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Abstract

There have been a number of production system models
which have recenily made substantial advances in modeling
higher-level cognition. These type of modet offers only
comprehensive approaches to the modeling of higher level
cognition. This symposium will involve presentations by
four exemplars of this approach lo cognitive modeling
{ACT, CAPS, EPIC, and SOAR). The presentations will try
1o iHustrate the range of applications to which such medels
are appropriate, what the simileritics and differences are
among the various architectures, and what some of the
interesting research questions are within each architecture.

The ACT-R Theory

ACT-R (Anderson, 1993) is & model of human cognition
which assumes that a production system operates on a
declarative memory. It is a successor to previous ACT
production-sysiem models (Anderson, 1976, 1983) and
continues the emphasis on activation-based processes as
the mechanisims for relating the production system to the
declarative memory. Different traces in declarative
memory have different levels of activation which
determine their rates and probabilitics of being processed
by the production rules. ACT-R is distinguished from the
prior ACT theories in that the details of its design have
been strongly guided by the rational analysis of Anderson
(1990). Essentially, ACT-R is a production system tuned
to perform optimally given the statistical structure of the
environment.
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According to the ACT theories, knowledge is divided
into declarative knowledge and procedural knowledge. In
ACT-R, declarative knowledge is represented in terms of
chunks which are schema-like structures, consisting of an
isa slot specifying their category and some number of
additional slots encoding their contents. Below is a
graphical display of a chunk encoding the addition fact
that 3+4=7.

fact 3+ 4
isa addition-fact
addendl three
addend2 four
Sum seven

According to ACT, procedural knowledge, such as
mathematical problem-solving skill is represented by
productions. For instance, suppose a child was at the
point illustrated below in the solution of a multi-column
addition problem:
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Focused on the lens column, the following production
rule might apply from the simulation of multi-column
addition {Anderson, 1993):

PROCESS-COLUMN
IF the goal is to write out an answer in column ¢l
and d and d2 are digits in that column
and d3 is the sum of d1 and d2
THEN set a subgoal to write out d3 incl.

The first clause in this production matches the current
goal 10 process the iens column; the second clause
matches the digits in the tens column; and the third clause
matches a fact or chunk from long-term memory.
According to the ACT-R theory, an important component
of the time for this production to apply will be the ime to
retrieve the long-term memaories required to match the
production rule. So, in this case where 3 and 4 are in the



current column, the time 10 match the last clause will be
determined by the level of activation of the chunk
encoding 3 + 4 = 7. The next subsection will explain how
activation detertnines match time.

The presentation will describe an ACT-R model of
memory span to illustrate the activation computations,
limitations on capacity, and role of activation in partial
matching.

The Soar Unified Theory of Cognition

Soar is a symbolic cognitive architecture that implements
goal-oriented behavior as search through a problem space.
Complete discussions of Scar describe a hierarchy {rom
an abswract knowledge level down 1o a hardware-, or
wetware-dependent technology level (Polk &
Rosenbloom, 1994), but the two middle levels are of
primary interest when comparing Soar to other cognitive
architectures. The problem-space level describes
deliberate, goal-oriented behavior; the archilecture Ievel
implements the problem-space level and is concerned
with the mechanisms of memory-relrieval and learning,

At the problem-space level, Soar can be described as a
set of interacting problem spaces, where each problem
space comtains a sct of operators that are applied to states
to produce new states. A task, or goal, in a problem-space
is modeled by the specification of an initial state and one
or more desired states. When sufficient knowledge is
available in the problem space for a single operator to be
selected and applied to the current state, then behavior of
a Soar model is strongly direcied and smooth, as is skilled
human behavior. When knowledge is missing, cither
search in additional problem spaces may be nccessary to
locate the knowledge, or decisions must be made without
the knowledge, leaving open the probability of errors, and
thus, error-recovery activities. This produces more
complex branching and back-tracking performance, as
displayed in human problem-solving behavior.

The architecture level is itself a hierarchy. At the
lowest level, Soar consists of perceptual and motor
modules that provide the means of perceiving and acling
upon an external world. At the next level, associations, in
the form of symboiic productions, match the contents of
working-memory {comprised of the inputs of perception,
the output parameters for the motor modules, and purely
internal structure) to retrieve additional information from
long-termn memory. In conirast lo most classical
production systems, Soar's associations match and fire in
parallel, are limited in their action reperioire to the
generation of preferences for the activation of working-
memory structure, and aulomatically retract these
preferences when their conditions no longer maich.
Associations repeatedly fire and retract until no further
associations are cligible 10 do so, then Soar's decision-
level process weighs all the aclive preferences and
chooses & new problem-space, operator, or state.

Whenever the activations are not sufficient to allow a
unigue choice, the architecture responds by setting a
sublask to resolve this impasse, and the entire process
recurs. If the recursive processing adds new preferences
that are active in the original 1ask, Soar's architectural
learning mechanism (called chunking) creates a new
association between those working-memory struclures in
the original task that led, through a chain of associations
in the subtask, 1o the new preferences in the original task.
Thus, chunking effeciively transfers knowledge from the
subtask space to the original task space. Chunking
straightforwardly produces speed-up, but can also
inductively acquire new knowledge (Rosenbloom, Laird
& Newell, 1991).

Using an estimate of 50 msec per decision cycle, Soar
has been used to model human performance in many
different real-time tasks, from visual search, 10 natural-
language comprehension, to planning and problem-
solving lasks. The presentation will emphasize the
contribution of architeciural constraint on integrating
individually-developed models in the service of high-level
tasks that require these component capabilities.

JCAPS Simulation Systems for Modeling a
Limited-Capacity Working Memory

3CAPS is a Capacity-Constrained, Concurrent,
Activation-based Production System which instantiates a
capacity theory of working memory (Just & Carpenter,
1992}, The thcory proposes that a major constraini in
immediate processing in language comprehension,
problem solving, and spatial reasoning is the amount of
activation available 1o simultancously perform cognitive
compitations and actively maintain intermediate and final
products

3CAPS instantiates the capacity theory in a symbolic
processing environment {a production system} that
incorporates several aclivation-based, connectionist
mechanisms. First, the representations are graded, in that
cach representational element has an associated activation
level that changes when a production either increments or
decrements it, or when there is a global deallocation of
activation. An clement can enable a production 1o fire
only il its activation level is above some threshold.
Sccond, the processing is graded in that the productions
do their work gradually, over several cycles of the
production sysiem, by incrementally propagating
activation {rom source elements (0 output elements, until
the targetl clements reach threshold or some other process
intervenes.  Third, all satisficd productions can fire in
parallel.

The model's assumptions include:
1. There is a limited amount of activation {0 support

both information maintenance and computalions.
The demand for activation differs among tasks,



producing cognitive performance diflerences in
response limes and error rates. Individuals differ in
the amount of the aclivation resources that they
possess, accounting for some of the systematic
individual differences in cognitive performance.

2. In the event of activation demand exceeding the
supply, activation is partially deallocated both from
the processing function (producing a slowing of
processing because the productions will require more
cycles 1o propagate a given amount of activation),
and from the mainienance of previously computed
partial products (producing forgetting).

3. Capacity utilization, some measure of the
proportion of the resource pool that is being
consumed in a given {ime interval, is determined
conjointly by the size of an individual's resource pool
and by the demand of a given task.

Capacity utilization can be measured in the models as
the proportion of the resource pool that is in play. In
experimental studies, capacity utilization may correspond
1o workload or effort, and may be manifested in
physiologically based measures of performance, such as
brain activation, pupillary response, and ERPs.
Moreover, these capacity utilization eflects can be
evaluated as they are engendered by task effects and by
individual differences,

The 3CAPS system can be used for modeling diverse
tasks such as sentence comprehension (Just & Carpenter,
1992}, story comprehension (Goldman & Varma, 1995),
and human-computer interaction (Huguenard, Lerch,
Tunker, Patz, & Kass, 1993) and in aphasic
comprehension (Miyake, Carpenter, & Fust, 1994). The
presentation will describe recent 3CAPS models that
illustrate the effects of individual differences and capacity
constraints.

The EPIC Architecture Computational
Models of Human Performance

EPIC (Executive Process-Interaclive Conirol) is a
computational {ramework for constructing models of
human information-processing and performance which
couples perceptual-motor mechanisms with a production-
system representation of procedural skill. EPIC has a
production-rule cognitive processor surrounded by
perceptual and motor peripheral processors whose
properties are based on the current rescarch literature, We
are pursuing two lines ol work with EPIC: One is
detailed analyses of maultimodal, high-performance
human-computer interaction situations, the other is
understanding executive processes in human multiple-task
performance,

Our key principles can be summarized as follows:

1. Our computational models are built in terms of a
detailed general architecture that covers human
perceptual, cognitive, and motor mechanisms, and
which is required Lo be accurate and applicable across
task domains.

2. A central role is given to cognitive strategies for
task execution, which we represent using production
systems.

3. Exccutive processes for coordinating multiple
tasks are {rcated simply as additional sirategies, and
likewise are represented with sets of production rules.

4. EPIC does not assume an inherent central-
processing bouleneck.  We attempt to explain
performance limitations in both single- and multiple-
task sitwations in terms of the strategic effects of the
task instructions, limited working memory capacity,
and perceptual-molor consiraints.

Thus unlike the heavy emphasis on purcly cognitive
processes in many modeling efforts, we have undertaken
a detailed and explicit consideration of how perceptual
and motor mechanisms interact with cognitive
mechanisms to determine human abilities and limitations.
Our presentation provides a brief description of the EPIC
architecture and a summary of how we have applied EPIC
o human-computer interaction problems and complex
dual-task performance.
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