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Practice and Retention: A Unifying Analysis
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This article is concerned with an effort to elucidate the
relationship between the effects of practice and the effects of
forgetting. At least since Newell and Rosenbloom (1981),
the practice function has been commonly (e.g., J. R.
Anderson, 1982; Lewis, 1978; Logan, 1988; MacKay, 1982)
characterized as a power function. When we plot latency to
perform a task as a function of number of trials of practice,
latency appears to decrease as a power function of the
number of trials. The form of this function is

latency = A + B¥*P™°,

where A is the asymptotic latency, B is the amount of the
Jatency that can be reduced by practice, P is the number of
trials of practice, and c is an exponent that reflects learning
rate. Similar power functions may appear for other depen-
dent variables (J. R. Anderson, 1995), but the power
function relationship has been the most documented in the
case of latency.

The forgetting function has also been characterized as a
power function at least since Wickelgren (1972; Wixted &
Ebbesen, 1991). In a recent survey of the literature, Rubin
and Wenzel (1996) identified the power function as one ofa
number of functions that adequately fit the reported retention
data. Most often, in the retention literature, accuracy and not
latency is the dependent measure, but J. R. Anderson and
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Schooler (1991) and Schooler and Anderson (1997) have
shown that the power function description does extend to
latency measures. In this case the predicted function is

latency = A + B*T¢,

where T is time between presentation and testing and the
exponent d reflects the decay rate.

There have been a number of discussions about whether
these functions are really power functions. Heathcote and
Mewhort (1995) noted that most efforts to fit power func-
tions have ignored the intercept (A) and that when this is
included perhaps exponential functions produce a better fit.
R. B. Anderson and Tweney (1997) and Myung, Kim, and
Pitt (in press) noted that averaging data from exponential
functions can result in data that fit power functions better
than exponential functions. Rickard (1997) argued that the
power law of practice holds at best approximately only for
tasks that undergo strategy shift and that it can fit poorly
when there is a transition from computation to retrieval. The
goal of this article is not to advance the state of understand-
ing of the power function fits, although we had to be mindful
of these issues in pursuing our goal.

The goal of this article is to elucidate how the retention
and practice functions relate to one another and more
generally how retention effects and practice- effects relate.
There has been some discussion in the literature about what
the retention functions are like for different degrees of
practice (e.g., Bogartz, 1990; Loftus, 1985; Slamecka &
McElree, 1983). Also, with respect to latency measures there
has been considerable interest in the apparent lack of
forgetting at high levels of practice (J. R. Anderson &
Fincham, 1994; Schmidt, 1988). Using latency measures in
a priming experiment, Grant and Logan (1993) found that
priming increased as a power function of practice and then
decreased as a power function of delay. Itis also the case that
studies that advertise themselves as just studies of practice
have retention effects built in. These studies typically extend
over many days, and there is the day interval between
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successive practice sessions. Some of these experiments will
also give participants weekends off (e.g., Pirolli & Ander-
son, 1985), increasing the retention interval for every 6th
day of practice. The research reported here focused on
effects of practice separated by various intervals.

The studies reported here involved a paradigm introduced
by J. R. Anderson and Fincham (1994) and continued by
Anderson, Fincham, and Douglass (1997). In the first part of
these experiments, participants committed to memory eight
specific facts such as “Skydiving was practiced on Saturday
at5 p.m. and Monday at 4 p.m.” Although participants were
not aware of it at the time, they were learning examples of
rules about the time relationship between the two events for
that sport. In this case, the rule is that the second skydiving
event always occurred 2 days later and 1 hr earlier. We call
this rule +2, ~/. Only after memorizing these examples
was the significance of the examples explained to partici-
pants. and the participants were then tested with rule-
application problems in an interface like that illustrated in
Figure 1. Participants were given either the first or second
time (day and hour) and had to predict the other time. In the
case in Figure 1, where the first time is given as Friday at
3:00 p.m., they would have to predict that the second time
was Sunday at 2:00 p.m. They both copied the given
elements and made their prediction by clicking the relevant
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elements in the boxes below. We were interested in the speed
and accuracy with which they could do this. The example in
Figure 1 involved going from the first time to the second time,
but half of the rules in Anderson and Fincham (1994) required
participants to go from the second time to the first time.
Although Figure 1 illustrates a rule trial, in other condi-
tions participants were given retrieval trials that are consid-
erably simpler. On a retrieval trial, participants were pre-
sented with the sport and 2 days or the sport and 2 hr from
the original example that they studied and they just had to
recall the remaining two (days or hours) from the example.
Thus, they might see skydiving, 5 and 4 and had to recall
Saturday and Monday. Based on the adaptive control of
thought—rational (ACT-R) theory (J. R. Anderson, 1993),
we called this a declarative task, whereas we called rule
application a procedural task. J. R. Anderson and Fincham
(1994) compared how much better participants could apply
their knowledge in the direction practiced versus the reverse
direction. They found that participants developed an asym-
metry such that they were faster in the practiced direction
than the nonpracticed direction, but only for the procedural
task. According to the ACT-R theory, procedural knowledge
is embedded in production rules that should display this sort
of asymmetry. In contrast, declarative knowledge is stored in
chunks that can be assessed equally well in either direction.

Test Phase display:
Stimuli displayed in top row User response displayed in bottom row -
e
oK |
N
o1 o1
O saturday O Sunday 02 O saturday O Sunday 02
O3 o3
Q Friday O Monday 8 : O Friday O Monday 8 :
[oX Q6
o2 o7
O Thursday O Tuesday Os QO Thursday O Tuesday Os
O Wednesday Os O Wednesday o9
Figure 1. An example of the interface used by Anderson and Fincham (1994) and in the

experiments reported here. Participants had to click an answer into the second row given the prompt
in the top row.
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Figure 2 shows the data from the third experiment of J. R.
Anderson and Fincham (1994). That experiment extended
over 4 days, and on each day participants had 32 blocks of
practice either applying the rules or retrieving the declara-
tive facts. In a block all items were tested once. Thus, there
were 128 blocks total broken into four groups of 32 blocks,
with each group separated by 1 day. To better expose the
initial learning, for each day we separately plotted Blocks 1,
2, 3; the average of Blocks 4 and 5; and then the average of
successive sets of 3 blocks. Overall, there was a clear
speed-up. However, at the beginning of each day there was a
noticeable slowing from the previous day that largely
disappeared after a few trials. Such initial slowing has been
found in many studies (e.g., Adams, 1961; Postman, 1969;
Schmidt, 1988), particularly in the motor skills literature,
where there is a tradition of looking at learning effects at
long delays. It is sometimes referred to as the warm-up
decrement.

The model fit to the data in Figure 2 comes from a
proposal of J. R. Anderson (1982) and J. R. Anderson and
Schooler (1991) that the overall strength of a trace can be
conceived as the sum of a number of individual strengthen-
ings, each of which is decaying away as a power function.
The strength function proposed by Anderson was the
strength accumulation equation:

n
strength = >, 74,
j=1

where 1 is the time that has passed since the jth occurrence
of the item and the summation is over the n times the item
has occurred. This equation adopts an interesting stance on
the contrast between instance-based models and strength-
based models of memory (e.g., Hintzman, 1976). It proposes

that there is a single trace but that its aggregate strength is
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Figure 2. Latency results from the experiment of Anderson and
Fincham (1994).
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the summation of strengthenings from specific experiences,
each of which is undergoing its own decay. J. R. Anderson,
Bothell, Lebiere, and Matessa (1998) proposed that each
item in the summation might be conceived of as reflecting
new receptor sites at a synapse whose efficacies were
decaying away as a function of time. However, it is also
possible to interpret this equation as reflecting multiple
traces, one for each occurrence, and the summation as
reflecting accumulation of individuals’ rates in a race model
like that of Logan (1988). This equation also has an analogue
to the sensory domain, where the perceived intensity of a
stimulus can be thought of as the sum of a number of
decaying perceptual traces (e.g., Cowan, 1987).

This strength accumulation equation serves as the basis
for the strength mechanism in the ACT-R theory (J. R.
Anderson, 1993; J. R. Anderson & Lebiere, 1998). Accord-
ing to that theory latency to perform a task is an inverse
function of this strength:

latency = A + B/ > e
j=1

Time (the #;) is measured in task blocks where each item is
tested once in each block. Thus, a presentation of an item in
Block 3 will have ¢; = 4 blocks by the time of Block 7. This
function both predicts power-law retention effects and
power-law practice effects. The power-law decay is directly
built into the function. In addition, as J. R. Anderson (1982)
showed, the summation approximately increases as a power
function proportional to n('~4, where n is the number of
practices and d is the decay exponent in the strength
accumulation equation.!

There are some complications in defining the items that
go in the sum for application to the data in Figure 2:

1. On Day 1, there are three passes practicing the items
before the experimental proper begins. This means that on
Block 1, there are already three terms in the sum that we
treated as 1, 2, and 3 blocks old. There is only initial practice
on Day 1, but these 3 extra practice trials are included in the
calculations for the rest of the experiment.

2. Also not plotted in Figure 2 are 2 blocks of transfer
trials at the end of each day’s experimental Session 2.
During these transfer trials each rule is tested once in each
direction. These transfer trials should be added into the sum
for later trials. These transfer trials occurred every day and
were added into the sums for subsequent days.

3. There is the question of how to measure the passage of
time (the #;s) across days. Suppose an item has age t; = x
blocks at the end of a day. What is its age m days later? The
model we fit to the data assumes that ; = x + m*H blocks,
where H is the number of blocks equivalent to a day’s
passage. Elliott and Anderson (1995) have found evidence
that H is much less than would be estimated from clock time,
suggesting that 7 may measure something more like the

VIf the ¢; are evenly spaced, 27_, 1/"” = Ar~4 37, j74, where At
is the spacing. The summation é =1 ~4 can be approximated by
calculating the integral j;)"j““ dj =n'"4(1 = d).
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number of interfering events. Similarly, McBride and Dosher
(1997) have shown that forgetting rates tend to slow down
dramatically after some period. Note that in this formula, we
do not assume that time resumes its quicker pace once the
next day’s session begins. In a sense, the effects of earlicr
practices have been ““consolidated” by the rest and continue
to decay at their slow pace.

We estimated separate B parameters for the procedural
and declarative tasks in Figure 2, and a single A, d, and H
parameter. The A parameter represents the minimal response
latency, and we set it to be equal for both conditions because
the minimum response involved the same mouse clicks for
both tasks. The B parameter reflects the difference in
cognitive complexity of the tasks. The setting of the d and H
parameters to be equal for both conditions reflects the
simplifying assumption that the effects of delay will be the
same for the procedural and declarative tasks. Minimizing
sum squared deviation from predictions, the values esti-
mated were B = 57.98 s for the procedural task, B = 20.71 s
for the declarative task, A = 3.98 s, d = 0.61, and H = 9.59
blocks. The correspondence between the predictions and
data is obviously good with an overall R? of .986. (If we
allow separate A, d, and H parameters for the procedural and
declarative tasks, the R? only improves by .001.) The mean
deviation in the predictions of the procedural data is 0.58 s,
whereas the standard deviation of the means? in Figure 2 is
0.61 s. In the case of the declarative data, the mean deviation
in the predictions is 0.47 s and the standard deviation of the
means is 0.35 s. Thus, the quality of the fits is almost as good
as could be expected given the noise in the data.3

One of the interesting aspects of this model is its account
of the warm-up decrement. By the next day the most recent
item is H = 9.59 blocks old, and the rest are even older.
Thus, there are no recent delays contributing to the sum in
the strength accumulation equation. At the end of the
previous day, there were a number of recent delays that
contribute dramatically to the sum. What happens over the
first few trials of the new day is that some of these recent,
large, but rapidly decaying increments get added to the
overall strength. Once these have been added in again, the
latency largely becomes a function of the total number of
presentations. Thus, warm-up effects in retention reflect the
introduction of the large but fast-decaying elements into the
strength accumulation equation. This accounts for the obser-
vations that retention improves dramatically given a re-
fresher trial and that there are virtually no retention losses
when one aggregates over many retention trials, washing out
the warm-up decrement (Healy & Bourne, 1995).

As mentioned earlier, J. R. Anderson (1982) showed that
this function is closely approximated by a power function
with exponent 1 — d, where d is the decay rate. The smooth
lines in Figure 2 show the best fitting power functions
3.38 + 23.59n~04! fitted to the procedural data and 3.38 +
11.35n704! fitted to the declarative data, where n is the
number of blocks (with the exponents of 0.41 and intercepts
of 3.38 constrained to be equal). Except for the blips at the
beginning of each day, these functions fit well. The R?
between these functions and the data is .966. Thus, the
simple power function fits about 2% less of the variance than

1123

the strength accumulation equation. Although this is not a
large discrepancy, it involves the qualitatively critical data—
long latencies at the beginning of the subsequent days. Note
that the exponent estimate is almost exactly one minus the
decay exponent (0.60) estimated for the strength accumula-
tion equation. This is what was predicted by J. R. Anderson
(1982).

There are a number of significant aspects to this analysis
based on the strength accumulation equation:

1. It integrates the effects of practice and retention into a
single function that can predict trial-by-trial changes in
latency.

2. It suggests that the effect of terminating the experimen-
tal session is to slow down the decay clock. Items age 32
blocks over a session, but they age only another 9.59 blocks,
between sessions. We call this the slowed-clock model, and
at the end of this article we compare this with the proposal of
a decreased forgetting rate. At the outset we should note that
this may imply that clock time is not the right way to think of
the critical variable. It might indicate that the critical
variable is the number of intervening events and that there
are fewer of these after the experimental session ends.

3. It suggests that the same memory dynamics apply to a
relatively complex rule application as well as a simpler
memory retrieval task. As suggested by J. R. Anderson
(1982) and Rickard (1997), this may be because the components
of a complex rule involve retrieval and the aggregate of these
retrievals has dynamics that approximate the components.

This single strength accumulation equation offers a consid-
erable integration to our understanding of retention and
practice effects in memory. We report more data that will
subject the strength accumulation equation to more demand-
ing tests. We think that this research establishes the strength
accumulation equation as the best characterization of the
relationship between practice and retention.

In this article we describe four additional studies using
this same paradigm to explore the results illustrated in
Figure 2. Our basic manipulation in much of this research
was to increase the retention intervals over which partici-
pants had to remember material. This allowed both a better
test of the underlying theory and the apparent observation
that the psychological time increased only slowly after an
experimental session. That is, by increasing the independent
variable, time, we were enabling more powerful tests of its
effect and its interaction with practice.

2 These standard deviations were calculated from the overall
Subject X Block interaction (where block refers to the points
plotted in Figure 2). This was an attempt to get an estimate of noise
in the data subtracting out participant effects. These were not totally
satisfactory estimates of noise in condition means; the noise was
probably higher in our estimates of the initial points because they
had longer means and because they were based on single trials.
Nonetheless, these standard deviation estimates provided us with
some estimates of the accuracy of measurement that we could
compare with accuracy in our predictions.

* This fit and all others are available as Excel files from the
Published ACT-R Model link from the adaptive control of
thought-rational (ACT-R) home page (http://act.psy.cmu.edw/).



1124

Experiment 1

In the first experiment we repeated the basic 4-day design
of J. R. Anderson and Fincham (1994) but inserted either a
week delay between Day 1 and Day 2 and then had Days 3
and 4 at 1-day delays (Condition 7-1-1), had 1-day delays
for Days 1-3 and a week delay between Day 3 and Day 4
(Condition 1-1-7), or a month delay between Day 3 and Day
4 (Condition 1-1-30). The contrast between the first condi-
tion and the other two allowed us to observe the effect of a
longer delay on Day 2 performance. We should see an
increased warm-up decrement when there is a week delay.
The contrast between the first and second conditions also
allowed us to study the effect of a week delay at different
points in the practice curve. The warm-up decrement
associated with a week delay should be less after 3 days of
practice. Finally, the contrast between the second and third
conditions allowed a further estimate of the impact of length
of delay. In all cases, our concern was not just with
qualitative effects but with the quality of fit with the
predictions based on the strength accumulation equation
given in the introduction.

Method

Participants. Thirty undergraduates (10 per condition) were
recruited to participate in this 4-day experiment. Because of
students not returning for later sessions, we were left with 8
participants in the 7-1-1 condition, 10 in the 1-1-7 condition, and 7
in the 1-1-30 condition. The first session lasted 2 hr, and the
remaining 3 sessions lasted between 45 min and 1 hr. Participants
were paid $4 per session. In addition, they received between $8 and
$16 bonus pay that depended on performance.

Materials. Table 1 shows the abstract structure of the eight
rules. Each participant saw different randomly generated examples
that embodied these rules. All four possible relations (-2, —1, +1,
and +2) between the 2 hr and days occurred twice in the eight
rules. Direction in Table 1 refers to whether the participant
predicted the second time from the first (right) or the first from the
second (left). Participants were randomly assigned to either Group
1 or Group 2.

Eight study examples were randomly generated, one for each
rule. For each day’s training session, 42 new examples were
generated for testing each rule in the training and transfer phases.
These training and transfer examples for each rule were different
from one another and from the study example. However, there was
no effort to avoid repetitions of examples across days.

Table 1
Abstract Structure of the Rules Used in Experiment |

Direction practiced

Pair Day/hour Group 1 Group 2
A +1/+2 Right Left
A =2/-1 Left Right
B —1/+1 Left Right
B +2/-2 Right Left
C -1/-2 Right Left
C +2/+1 Left Right
D +1/-1 Left Right
D —2/+2 Right Left

ANDERSON, FINCHAM, AND DOUGLASS

Procedure. The same basic interface illustrated in Figure 1 was
used in all phases of the experiment. The first day began with an
initial exposure to the eight study examples followed by a
three-pass dropout phase. During the initial exposure phase,
participants were told to study each of the eight examples and copy
them from the top row to the bottom row. This gave them the
opportunity to memorize the examples and to familiarize them-
selves with the interface before beginning the dropout learning
phase. In the dropout phase, they were shown just the sport name
and had to reproduce the 2 days and 2 hr by means of mouse clicks.
In each pass of the dropout phase, they were tested repeatedly over
the items until they had correctly recalled the times for each sport
name. As soon as they recalled the times for a name, it was dropped
out of the pass. The pass stopped when there were no more items.
They were then tested on all the items anew for another pass.

" The dropout phase was followed by the training phase in which
participants would see just the first day and hour and have to predict
the second or vice versa. However. they were required to click both
the day and hour for both the first and the second time, with one
pair being a copy and the other pair being a prediction. If
participants made an error, they were shown the correct answer.
The training phase for a day involved 40 blocks in which each rule
was tested once.

The training phase was followed each day by a transfer phase in
which each rule was tested once in both directions. This had been of
interest in previous studies, in which we were looking at the
reversibility of the rule knowledge. We do not analyze these
transfer trials, but, as in the fits to Figure 2, we counted them as 2
additional study blocks on that day for purposes of applying the
strength accumulation equation on later days. Including these 2
extra blocks mattered little to the predictions, but we kept them in
the equation for purposes of correctly representing the participants’
experience.

Results and Discussion

Figures 3 and 4 show error rate and latency* as a function
of training blocks of practice. Again, we have separately
plotted performance on the first 3 blocks of each day. After
this, successive groups of 3 blocks have been collapsed
together as a point except for the last 4 (37-40), which are
plotted as a single point. In the case of aggregated blocks the
data are plotted as a function of their average block number.
There appear to be substantial differences in the perfor-
mance of groups on the first day, where all participants were
treated identically, but these differences among groups were
not significant, F(2, 22) = 1.66, MSE = 500, for latency;
F(2,22) = 1.27, MSE = 0.991, for error rate. This reflects a
phenomenon that we found throughout these experiments:
There were large individual differences that could result in
nonsignificant differences among the groups. However, the
trends across blocks were stable within participants. Thus,

4Trial latency is calculated as follows. The mouse cursor
position begins at the location of the OK button in the middle of the
display. An internal starting time stamp is recorded at stimulus
presentation time (the maximum lag between time-stamp recording
and screen refresh is approximately 17 ms). The participant must
use the mouse to click the OK button at the end of the trial, at which
point the ending time stamp is recorded (the maximum lag between
mouse click and time-stamp recording is approximately 50 ms).
Trial latency, in milliseconds, is gotten by subtracting the starting
time stamp from the ending time stamp.
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Proportion Errors
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Figure 3. Proportion of errors in Experiment 1 as a function of
block for the various delay conditions.

we had relatively powerful tests when examining within-
groups effects using Subject X Block interactions for error
terms.

With respect to the effects of retention interval, we
conducted analyses of the transitions between Days 1 and 2
and between Days 3 and 4, comparing the mean perform-
ance on the last 10 blocks of the prior day with the mean
performance on the first 3 blocks of the subsequent day. The

decrease in performance from the end of Day 1 to the

beginning of Day 2 was significant for both measures, F(1,
22) =474, MSE = 0.033, p < .05, for error rate; F(1,22) =
30.76. MSE = 17.41, p < .001, for latency. There was a
significant interaction between day and condition for error
rate, F(2, 22) = 5.38, MSE = 0.033, p < .05, but not for
latency, F(2, 22) = 1.15, MSE = 17.41. We expected that
participants would show more of a loss over the 1-week
retention interval. A contrast testing the error data for this
was highly significant, #(22) = 3.28, p < .001. With

Response Time (Sec.)

0 20 40 60 80 100 120 140 160
Blocks

Figure 4. Mean latency in Experiment 1 as a function of block for
the various delay conditions.
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respect to the transition between Day 3 and Day 4, the
decrease in performance across days was si gnificant for both
measures, F(1, 22) = 8.56, MSE = .016, p < .01. for error
rate; F(1, 22) = 37.70, MSE = 3.12, p < .001, for latency.
There was a significant interaction between day and condi-
tion for both measures, F(2,22) = 4.53, MSE = 0.016,p <
.05, for error rate; F(2, 22) = 9.03, MSE = 3.12, p < .005,
for latency. We expected that participants would show more

-of aloss over the 1-month retention interval than the 1-week

interval. Contrasts testing for this were highly significant,
1(22) = 2.42, p < .01, for error rate; 1(22) = 3.68, p < .001,
for latency. The other expectation was that the loss would be
greater over the week retention interval than the 1-day
retention interval, but although the effects were in this
direction, neither contrast testing this was significant. 1(22) =
0.43 for error rate; #(22) = 0.44 for latency.

We also compared participants’ performance at the begin-
ning of Day 4 (first 3 blocks) with their performance at the
end of Day 4 (last 10 blocks). At the beginning there were
significant effects of condition, F(2, 22) = 4.79, MSE =
0.041, p < .05, for error rate; F(2,22) = 15.64, MSE = 9.74,
p <.001, for latency. At the beginning participants with the
1-month delay were worse than the other conditions. 1(22) =
3.34, p <.001, for error rate; 1(22) = 5.49, p < .001, for
latency. On the other hand, by the end of the day there were
no significant differences left among conditions, F(2, 22) =
0.10, MSE = 0.003, for error rate; F(2, 22) = 2.29. MSE =
7.09, p < .1, for latency. The latency effect was marginal,
and a contrast between the 1-month retention condition and
the average of the other two conditions was significant,
1(22) = 2.12, p < .05. Therefore, perhaps some residual
difference remains by the end of Day 4.

Although not all the effects were significant, the general
practice and retention effects are consistent with the results
from J. R. Anderson and Fincham (1994), and we saw
evidence for increasing beginning-of-day losses with increas-
ing delays. However, significantly, these retention effects
were largely eliminated at the end of one day’s practice. In
this article, we apply the strength accumulation equation
only to predicting the latency results. Although the error data
were noisier (and the equation did not directly apply), they
were generally in the same direction as the latency data.
There was a strong correlation between the errors and
latencies in the experiment (r = .81).

We fit the same model to the latency data as described in
the introduction for J. R. Anderson and Fincham (1994). As
before, we used one A intercept parameter, one d exponent,
and one H for the number of intervening blocks between
days, but, to deal with the differences in the three groups of
participants, we estimated separate B scale parameters.
These parameters were d = 52, A = 3.54 s, H=17.02
blocks, B = 91.49 s for the 1-1-30 condition, B = 61.70's for
the 1-1-7 condition, and B = 71.92 s for the 7-1-1 condition.
These parameters are similar to the parameters estimated for
J. R. Anderson and Fincham’s (1994) procedural condition.
The R? between theory and data was again a high .974. The
standard deviation of the predictions was 1.01 s, which was
good given that the standard error of means (estimated from
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the Subject X Block X Condition interaction) was 1.12 s.
Thus, it appears that the strength accumulation equation was
capturing the same trends over a much larger manipulation
of the retention intervals.

The model claims that the latency is composed of a fixed
intercept (the A parameter—in this case 3.54 s) and a
decreasing processing latency that is scaled by these B
parameters. On the first block, the strength accumulation
equation predicts that strength is 1705* + 27052 4 37052 =
2.26 (because of the three practices in the initial dropout
learning phase) and by the end of the experiment strength is
19.33. Thus, the strength increases almost by a factor of 10
over the course of the experiment. This corresponds to the
latencies dropping from about 35 s to 7 s over the course of
the experiment. When the intercept of 3.5 s is subtracted, the
latencies almost drop by a factor of 10.

The model was fit to the data in Figure 4, where each data
point represents an average over participants, and many data
points are averaged over multiple blocks for purposes of
presentation. In the Appendix we briefly describe the results
of fitting individual blocks for this experiment and the others
in this article. The underlying quality of fit and the conclu-
sions do not change.

Even using the aggregation in Figure 4, it was hard to
determine critical data points and how well they were fit by
the model. Not all of the numbers were equally critical to a
test of the model. The most critical numbers were those that
defined the transition between days. Therefore, we provide
in Table 2 an analysis of performance on the last 10 blocks of
a day and the first 3 blocks of the next day for the transitions
between Days 1 and 2, 2 and 3, and 3 and 4. We also
conducted a separate analysis of variance (ANOVA) to
obtain more appropriate estimates of the noise in these
means from the Subject X Condition interaction for those
conditions. The standard error of the predictions was 1.05 s.
This compares well with the 1.15-s SEM from the ANOVA.
We need to emphasize that the model fit is to all the data in
Figure 4. If we were to estimate the parameters just for the
data in Table 2, we would reduce the mean error in
prediction to 0.73. The serious point of discrepancy is at the
beginning of Day 3 in the 1-1-30 condition, where partici-
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pants took 12.33 s. but the model predicted only 9.25 s. This
discrepancy can be seen in Figure 4, where the model
underpredicts participant latencies in the 1-1-30 condition
throughout Days 2 and 3. Probably more critical than
whether we can predict the absolute latencies is whether we
can predict the qualitative pattern in the warm-up decre-
ments. These are somewhat independent of mean latency.
The correlation between the predicted and observed warm-up
decrements was .75. With respect to the warm-up decre-
ments, the most systematic deviation was that the model
underpredicted its size in the transition between Day 1 and
Day 2 (the mean observed decrement was 3.13 s, and the
mean predicted decrement was 1.77 s).

Experiment 2

Generally, the results of the previous experiment were
consistent with the predictions of the strength accumulation
model. However, it would be .useful to get additional
converging -data. In addition, the high error rates and large
differences between groups (apparently attributable to indi-
vidual differences) make the conclusions less than totally
satisfactory. Both of these problems may be due to the
relatively difficult rule application task. Therefore, we
decided to use a task in which participants only had to
retrieve the instances. This corresponds to the declarative
task in Figure 2 from J. R. Anderson and Fincham (1994).
This will also extend the generality of our analysis by
looking at a different task. In this experiment we used the
same three delay groups as the first experiment but intro-
duced a fourth group that practiced the items on 4 successive
days. We refer to this as the /-1-1 condition.

The experiment was also done to test whether the
retention effects would be different for a procedural, rule-
based task than for a declarative, retrieval-based task. When
we collected the data from Experiment 1, we were impressed
with how quickly participants returned to near Day 3 levels
after the 1-month retention interval in the 1-1-30 condition.
We wondered whether such striking retention might be a fac-
tor that separated a procedural task from a declarative task.

Table 2
Data (in Seconds) and Predictions for the Day-to-Day Transitions in Experiment 1
Condition
7-1-1 1-1-7 1-1-30
Effect Data Prediction Data Prediction Data Prediction
Day 1 end 11.20 10.84 9.13 9.80 12.40 12.83
Day 2 start 15.30 14.25 11.40 10.50 15.43 13.86
Warm-up decrement 4.10 3.58 2.27 0.70 3.03 1.03
Day 2 end 7.53 8.35 8.10 7.15 10.03 8.89
Day 3 start 7.53 8.62 7.43 7.39 12.33 9.25
Warm-up decrement 0.00 0.36 —0.67 0.25 2.30 0.36
Day 3 end 6.07 6.75 6.23 6.09 8.07 7.32
Day 4 start 6.70 6.95 7.10 7.13 11.83 12.08
Warm-up decrement 0.63 0.20 0.87 1.04 3.76 4717
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Method

The procedure was identical to that used in previous experiment,
except that all trials involved presenting the days and sport from the
study example (or the hours and sport) and participants had to
reproduce both the days and hours from the example. Thus, they
were recalling either the days or the hours given the other. There
were 11 participants in the 1-1-1 condition, 9 participants in 7-1-1
condition, 11 participants in the 1-1-7 condition, and 8 participants
in the 1-1-30 condition.

Results and Discussion

Figures 5 and 6 show error rates and latencies as a
function of serial position. We have omitted the data from
the 1-1-1 condition because it would have resulted in graphs
that were too cluttered. Again, we have plotted performance
on the first 3 blocks of each day. There were small
differences among the groups, but statistical tests revealed
no significant differences, F(3, 35) = 0.92, MSE = 103.44,
for latency; F(3, 35) = 0.02, MSE = .014, for error rate.
With respect to the effects of retention interval, we con-
ducted analyses of the transitions between Sessions 1 and 2
and between Sessions 3 and 4 comparing the mean perfor-
mance on the last 10 blocks of the prior session with the
mean performance on the first 3 blocks of the subsequent
session. With respect to the transition between Session 1 and
Session 2, the decrease in performance from the end of one
day to the start of the next was significant for latency, F(1,
35) = 21.99, MSE = 4.85, p < .001, but not for error rate,
F(1, 35) = 1.50, MSE = 0.009, although it was in the
expected direction. There was a significant interaction
between session and condition for latency, F(3, 35) = 3.09,
MSE = 4.85, p < .05, but not for error rate, F(3,35) =1.73,
MSE = 0.009. We expected that participants would show
more of a loss in the condition that had a 1-week retention
interval than the other conditions. A contrast testing for this
was significant for both dependent measures, t(35) = 2.27,
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Figure 5. Proportion of errors in Experiment 2 as a function of
block for the various delay conditions.
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Figure 6. Mean latency in Experiment 2 as a function of block for
the various delay conditions.

p < .05, for error rate; #(35) = 2.61, p < .01, for latency.
With respect to the transition between Session 3 and Session
4, the decrease in performance across session was significant
for both measures, F(1, 35) = 9.14, MSE = 0.003, p < .005,
for error rate; F(1, 35) = 5.29, MSE = 3.61, p < .05, for
latency. The interaction between session and condition was
not significant for either measure, F (3,35) = 1.67, MSE =
0.003, for error rate; F(3, 35) = 2.84, MSE = 3.61,p < .10,
for latency. We expected that participants would show more
of a loss over the 1-month and 1-week retention intervals
than the I1-day intervals. Contrasts testing for this were
significant (two long retention intervals minus two short
retention intervals), #(35) = 2.04, p < .05, for error rate;
t(35) = 2.61, p < .01, for latency. The other expectation was
that the loss would be greater over a month than a week, but,
although the effects were in that direction, neither contrast
testing this was significant, #(35) = 1.13 for error rate;
t(35) = 1.50 for latency.

We also compared participants’ performance at the begin-
ning of the Session 4 (first 3 blocks) with their performance
at the end of Session 4. At the beginning, there were effects
of condition, F(3, 35) = 2.25, MSE = 0.0062, p < .10, for
error rate; F(3, 35) = 3.27, MSE = 791, p < .05, for
latency, and participants with the 1-month delay were worse
than in the other conditions, 1(35) = 2.30, p < .01, for error
rates; £(35) = 3.09, p < .005, for latency. On the other hand,
by the end of the session, there were no significant differ-
ences left among conditions, F (3, 35) = 1.79, MSE =
0.0007, for error rate; F(3, 35) = 1.16, MSE = 7.09, for
latency.

In summary, although not all the effects were significant,
the results are generally consistent with the first experiment
and with expectations. This occurred despite the fact that we
used a task with much lower error rates and much faster
latencies. There was a substantial correlation between the
error rate and latencies in this experiment (r = .71). Again,
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we used the strength accumulation equation to fit the latency
data.

We fit the same model to the latency data as described for
Experiment 1. Again, to deal with the differences in the
participants in the four groups, we estimated separate B scale
parameters but used one A intercept parameter, one d
exponent, and one H for the number of intervening blocks
between days. These parameters were d = 76, A = 3.85 s,
H = 4.55 blocks, B = 18.35 s for the 1-1-30 condition, B =
16.79 s for the 1-1-7 condition, B = 19.20 s for the 7-1-1
condition, and B = 22.59 s for the 1-1-1 condition. The R?
between theory and data was .935. The standard deviation of
the predictions was 0.46 s, which was good given that the
standard error of means (estimated from the
Block X Condition X Subject interaction) was 0.43 s. The d
parameter was larger than in previous fits and the H
parameter smaller. However, there was a trade-off between
these two parameters because both affected the rate of
forgetting. If we constrain d to be .6 (the value in the fit to
Anderson & Fincham’s, 1994, Figure 2), the new estimate of
H is 10.69 (close to the 9.23 estimated for Figure 2). The R?
for this more constrained model decreases only to .927, as
compared with .935 for the unconstrained model.

In a manner similar to Table 2, Table 3 shows the critical
transition data for Experiment 2. The mean deviation was
0.42 s, compared with a standard error of 0.36 s from the
Condition X Subject interaction for these cells. Again, we
emphasize that this was a fit constrained by the total data in
Figure 6. If we were just to fit the numbers in Table 3, our
mean error of prediction would be 0.23. If we look at the
correspondence between the predicted and observed warm-up
decrements, the correlation is .78. As in Table 2, there was
some tendency for the model to underpredict the warm-up
decrement from Day 1 to Day 2 (mean observed = 1.35 s,
mean predicted = 0.92 s).

Experiment 3

The results from the first two experiments are generally
consistent with the model that we have been proposing.
However, a still more strenuous test of the theory would
involve even longer retention intervals. Therefore, we
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decided to try to retrieve as many participants as we could
from the second experiment at a much longer retention
interval. which varied from 11 to 14 months. We were able to
get 11 of the original participants back, 3 from each
condition except the 7-1-1 condition, from which we got
only 2 participants. We decided to aggregate the three 1-1-1
participants and the two 7-1-1 participants into a group that
did not have an elongated retention interval after Day 3 and
the three 1-1-7 participants and the three 1-1-30 participants
into another group that did. The average retention interval to
the 5th day was 380 days. To further examine relearning, we
followed the 5th day with a 6th day of training. Thus, we
refer to the first group as 4-/-/-380-1 and the second group
as-/-1-18.5-380-1 to reflect the average retention intervals.
The procedures on the 5th and 6th days were identical to
what they had been on the first 4 days.

Figures 7 and 8 show errors and latency as a function of
serial position. Participants showed a substantial perfor-
mance decrement on Session 5 after the long retention
interval. but their performance on Session 6 was almost
identical to the performance on Session 4 (mean latencies of
5.61, 7.04, and 5.52 s for Sessions 4, 5, and 6, respectively,
and mean error rates of 2.1%, 14.2%, and 1.7%, respec-
tively). Although participants fully recovered in the sixth
session. their deficit in Session 5 remained throughout the
session. Although it was most dramatic for the first few
blocks, it was not just confined to these. Thus, with
sufficiently long delay the warm-up decrement was much
more extensive. Kolers (1976) also found more permanent
decrements when he studied reading of inverted text a year
after original training.

We fit the same model to the latency data as for the earlier
experiments. For the average of the 1-1-1 and 7-1-1
conditions, we used an average delay of 4 days between the
first pair of sessions. Thus, the retention intervals were 4, 1,
1, 380, and 1 day. For the average of the 1-1-7 and 1-1-30
conditions, we used an average delay of 18.5 days between
the third and fourth sessions. Thus, the retention intervals
were 1, 1, 18.5, 380, and 1 day. The parameters were d=
38,A = 4.13 s, H = 74.1 blocks for all the days, B =31.81s
for the average of the 1-1-1 and 7-1-1 conditions, and B =

Table 3
Data (in Seconds) and Predictions for the Day-to-Day Transitions in Experiment 2
Condition
1-1-1 7-1-1 1-1-7 1-1-30
Effect Data Prediction Data Prediction Data Prediction Data Prediction

Day 1 end 7.37 7.65 7.13 7.08 6.43 6.67 7.53 6.93
Day 2 start 8.97 8.36 9.87 8.93 6.83 7.20 8.30 7.51
Warm-up decrement 1.60 0.71 273 1.85 0.40 0.53 0.77 0.58
Day 2 end 5.97 6.14 5.93 6.07 5.60 5.55 5.87 5.71
Day 3 start 6.73 6.40 5.83 6.31 6.00 5.75 6.53 592
Warm-up decrement  0.77 0.26 -0.10 0.24 0.40 0.20 0.67 0.21
Day 3 end 5.70 5.50 5.67 5.37 5.07 5.08 5.87 5.19
Day 4 start 5.83 5.83 5.37 5.51 5.71 5.67 7.67 8.02
Warm-up decrement 0.13 0.16 -0.30 0.14 0.70 0.59 1.80 2.83
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Figure 7. Proportion of errors in Experiment 3 as a function of
block for the various delay conditions.

20.71 s for the average of the 1-1-7 and 1-1-30 conditions.
The R? between theory and data was .897. The standard
deviation of the predictions was 0.63 s, which was good
given that the standard error of means (estimated from the
Block X Condition X Subject interaction) was 0.60 s. The
values of d and H were deviant from prior fits. However, if
we constrain d to .50, the lowest value it had in prior
experiments, the best fitting parameters become H = 13.40
blocks, A = 4.15 s, and Bs = 28.69 and 18.65 s. These
parameters are more consistent with previous parameters,
and the R? went down to only .885 and standard deviation up
to 0.66 s. Again, the model was not very sensitive to the
particular combination of the H and d parameters. This
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Figure 8. Mean latency in Experiment 3 as a function of block for
the various delay conditions.
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Table 4
Data (in Seconds) and Predictions for the Day-to-Day
Transitions in Experiment 3

Condition
4-1-1-380-1 1-1-18.5-380-1
Effect Data  Prediction Data Prediction

Day 1 end 7.40 6.93 6.43 5.95
Day 2 start 10.39 8.47 6.73 6.37
Warm-up decrement 2.99 1.54 0.30 0.41
Day 2 end 6.27 6.02 5.17 5.24
Day 3 start 7.07 6.28 5.40 541
Warm-up decrement 0.80 0.25 0.23 0.25
Day 3 end 5.97 545 4.80 4.94
Day 4 start 6.03 5.61 6.23 5.96
Warm-up decrement 0.07 0.17 1.43 1.02
Day 4 end 5.53 5.17 5.00 5.13
Day 5 start 11.11 11.73 9.60 9.15
Warm-up decrement 5.60 6.56 4.60 4.02
Day 5 end 6.03 6.44 560 565
Day 6 start 5.87 6.75 5.37 5.86
Warm-up decrement  —0.17 0.31 —-0.23 0.21

version of the model with d constrained to .50 is the one we
refer to in the General Discussion section.

Table 4 shows the critical transition data from Experiment
3 in a manner similar to Tables 2 and 3. The model generally
did a good job of capturing the data with an overall
correlation of .941. The mean deviation was 0.61 s, which
compares with the standard error of 0.50 s from the
Condition X Subject interaction for these cells. Again, we
emphasize that the model was fit to all the data, and the mean
deviation would be much reduced (only 0.37 s) if we
confined ourselves to the data in Table 4. The greatest
discrepancy reflects the same problem that we noted for
Table 3. This is between the times for the beginning of Day 2
in the 4-1-1-380-1 condition, where the model underpredicts
the degree of loss over this 7-day period. Again, perhaps the
most critical test is the correlation between the predicted and
observed warm-up decrements. This correlation was .95.
Strong support for the theory is the success at predicting the
size of the warm-up decrements at l-year delays.

Experiment 4

The current model offers an interesting explanation of
some aspects of the spacing effect (e.g., Bahrick, 1979). The
slowed-clock model hypothesizes that effective time passes
more slowly after an experimental session. If a day interval
is worth H blocks of trials, then if one is going to have more
than 2H blocks it is better to split them over 2 days. As an
illustration, suppose one is going to administer 4H blocks of
practice and contrast massing all 4H blocks on one day with
splitting them so that 2H blocks on one day are followed by
another 2H blocks on the next day. Consider performance
after the 4H blocks. The cumulative impact of the last 2H
blocks will be identical in both conditions because they will
have occurred at delays varying from 1 to 2H blocks on that
day. In the massed conditions the first 2H blocks will have
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delays from 2H + 1 to 4H. In the split condition, the delay
will be H (for the day delay) plus however many blocks
followed that practice on the first day. Thus, the delays for
the first 2H blocks will be from H + 1 to 3H, which is H less
than in the massed condition. Basically, the argument is that
if one masses too many trials together, one will create a
situation in which the extra trials are doing almost as much
harm as good by accelerating forgetting. Inserting a day’s
rest slows down the forgetting processes. We would not want
to suggest that this is all there is to the spacing effect, which
is a complex phenomenon (e.g., see discussions in Crowder,
1976; Greene, 1989; Kahana & Greene, 1993), but it may be
a contributing factor.

We decided to contrast participants practicing 24 blocks a
day with participants practicing 48. Our estimates of H from
previous experiments were all around 12, and so 48 would
be about the 4H from the previous paragraph. One of our
interests was in how well participants would be doing after
48 blocks (after either 1 day or 2 days) and after 96 blocks
(after either 2 days or 4 days). Both groups worked on the
task for 4 days to be consistent with the design of the
previous experiments and to give us additional data about
the effects of practice and retention intervals. Like in
Experiment 1 and unlike in Experiments 2 and 3, the test in
this experiment used rule application rather than simple
example recall.

This experiment involved a second manipulation that was
motivated to investigate the nature of performance in the
rule-application task. Because participants in past experi-
ments started with examples and not rules, they would have
to initially extract the rules by analogy. They should be at a
deficit to participants who learned the rules directly because
of this extra analogy step. We wanted to confirm that this
was so and to determine whether the deficit would be
maintained over the course of the experiment. Therefore, we
had conditions that contrasted participants learning the rules
directly with participants learning examples as in past
experiments. Although we report the effects of the training
procedures, our main interest in this article was in the
manipulation of 24 versus 48 blocks per day.

Method

This experiment was like Experiment 1, with participants
receiving 4 successive days of practice and getting either 24 or 48
blocks of practice per day. Each day was followed with a transfer
test of two blocks. There was the other manipulation of how
participants were trained. We contrasted four conditions:

Condition 1. Examples only: Studied eight examples as in
previous experiments.

Condition 2. Rule only: Studied the eight rules behind the
examples directly.

Condition 3. Example plus rule: Studied both examples and rules
(i.e., a combination of Conditions 1 and 2).

Condition 4. No prior training: These participants would have to
infer the rules from the feedback given during testing.

Except for Condition 4, all participants went through the same
triple dropout procedure as used in the earlier experiments. In
Condition 2 they had to produce the rules (e.g., +2 days, —1 hr),
and in Condition 3 they had to produce both examples and rules.
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We experimented with these four training conditions because we
wanted to determine whether there would be any effect of having to
extract the rules by analogy (i.e., Condition 1, which is the only
condition used in prior research). Thus, there were eight groups of
participants created by crossing number of trials per day (24 vs. 48)
within training (four conditions). There were 5 participants as-
signed to each group.

Results and Discussion

ANOVAs were conducted on latencies and errors in
which the factors were training procedure (4 values),
blocks-per-day (2 values), days (4 values), and block-within-
day (10 values: 1, 2, 3, 4-6,9-12, 13-15, 16-18, 19-21, and
22-24). Note that in these ANOVAs, we were looking only
at the first half of the blocks each day for participants
receiving 48 blocks per day.

Because some participants in the no-prior-training condi-
tion needed a few blocks before they got anything right, we
aggregated latencies differently for purposes of this ANOVA.
For each rule we counted blocks as trials on which a
participant got the answer right. For instance, suppose a
participant made errors on a rule on Blocks 1, 2, and 4 and
was correct otherwise. In assigning blocks to this rule, Block
1 would actually be Block 3 (first correct), Block 2 would be
Block 5, Block 3 would be Block 6, and so on. For latencies,
the block-within-day factor was extended only to Block 18
so that all participants had latencies defined for all cells.

With respect to latency, all main effects were significant:
training procedure, F(3,96) = 5.18, MSE = 307.4, p < .01;
blocks per day, F(1, 32) = 5.56, MSE = 307.4, p < .05; day,
F(3, 96) = 213.46, MSE = 50.62, p < .001; and block
within day, F(7, 224) = 82.82, MSE = 8.13, p < .001. With
respect to training procedure, the examples-only participants
were slowest (15.31 s), as suspected, followed by rule only
(12.35 s), followed by example plus rule (10.88 s), followed
by no prior training (10.66 s). The difference between the
examples-only and the other conditions was significant,
1(96) = 3.55, p < .001, whereas the residual variance among
the other three conditions was not, F(2, 96) = 1.47. Some of
the interactions of training procedures with days and blocks
within days were significant, but this was because the
absolute size of differences reduced with practice (but did
not change direction). For instance, the examples-only
group averaged 25.27 s on Day 1 and the others averaged
17.86 s. By Day 4 this was 10.05 s for the examples-only
group and 7.69 for the other three. Thus, it appears that the
examples-only group, unlike the other conditions, were
slowed by having to go through an analogy process and this
continued to the end of the experiment.

With respect to error rate, only the within-subjects main
effects were significant, not the between-subjects factors:
day, F(3, 96) = 36.08, MSE = 0.202, p < .001; and block
within day, F(9, 288) = 52.93, MSE = 0.007, p < .001;
training procedure, F(3, 32) = 0.68, MSE = 0.601; and
blocks per day, F(1, 32) = 0.01, MSE = 0.601. There were
significant interactions of training condition both with trial,
F(27, 288) = 5.59, MSE = 0.007, p < .001, and with trial
and day, F(81, 864) = 3.93, MSE = 0.011, p < .001. These
interactions reflect the poor initial performance of the
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Figure 9. Proportion of errors in Experiment 4 as a function of
block for the various delay conditions.

participants with no prior training who did not get below
50% errors until after the sixth block. However, the accuracy
difference between this condition and the others disappeared
by the end of the 1st day. Both with respect to latency and
accuracy, there were not significant sample or higher order
interactions involving training condition and blocks per day
(24 vs. 48). The latter factor was the manipulation of interest
in this experiment. Because it did not interact with training
procedures, we could safely collapse it over training proce-
dures in the further analyses.
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Figure 10. Mean latency in Experiment 4 as a function of block
for the various delay conditions.
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Table 5
Comparison of Transfer Performance After Comparable
Practice Transfer Results: Latency and Error Rates

Test after Test after

Condition 48 blocks 96 blocks Average
24 Blocks a day

Latency (s) 12.41 8.86 10.63

% error 9.2 3.6 6.4
48 Blocks a day

Latency (s) 11.95 9.69 10.82

% error 15.5 13.8 14.7
Average

Latency (s) 12.18 9.28

% error 12.4 8.7

Figures 9 and 10 show error rate and latency as a function
of blocks of practice collapsed over training condition.’
Because the 48-block participants practiced twice as much,
their curves extend out twice as long. We have separately
plotted the first 3 blocks of every 24 because this would be a
new day for participants receiving 24 blocks a day. With
respect to latency, participants appeared to be speeding up
equally as a function of blocks. With respect to error rate, the
participants appeared to be improving faster in the 24-blocks-
per-day group. The best tests of a difference between the
groups were the transfer tests that followed every 48 blocks.
Table 5 shows the transfer results after 48 blocks and 96
blocks. There were highly significant effects of time of test
(after 48 or 96 blocks), F(1, 38) = 26.02, MSE = 16.77,p <
.001, for latency; F(1, 38) = 0.99, MSE = 0.0526, for error
rate. There was a tendency in this experiment for better
performance in the 24-blocks-per-day condition, as pre-
dicted. However, the effects of number of blocks per day
were not significant for either measure, F(1, 38) = 0.03,
MSE = 47.07, for latency; F(1, 38) = 2.57, MSE = 0.1057,
for error rate. The interactions between the factors were also
not significant.

Still, the data displayed in Figure 9 manipulated the
amount of practice while holding time constant and so
offered a new combination of delay and practice and was a
good challenge to our model. The best fitting parameters
wered = .44,A = 5.48 s, H = 14.00 blocks, and B = 68.25 s
for the 48-blocks-per-day condition, and B = 77.32 s for the
24-blocks-per-day condition. The R? between theory and
data was .983. The standard deviation of the predictions was
0.75 s, which was good given that the standard error of
means (estimated from the Block X Condition X Subject
interaction) was 0.72 s.

5 Unlike in the analysis of variance reported, the mean for block
n came from just the correct rule applications in the original nth
block and we did not move the correct latencies forward so that all
rules had a latency for that block. If a participant in the no-prior-
training condition did not have any correct responses for a block,
the mean latency for that participant was simply omitted in
calculating the averages in Figure 10.
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Table 6
Data (in Seconds) and Predictions for the Day-to-Day
Transitions in Experiment 4

Condition
24 trials 48 trials
Effect Data  Prediction Data  Prediction
Day 1 end 15.98 14.55 10.82 10.56
Day 2 start 16.34 15.73 12.03 11.35
Warm-up decrement 0.36 1.19 1.20 0.79
Day 2 end 12.18 11.03 8.98 8.34
Day 3 start 10.98 11.47 8.23 8.72
Warm-up decrement —1.19 0.44 —0.76 0.38
Day 3 end 9.55 9.49 8.00 7.53
Day 4 start 9.28 9.84 7.47 7.76
Warm-up decrement —0.27 0.35 —0.53 0.24

Table 6 shows the critical transition data from Experiment
3. For these data the average for end of day was obtained
from the last three means for that day in Figure 10. The mean
deviation of the predictions was 0.69 s, which compared
with a standard error of 0.51 s from the Condition X Subject
interaction for these cells. Again, this reflects the constraints
of fitting the data as a whole: We can reduce the mean
deviation in prediction to 0.30 if we fit only the data in Table
6. The greatest discrepancy is that the model underpredicted
latency at the end of Day 1 in the 24-block-a-day condition.
This was part of a more general trend, which can be seen in
Figure 10, of underpredicting the data in the period from the
end of Day 1 to the end of Day 2 in that condition. The
overall correlation between the predicted and observed
warm-up discrepancies was .66, which was lower than in
previous experiments. This partly reflects the fact that there
was no multiday delays in this experiment that produced
large warm-up decrements. There was a peculiar tendency
for the warm-up decrements to be negative in later days in
this experiment. However, basically, the theory and data
agree that the warm-up decrement was negligible after the
Ist day. Unlike previous experiments, the model did not
underpredict the warm-up decrement from Day 1 to Day 2
(observed = 0.78 s, predicted = 0.99 s). Therefore, this is
probably not a systematic problem with the model.

General Discussion

As can be seen by visual inspection of Figures 2, 4, 6, 8,
and 10, the strength accumulation equation did a good job of
accounting for the qualitative nature of the latency patterns
as a function of amount of practice and delay. Tables 2, 3, 4,
and 6 are an attempt to focus in one important aspect of this

-qualitative pattern, which was the warm-up decrement, and

the theory generally did well in capturing that. The warm-up
decrement measured the loss from one day to the next. One
can also try to capture the rate of learning within days, and
Figure 11 is an attempt to summarize our success in fitting
that qualitative aspect of these data. As an inspection of
Figures 2, 4, 6, 8, and 10 reveals, the within-days learning
functions were very much a function of amount of practice

and delay. Within-days learning tended to disappear as
participants had massed more days of practice. To obtain an
estimate of the rate of learning within days, we fit simple
power functions of the form T = AP~ to the latency data
and predictions for each day and condition. In this equation
A and c are estimated parameters and P is the number of
trials of practice within each day. This was just a simple
descriptive effort to estimate exponents ¢, which would
serve to reflect rate of learning for that day. Altogether, we
obtained 56 pairs of observed and predicted exponents (8
from Figure 2, 12 from Figure 4, 16 from Figure 6, 8 from
Figure 8, and 8 from Figure 10). (An Excel file providing the
estimation is available with the other files for this article; see
Footnote 3.) Figure 11 displays the observed exponents as a
function of the predicted exponents. As is apparent, the
overall correlation was high (r = .962). This indicates that
the strength accumulation equation did capture the within-
days differences in learning rates.

We now turn from summarizing our ability to predict the
qualitative patterns to discussing measures of quantitative
fits and alternative models. Table 7a shows the parameters
estimated for each of the experiments and the goodness of
fit. The A, d, and H parameters were relatively consistent
across experiments. For each condition of each experiment,
we estimated a different B parameter. The B parameters were
much larger for the procedural tasks than the declarative
tasks, reflecting their greater difficulty. In experiments that
involved a procedural task, the B parameters ranged from 58
to 91 s, whereas the declarative tasks ranged from 18 to 29 s.
The differences in B were sometimes large even within an
experiment, reflecting the large individual differences. The B
parameters essentially served to compensate for individual
differences and served much like subtracting out subject
variance in an ANOVA.

Another way of investigating the success of the model
was to compare the size of the deviations with the standard
error of the mean for each condition (calculated by the
Subject X Block interaction for that condition). The summed
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Figure 11. Relationship between predicted and observed within-
days learning exponents. The data plotted are for all the within-
days learning curves in Figures 2, 4, 6, 8, and 10.
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deviations divided by the squared mean error is a chi-square
statistic with a number of degrees of freedom being equal to
the number of observations minus the number of parameters.
Table 7 shows these chi-square statistics. The total chi-
square statistic over the experiments was 905.31. The total
degrees of freedom were 816 (total number of observations)
—28 (parameters) = 788. With these large numbers of
degrees of freedom, the chi-square was distributed normally
with a variance being equal to twice the degrees of freedom.
Thus, the chi-square was distributed with a mean of 788 and
a standard deviation of 39.7. The observed chi-square was
2.95 $Ds away and was significant by standard measures.
Therefore, although the overall fits were good, we cannot
claim to have captured everything in the data. However, it is
an unrealistic expectation to fit every nuance in the data.

To provide a more constrained model, we tried to fit a
single d, A, and H parameter, allowing for separate B
parameters for each condition. This reduced the number of
degrees of freedom by 12 and is reported in Table 3. The new
chi-square value was 1,243.13, which was significantly
different from the mean for a chi-square with 800 dfs and a
standard deviation of 40. It was also more than 300 larger
than the chi-square when we fit each experiment separately.
Still, the R? remained high. We view this as a better model
because of the reduction in degrees of freedom. We have
observed in individual experiments that the parameter
estimates (particularly d and H because they both affected
the rate of forgetting) tended to trade off and that this
combined fit provided much greater constraint on their
estimation. For instance, we found the best estimates of d

Table 7
Summary of Various Models From the Experiments
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varied from .38 (Experiment 3) to .76 (Experiment 2). If we
constrain d to be .38 the chi-square jumps to 1,460, and if we
constrain it to be .76 it jumps to 1,721. Thus, the combined
experiments provided stronger constraints on the parameter
estimates.

Two of the parameter values obtained in this constrained
fit are interesting. First, note the estimate of H, which
implies that each day of retention after the initial training is
worth just more than 10 blocks of trials. Ten blocks of trials
would have taken 10-15 min in the experiments. Thus,
effective time has slowed down by a factor of more than 100.
Second, the d parameter is estimated to be .529, which is
close to the .50 value, which has been proposed in the
ACT-R theory (Anderson & Lebiere, 1998), which uses the
strength accumulation equation.

Table 7 also shows two other models for comparison. An
obvious alternative to the slowed-clock model is to assume
that the decay rate changes with time. According to this
two-decay model, after the end of an experimental session a
different decay parameter would become effective. Thus, the
total strength of presentation at some time ¢, (greater than its
age 1, at the end of the experimental session) would be

strength = 791 x(2,/1,) 42,

The best fitting version of this model is shown in Table 3. It
has d1 estimated at 0.564, which is similar to the 0.534 for
the other model, whereas the second slower decay rate d2 is
0.159. This model fits somewhat worse overall with a total

Procedural and
declarative from

Anderson & Procedural: Declarative: Declarative: Procedural:
Statistic Fincham (1994) Experiment 1 Experiment 2 Experiment 3 Experiment 4 Total

A. Original fits

Intercept A (s) 3.98 3.54 3.85 4.15 5.48

Decay d 0.61 0.52 0.76 0.50 0.44

Day delay H (blocks) 9.59 7.42 4.55 13.40 14.00

Scale B (s) 58,21 91, 62,72 18,17,19,23 29,19 68, 77

R? 0.986 0.974 0.935 0.884 0.991

X2 130.46 145.11 280.55 219.71 129.48 905.31

df 91 174 233 175 115 788
B. Collapsed With d=.53 A =435 H=10.28

B (s) 61,21 82,55, 63 22,19,22,27 26,17 67,75

R? 0.983 0.968 0.508 0.879 0.980

X2 158.72 268.64 406.32 237.23 172.21 1,243.13

af 800
C. 2-Decay rate With dl = .56 d2 =.16 A =408

B (s) 60, 21 81,52, 61 23, 20, 23, 27 29,19 64,73

R? 0.985 0.972 0917 0.831 0.974

X2 134.42 284.55 382.54 321.66 195.06 1,317.21

df 800
D. 1-Decay rate With d= 26 A =4381

B (s) 75,23 106, 68, 78 25,21, 25,31 35,21 85,92

R? 0.958 0.943 0.865 0.734 0.958

X2 327.13 344.68 580.28 506.44 344.18 2,102.72

df 801
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chi-square of 1,317.21. It is not much different from the
slowed-clock model except for Experiment 3. in which we
used delays of more than a year. Here, the R? is reduced from
-879 to .831, and the chi-square increases by more than 80.

The final model (in Table 3) we tested was one with a
single decay and no slowing of the clock. This model has
801 dfs, which is one more than the models in Table 3. The d
parameter for this model estimates to be .259 and the A
parameter is 4.80. This model fits much worse, with a total
chi-square of 2,102.72. Thus, we are clearly gaining some-
thing by estimating a slowing of the decay process by either
the slowed-clock model or the two-decay-rate model.

Figure 12 provides an analysis of the various models in
Table 7. It shows what happens to the strength of a trace
introduced on the first block of a 40-block experiment under
various decay models. Figure 12A shows the decay in
normal scale, and Figure 12B shows the decay in log-log
scale. The log-log scale representation is more revealing.
The two straight lines reflect what happens with simple
decay rates of 0.5 (approximately the decay rate estimated in
Table 3 and the faster decay rate in Table 3) and 0.25
(approximately the rate estimated in Table 3). Three lines
diverge from the 0.5 decay line at the point corresponding to
the end of the day’s experiment. The steep line (for the
single-decay model) reflects what would happen if decay
continued at 0.5 and the shallow straight line (for the
two-decay model) reflects the slower decay of 0.16 esti-
mated in Table 3. The curved line (for the slowed-clock
model) reflects what happens in Table 3 when the clock
slows. Initially, the decay for the slowed-clock model slows
dramatically but eventually crosses over the two-decay
model and becomes parallel to the 0.5 decay slope. The
differences between the slowed-clock and two-decay models
become large after a year, and this is why the slowed-
clock model does better than the two-decay model in
Experiment 3.

This research is consistent with a number of other reports
that forgetting slows down with time even beyond the
slowing that is predicted by a power function ( €.g., McBride
& Dosher, 1997; Wickelgren, 1972). The research presented
in this article was not designed to carefully identify the
nature of this slowing process. Although the slowed-clock
model gave the better fits, it must be remembered that this
model may point only in the direction of an exact character-
ization of the forgetting process. For instance, it may not be
true clock time that is relevant. It is possible that the critical
variable is the number of intervening similar events and that
the slowing of the clock simply reflects their decreased
occurrence after the experimental session, perhaps reflecting
a change in context. Also, although we have simply charac-
terized the change in the clock speed as a discrete shift
occurring at the end of the experimental session, it is
possible that there is some more gradual slowing.

Another result from this research, which is consistent with
other reports, is that the same forgetting process seems to
characterize both retrieval (we called this a declarative task)
and rule-based processing (we called this a procedural task).
Rubin and Wenzel (1996) found similar retention functions
for a wide variety of material. McBride and Dosher (1997)
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Figure 12. Comparison of the strength decay curves for the
various models in Table 3. A: Normal plot. B: Log-log plot.

found similar functions for implicit and explicit memory.
Thus, it seems that the forgetting functions of memory have
strong similarities across tasks.

Although the results of this research confirm and extend
other research on the forgetting function, its more novel
contribution is integrating these retention effects with prac-
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tice effects. The strength accumulation equation has been
shown to be capable of characterizing trial-by-trial latency
effects attributable to the practice of upward of 200 trials
over upward of 400 days. J. R. Anderson and Schooler
(1991) noted that the strength accumulation equation was
capable of explaining the aggregate results that had been the
focus of the discussion concerning the effects of practice on
retention (Bogartz, 1990; Loftus, 1985; Slamecka & Mec-
Elree, 1983). Now we have shown that it extends to
trial-by-trial effects. Most of the discussion of practice
effects on retention have relied on accuracy measures.
However, latency measures allow researchers to much more
carefully investigate the interactions between retention and
practice because they remain sensitive at high levels of practice.

In summary, across one previously published experiment
and four new experiments, across delays over a year, looking
at more than 200 trials of practice, looking at both declara-
tive and procedural tasks, the single model in Table 7B
provides converging evidence for a set of conclusions based
on the strength accumulation equation:

Conclusion 1: The effect of each learning experience
decays as a power function of psychological time.

Conclusion 2: The rate of decay (the d parameter on the
strength accumulation equation) is approximately 0.5. (How-
ever, see the fit in the Appendix.)

Conclusion 3: The total strength of a trace is the sum of all
of these decaying effects.

Conclusion 4: Latency is an inverse function of total
strength.

Conclusion 5: Psychological time drastically slows down
once a training episode is complete.

These conclusions offer a unified way to understand many
of the effects of practice and delay. The heart of this article is
Conclusion 3, which provides an integrated way to think of
the effects of practice and delay. Although our results
provide some support for the conclusions about the form of
the retention function, these experiments were really not
direct tests of the retention function. As we have noted,
alternate interpretations of the retention function are pos-
sible and we would not want to claim that our research is
particularly decisive. Our strong claim is that, whatever the
exact form of the retention function for individual events,
the aggregate strength is the sum of these individual
strengthenings.
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Appendix

Alternative Model Fit

To make the presentation of the data manageable, we aggregated
the data over blocks and fit aggregate data except for the first few
blocks of each day. There are several questions that can be raised
about fitting aggregated data. First. we use the arithmetic mean
block as the independent variable and the arithmetic mean latency
as the dependent variable. A power function of the average block is
not exactly the average of the power functions of the individual
blocks. It is also the case that, in calculating the chi-square fits for
Table 7, we used a standard error of the mean that was calculated by
the Subject X Point interaction, where the points are averages in
each aggregation of blocks. However. some points were based on
fewer blocks and will probably have higher variance. Therefore,
here we report the fit of the model to the data on a block-by-block
basis. Because there are 96240 points, we do not present these as
plots, but the data and the predictions can be found by following the
Published ACT-R Model link from the adaptive control of
thought-rational (ACT-R) home page (http://act.psy.cmu.edw/).

Questions can also be raised about fitting arithmetic averages
over participants. R. B. Anderson and Tweney (1997) showed that,
even if individual participants are generating data corresponding to
an exponential function, the average of their data will often better
fit a power function. Myung et al. (in press) showed that this is not
the case if one takes geometric means of the individual participant’s
data. Therefore, here we report fits to geometric means. In
calculating standard errors of these means, we did something
analogous to the case in which arithmetic means were obtained. For
each block we calculated how much the participant’s mean
deviated from the geometric mean of the participants’ means. We
then calculated the variance in these deviations for each participant
and averaged the variances. Thus, if G; is the geometric mean for
block i, Sj; is the mean for participant j in block i, and Dj; = Sj; — G;
is the deviation for that block and participant, then our standard
error of the means is

\/Z 2 (Dji - D),-)z/(m -1
J i

n

’

where D; is the mean deviation for participant j, m is number of
blocks, and n is the number of participants in that condition.

Therefore, in summary, the fit reported here takes a more
complex, somewhat more justifiable approach to calculating data
points and variances. We hope that our results are not sensitive to
the exact approach we take, and so this is a test of the robustness of
our conclusions.

We fit the constrained model in Table 7B that required one d, H,
and A parameter for all experiments and conditions. We no longer
have access to the block-by-block data from J. R. Anderson and
Fincham (1994), but we fit the four experiments reported in this
article. The overall R%s were .945 for Experiment 1, .912 for
Experiment 2, .867 for Experiment 3, and .978 for Experiment 4.
These are comparable to the fits of the aggregate data even though
individual block data will be somewhat more noisy. Across the
conditions of these experiments, there were 1,888 blocks to be fit.
There were 12 B parameters estimated, a d parameter estimated at
.63, an H parameter estimated at 3.00, and an A parameter
estimated at 4.14. Thus, there were 1,888 — 15 = 1,873 dfs. The
chi-square deviation of fit was 1,892.6, which was only 0.3 SDs
from the mean. Thus, in contrast to the fit of the aggregate data in
Table 7B, there was no significant deviation of the model. This
suggests that the approximate assumptions in the aggregation
might be responsible for the significant deviations from prediction.
However, we would not want to claim that we have captured all of
the phenomena in our paradigm, only that we have captured most
of the significant variation in our data.

It is interesting that this fit chooses a value of d that is larger by
.10 than the estimate in Table 7B. If we constrain d to .53, we come
up with an estimate of H that is 6.7, which is closer to the estimate
for the aggregated data. However, the chi-square rises to 2,012.9,
which is significantly different from the degrees of freedom.
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