS} B
(COND {NULL LIS} ())) ' T
(T (CONS (CONS SIL (CAR US))  » . -
{CONST SiL {CDR LIS)))}

The important production compiled from this final episode-of debug-
ging is: : Coo R

S R,

Wi, Sl i

R A 0

C6:

Thus, t
mentst
patterc
we See
prograr

This P(
of a set
the forr
terminz
larto tt
that the
space o:
ing late
instance
POV
logical ;
plex int-
the mar
tobem.
compile
charact:

We see
in these

LR
to try tc




IFF, SUBSET, and
mplicitly identified
CONST, however,
n to POWERSET,
‘mott, Simon, & Si-
to solve a problem,
I appropriate man-
e the right opera-
2es,

f CONST, and an
ion. By using LISP
‘unction, $S's tutor
list LIS was empty.
‘ining the function.
cases: when the in-
nulation then each
or the (NULL LIS)
‘ode into the action

& through her mis-
» concerned the use
1S)) with the recur-
elements from two
‘ this case is to in-
dt of the recursive
lists (A B) and (C)
“is difference often
ran the version of
ut list that differed
1g out that the ter.
and that the most
S ST1, (CAR LIS))
1, both SS and our
he correct code:

pisode of debug-

PR

. 5. LEARNING TC PROGRAM RECURSIVE FUNCTIONS 181

Cé: IF the goal is to code a relation adding result] and result2
and the code occurs in the context of writing a function
and the result2 is produced by the function repeating
~ an operation on a list
and the function returns NIL when given NIL as an ar-
gument . :

THEN write (CONS result! result?) = ;ﬂg@

Thus, the simulation has learned a rule which uses CONS to add data ele-
ments to a list constructed by CDR-recursion. This is a fairly standard code
pattern seen in CDR-recursive functions (see Soloway & Woolf, 1980). Thus
we see the learning of another Jimportant component of recursive
programmiing. '

SUMMARY

This POWERSET episode gives further evidence for the gradual accrual
of a set of productions that will adequately apply CDR-recursion. We see
the formulation of a basic CDR-recursion procedure involving two cases—a
terminating case and a recursive case. The latter production is highly simi-
lar to the expert’s general recursion production P1. We should note however
that the productions learned in POWERSET do not generalize to the full
space of CDR-recursive functions, Although SS got noticably better at cod-
ing later recursion problems, there were still many unfamiliar patterns and
instances that forced her to fall back on general problem-solving skills,

POWERSET also provides another example of the importance of ana-
logical processes in LISP problem-solving and learning, This time, a com-
plex interrelation of worked-out concrete examples provides the source of
the mapping. However, because the goals regarding the exact comparisons
to be made were generated by an external source (§8’s tutor), they are not
compiled into any productions which specify a more general means of
characterizing recursive relations.

GENERAL CONCLUSIONS

We see a fair bit of evidence for our analysis of the difficulty of recursion
in these protocols, Specifically:

1. Recursion is difficult because it is unfamiliar, The subject is forced
to try to work by analogy from examples. '
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2. Recursion is difficult because of imprecise instruction, The subject
was really forced to learn almost everything from her mistakes. An interest-
ing issue is what would happened if the text had provided her directly with
the rules that she instead had to induce. These rules would have been in
English, rather than in production form, and so there would still be some
learning in converting them; but we would predict more rapfd and less pain-
ful and error-ridden learning, ok T

3. Recursion is difficult because of interference from sther methods of
solution. S§ initially characterized recursion as a form of iteration. This
eventually led to her failure to correctly code CONST on her first attempt.

4. Recursion is difficult because jt js complex. The subject is still learn-
ing the patterns that define the application of CDR-recursion to various

5. Recursion is difficult because it is exacerbated by the difficulty of
LISP. We saw numerous examples, particularly in POWERSET, in which
the subject’s difficulty with the nonrecursive aspects of LISP programming
complicated the learning of recursion. T L

It is interesting that nowhere in these protocols from $S do we find her
trying to perform a recursive menta] operation. This is further evidence for
our claim that the difficulty of recursive programming does not directly
arise from the difficulty of performing recursive mental operations.

Finally, we would like to note that the success of GRAPES in simulating
the protocols of SS is further evidence for our theory of how LISP functions
are typically programmed. Specifically, the basic flow of control is top-down
problem decomposition. Injtial problems are solved by structural analogy
to worked-out examples, Subjects summarize these solutions by new com-
piled operators. These Operators are keys to the solution of Iater problems,
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