Intelligent Tutoring Systems

John R. Anderson, C. Franklin Boyle, Brian J. Reiser

Computer systems for intelligent tu-
toring are being developed to provide the
student with the same instructional ad-
vantage that a sophisticated human tutor
can provide (/, 2). A good private tutor

ment of training in the mathematics and
science topics that are requisite for en-
trance to the scientific community and to
the high-technology world. .
There are now over 10.000 pieces of

Summary. Cognitive psychology, artificial intelligence, and computer technology
have advanced to the point where it is feasible to build computer systems that are as

effective as intelligent human tutors. Com

principles derived from the ACT" theo

language LISP.

puter tutors based on a set of pedagogical

y
teaching students to do proofs in geomet

of cognition have been developed for

ry and to write computer programs in the

understands the student and responds to
the student’s special needs. From its
beginnings, the computer has been
viewed as capable of providing such in-
struction, thereby having the potential to
improve the quality of education. Of
particular importance is the improve-
456

educational software available. Almost
all of this software can be classified as
computer-assisted instruction (CAI) in
contrast to intelligent computer-assisted
instruction (ICAI) or programs that sim-
ulate understanding of the domain they
teach and that can respond specifically

to the student’s problem-solving strate-
gies. A large fraction of CAI software is
of low quality and accounts for much of
the teacher disenchantment with the
computer (3, 4).

There have been attempts to bring
artificial intelligence techniques to bear
in development of ICAI (2, 5), but this
has been viewed as impractical and has
been largely relegated to the research
laboratory. One of the reasons was the
high cost of ICAL It was common to
require a million-dollar machine to inter-
act with one student, and often the re-
sponse time of the machine was slow. A
second reason was the large amount of
time associated with creating education-
al software. It is thought to take 200
hours to create 1 hour's worth of con-
ventional CAI, and the time associated
with [CAI is thought to be an order of
magnitude greater. Finally, there was no
established paradigm for enabling stu-
dents to acquire knowledge. Early ICAI
efforts often were ill-focused attempts to
interact intelligently with the student
without any clear understanding of the
impact of those interactions on learning.

These obstacles to past efforts at ICAI

CThe authlqrs are on the slca!! of ‘th:‘ A'\ldvarg;ed
omputer Tutoring Project. Carnegie-Mellon Uni-
versity. Pittsburgh, Pennsylvania 15'2'73.

SCIENCE. VOL. 228

are now being overcome. The cost of
computing hardware is dropping rapidly.
Soon personal computers will be able
to provide intelligent tutoring. For iq-
stance, the personal computers envi-
sioned for use at the Carnegie-Melion
campus (6) in 1986 will be adequately
powerful. Furthermore, advances in arti-
ficial intelligence techniques have pro-
vided more efficient methods for achiev-
ing intelligent programs.

Advances in artificial intelligence and
cognitive psychology have also meant
real gains in the time to create instruc-
tional lessons. For instance, we can cre-
ate instructional lessons at a rate that is
faster than the 200 to | typically cited for
conventional educational software. This
is because ICAI can be generative: that
is, it is not necessary to specify every
.interaction with the student, but only the
general problem-solving principles from
which these interactions can be generat-
ed.

Finally, advances in cognitive science
have provided a theoretical basis for
designing educational software that can
be effective. We now have models of
how successful students perform various
cognitive tasks (7, 8). This enables one to
be precise about instructional objectives
for a particular course of study. Further-
more, current theories address the issue
of how the student acquires new cogni-
tive skills. The learning principles de-
rived from these theories provide the
direction needed in the design of instruc-
tional software. We have based our work
on the ACT* theory of cognition (9, /0).
In this article, we review briefly the
assumptions from the ACT* theory that
are relevant to the design of tutoring
systems and then describe our approach
to intelligent tutoring based on this the-
ory. We present two examples of this
work, a tutor for high school geometry
and one for LISP programming.

The ACT-Based Approach to
Intelligent Tutoring

The ACT* theory has been embodied
in computer programs that simulate
many aspects of human cognition. The
ACT* theory, which is an .attempt to
identify the principal factors that affect
human cognition and organize them into
a complete cognitive theory, consists of
a set of assumptions about a declarative
memory and a procedural memory. We
have found that only certain aspects of
the theory are relevant to the tutoring of
cognitive skills—in particular, the proce-
dural assumptions.

The procedural component in the

26 APRIL 1983

ACT* theory takes the form of a produc-
tion system. A production system is a set
of rules in which each rule represents a
unit of a skill. Productions are used in
many cognitive theories (//. /2). Much
of human cognition appears to unfold as
a sequence of actions evoked by various
patterns of knowledge. These steps of
cognition are given by rules that specify
which actions to perform under a partic-
ular set of conditions. An English ap-
proximation of a production from one of
the ACT* computer simulations for
proving a theorem of geometry is the
following:

IF the goal is to prove AUVW
= AXYZ,

set as subgoals to

) prove UV =XY

2) prove VW =Y2

3) prove LUVW = £XYZ

This is a backward inference rule that
embodies the side-angle-side rule of ge-
ometry. The rule says that when the
goal is to prove a pair of triangles con-
gruent, that goal can be achieved by
trying to prove corresponding pairs of
segments and their included angles con-
gruent. The theory does not claim that
the production exists in this form in the
student's head. but rather that the stu-
dent’s thought processes follow these
rules.

One can also have forward inference
rules such as:

THEN

IF the goal is to make an infer-
ence from the facts that
XY =UV. 2xYZ =
<UVW. and YZ = VW,

infer that AUVW
= AXYZ because of the
side-angle-side postulate.

THEN

We have successfully used rules like
these to simulate the sequence of the
inferences (correct and incorrect) that
students report making in trying to solve
a geometry problem.

As these examples illustrate. produc-
tions in the ACT* theory are goal-direct-
ed; that is, their conditions include a
specific goal. These productions can ap-
ply only when a goal is set. This goal-
directed character of cognition proves to
be the key to much of the tutoring effort.
Itis critical for the student to be aware of
the goals to be set and achieved to solve
a problem.

The conditions of these productions
contain patterns that must match infor-
mation held in the student’s working
memory. Working memory, according to
the ACT* theory, stores what the prob-
lem-solver currently knows about the

problem: furthermore. the capacity to
maintain information in working memory
is assumed to be limited. It is possible
that the capacity required for the solu-
tion of a particular problem will be ex-
ceeded and thus that critical information
for the matching of a production will be
lost. This can result in the failure 1o
execute the appropriate production. the
execution of an inappropriate produc-
tion. or an error in executing the produc-
tion. Many errors of learners are due to
failures of working memory rather than
to failures of understanding (/3).

A major effort in our tutoring work is
therefore concerned with helping stu-
dents to manage working memory load.
This is accomplished by having the tutor
encode on the computer screen much of
the information that a student is likely to
forget. This enables the student to solve
the problem more easily and to learn
from that problem-solving effort.

In the ACT* theory a learner becomes
more skilled at a domain by acquiring
new productions that encode special
rules for solving problems in that do-
main. ‘‘Knowledge compilation'" is the
name given to the learning mechanisms
by which new productions are acquired.
We have used a computer implementa-
tion of this knowledge compilation
mechanism to simulate the way students
learn in a domain (7). The basic feature
of this mechanism is that it provides new
rules that summarize many of the pro-
ductions for the solution of a problem in
an episode of learning. Therefore, the
next time the student encounters a simi-
lar problem-solving context, these new
rules can produce a more efficient solu-
tion, one that involves less trial-and-
error search.

The technical details of knowledge
compilation are not important for our
present purpose. what is important is to
emphasize that new productions are
formed only during problem-solving.
This means that instruction is effective to
the degree that it can be integrated with
problem-solving. Therefore. in our tutor-
ing programs, formal instruction is made
part of the problem-solving rather than
preceding the problem-solving.

We have briefly reviewed four fea-
tures of the ACT* theory—use of pro-
ductions, goal structure, working memo-
ry limitations, and knowledge compila-
tion—that are the key to the tutoring
efforts described below. Implications of
this theory for tutoring include making
the goal structure explicit, minimizing
the working-memory load, and giving
instruction in the problem-solving con-
text. Another important implication of
these principles is that students should

457

be given immediate feedback.about their
errors. This will make it easier for the
student to integrate the instruction about
errors.into the new productions that they
form.

These observations point to the value

of a private tutor who can observe a
student’s problem-solving, provide the
right instruction at the right moment.
correct errors, and identify the problem-
solving goals. There is evidence that
private human tutors can be very effec-
tive at instruction in domains that have a
significant problem-solving component.
For instance, when we compared the
teaching of programming by human tu-
tors with classroom instruction of pro-
gramming, we found a four-to-one ad-
vantage for the private tutor, as mea-
sured by the amount of time required for
students to get to the same level of
proficiency. Bloom (/4) in his compari-
sons of private tutoring with classroom
instruction of cartography and of proba-
bility found that 98 percent of the stu-
dents with private tutors performed bet-
ter than the average classroom student,
even though all students spent the same
amount of time learning the topics. The
poorest students benefited most. There
was little difference in the achievement
levels of the best students under the two
conditions.

From these general observations
about the effectiveness of private tutor-
ing and our own theory, we developed a
general paradigm for providing students
with individualized tutoring, which we
call **‘model tracing.’’ The model-tracing
paradigm is built around having a model
of specific productions for the correct
solution of the problem by the student
(called the ‘‘ideal model’’) and produc-
tions for the errors students can make
(the bug catalog). The tutor infers which
rule the student applied by determining
which one matches the student's re-
sponse. If it is a correct response, the
tutor is quiet and continues to trace the
student’s problem-solving. If an incor-
rect response has been given, the tutor
interrupts with appropriate remedial in-
struction. Other possibilities are that the
student does not know what to do next
or that the student’'s behavior matches
no production, correct or incorrect. Usu-
ally, this occurs when the student is
confused. We have found that the best
thing to do in such situations is to tell the
student what to do next. If this is ex-
plained properly, the student is often
able to get back on a right track. In the
next two sections we present the geome-
try and LISP tutors we have developed
according to this model-tracing para-
digm. .

458

The Geometry Tutor

The geometry tutor (/5) is based on
our earlier work on the problem-solving
strategies underlying the generation of
proof in geometry (/6). This tutor is
based on a number of principles derived
from our learning theory—the use of an
ideal model. use of a proof graph to
represent problem structure. instruction
in context. and immediacy of feedback.

The Ideal Model for Generating a
Geometry Proof

Figure la illustrates a geometry proof
problem as it is initially presented to a
student by the tutor. This problem is
considered relatively complex for high
school students. In it the student has to
prove the statement printed at the top of
the screen and is given the statements at
the bottom of the screen (‘M is midpoint
of AB"" and ‘*M is midpoint of TD"’). As
in high school geometry textbooks, the
student is allowed to assume that any
points that appear collinear are collinear,
but nothing else can be assumed from the
diagram.

At any point in the solution of the
problem shown in Fig. 1, a number of
inferences can be made. For instance,
from the given fact that M is the mid-
point of AB, it is possible to infer that
AM = MB. It is also possible to infer
that LAMF = £BME because they are
vertical angles. The possible inferences
can be ordered according to aptness, the
first of the above inferences being apt in
this context, but the second one not.

In this type of problem-solving, stu-
dents also reason backward from a state-
ment to be proved to statements that will
prove them. Thus. a student can reason
backward from the goal of proving M is
the midpoint of EF to the subgoal of
proving ME = MF by applying the defi-
nition of midpoint. It is then possible to
reason backward from this subgoal. For
instance, the student might reason back-
ward from the goal of proving ME = MF
to the subgoal of proving AAME
= ABMF by applying the rule that cor-
responding parts of two triangles are
congruent if the triangles are congruent.
Alternatively, a student might reason
backward from the goal of proving ME
= MF to the subgoals of proving
ME = AM and AM = MF with the in-
tention of using the transitive property of
congruence to deduce that ME = MF.
Again, these backward inferences can be
ordered as to their aptness with the first
two inferences being quite apt in this
context, but the last one not. .

The aptness of an inference is not an
absolute property of the rule of geometry
that authorizes it. Instead. as indicated
above. the aptness of an inference de-
pends on the context in which it occurs.
As another example. in this problem
it is not strategic in reasoning forward
to make the inference that ~AMF =
.BME. However. another inference
about vertical angles. . AMC = _BMD
is quite apt. particularly after the student
establishes that AM = BM and MC = VID.
Then the congruences of the two pairs of
sides and the congruence of the angles
can be used to show that AAMC
a ABMD by the side-angle-side postu-
late.

Thus. our ideal model for generating
proofs in geometry involves both for-
ward and backward inference rules with
contextual restrictions. The following
rule of forward inference makes use of
the congruence of two vertical angles.
This conclusion will then enable a side-
angle-side inference to be made.

IF XY=UVandYZ=YW
and there are triangles
AXYZ and AUYW where
X. Y, and W are collinear
points and U. Y. and Z are
collinear points

infer £XYZ = LUYW by
vertical angles.

As an instance of a contextually bound
backward rule, consider the following:

THEN

IF the goal is to prove two
lines parallel and there is a
transversal

set as a subgoal to prove
that alternate interior angles
are congruent.

The ideal model contains 200 such
rules ordered according to aptness. The
model executes the best inference rule
that applies in a situation. whether that is
a backward or a forward rule. This sys-
tem generates proofs for all of the prob-
lems in the high school geometry topics
we have been working with, and the
proofs are like those generated by human
subjects. Not all of the inferences the
system makes are part of the final proof.
but when it deviates from the final proof,
it deviates in the way we have observed
in human subjects.

In summary, the ideal model is an
‘effective and human-like proof system
that contains a set of rules for making the
most reasonable inference in a particular
context. This ideal model defines what
we are trying to get the student to emu-
late.

THEN

SCIENCE, VOL. 228

The Proof Graph and the
Goal Structure

It is important to communicate to the
student the logical structure of a proof
and the structure of the problem-solving
process by which a proof is generated.
Figure 1. a to c. illustrates the proof
graph that we have developed for this
purpose. The proof graph is shown at the
beginning of a geometry proof. in the
middle of the proof. and at the end of
that proof. Figure la illustrates the initial
presentation of the problem. The student
can reason forward from the given condi-
tions and backward from the statement
to be proved. The student adds to the
graph by a combination of pointing to
statements on the screen and by typing
information. Each logical inference in-
volves a set of premises, a reason. and a
conclusion. Reasoning forward, the stu-
dent points to the premises. types the
reason, and points to the conclusion (if it
is already on the screen) or types it. For
instance, the student might point to the
premise ‘M is midpoint of AB," type

the reason "*definition of midpoint.’’ and

type the conclusion **AM = MB." Rea-
soning backward. the student points to
the conclusion, types the reason, and
then provides the premises.

Figure 1, b and c. shows some of the
possible states in the development of a
proof. The student is finished when there
is a set of logical inferences connecting
the given statements to the statements to
be proved. Figure 1b illustrates how in-
ferences can be made from the top and
the bottom to meet in the middle. Figure
lc shows how the screen looks when a
student achieves a final proof; this stu-
dent made some inferences that were not
part of the final proof.

One function of this formalism is to
illustrate the structure of a complete
proof. High school students typically do
not understand how the steps of a proof
fit together and find this structure help-
ful. The proof graph also concretely il-
lustrates critical features of the problem
space—namely, that inferences can be
made in both forward and backward
modes, that there are points at which the
student must choose among several in-
ference rules. and that the ultimate goal
is a well-formed logical structure.

Instruction in Context

All of the instruction with the geome-
try tutor is provided in the context of
solving problems. Only one concept (like
the side-angle-side rule) is introduced at
atime and it is accompanied by problems

26 APRIL 1985

d
‘%_g___.‘ W magon st EF
N 7
uu » !
— - o ——=8 ,’
F o] 8
I
|
|
M s midpoint of AB M 13 midpoint of CO
b
A < € M s m.dpontof EF
: + : Dsf-wgoomr
4 —-—
N .
F o 8
AMBOSAMAC
SAS
VS aAM L AMC 3LBMO MOalM
DEF- M’DPOINT VERT DEF-MI’DFONT
M s midpoint of AB M s mdpaint of TO
Cc
M s mdpoint of EF
DEF-W‘DPOINT
o

CORRES-PARTS

AAME%AWF

LMDBaLMCA LMBDXLMAC

CORRES-PARTS CORRES-PARTS -

AMBOIAMAC
SAS

VD alM
DEF-MIOPOINT

LAMCSLBMO

LMCA supp L MCE

W?N LAME TLBMF

DEF-MIDPOINT VERT

'
ADJ- SUP-ANGS VERT

M i1 midpomt of AB M is midpoint of CD

Fig. 1. (a) The geometry tutor’s initial representation of the problem: (b) a feprescmation in the
middle of the problem: and (c) a representation at the solution of the problem: SAS. side-angle-
side. _

459

that make use of the concept. The tutor
does not allow a student to move to new
concepts until he or she shows mastery
of the current concepts. This instruction
mode differs from instructional modes in
which lectures are separate from prob-
lem-solving. Our knowledge compilation
theory implies that it is critical for in-
struction and problem-solving to be
closely juxtaposed.

Immediacy of Feedback

The fourth feature of the geometry
tutor is that it provides immediate feed-
back on the student's problem-solving
efforts at each step. Whenever the stu-
dent makes an incorrect inference. the
system responds by identifying the error
in the student’s logic. For instance,
when the student tries to use the side-
angle-side rule but chooses an incorrect

pair of angles, the tutor will point this out

to the student. When the student makes
an inference that is logical but is not on a
path that leads to a proof (as determined
by our ideal model). the tutor allows the
student to explore that path until he or
she appears to be lost. Then the tutor
intervenes and points to a correct path.

Assessment of the Geometry Tutor

Three students have now learned ge-
ometry by use of the tutor in various
stages of its development. One student
was of above-average ability. one of av-
erage ability. and one of below-average
ability (as defined by their grades in
mathematics courses). The below-aver-
age student came to us for remedial
work, having failed tenth-grade geome-
try. The other two were in the eighth
grade and had no formal training in ge-
ometry. All learned geometry success-
fully and were solving problems more

| assume you are trying to test if the numober argument
1s equal 1o 0 There '1s a spec:al function for testing
equivalence to 0 Try using that function instead of EQUAL

CQDE FOR fact
(defun tact (n)
(cond ((equal) <ACTION>)
<RECURSIVE-CASE > 1)
GOALS

Write code to get the vaiue of fact
Code the terminaung case

*** Code the condition for the terminating case ' °

Fig. 2. (a) An early point in
writing the code for factorial:

(b) the tutor guiding the stu-
dent in designing the algorithm

of fact called with n?

in exampies A and B what do you have to do to get the result

for factorial.

PRESS IF YOU WANT TO
1 Multiply n by one less than n
2 Muitiply n by fact of one less than n
3 Add n 0 the resuit of fact called with one less than n
4 Have the tutor choose
Menu Choce 2
CODE FOR fact
(defun tact (n) .
(cond ((zerop n) 1)
<RECURSIVE-CASE >1)

EXAMPLES
fact (n) fact (n-1)
A (fact 1 = 1 tact Q) = 1
8 (tactd = 6 dact) = 2

complex than are usually assigned in the
schools. After it was over, all claimed to
like geometry. which is encouraging
since classroom geometry is usually the
least liked of all school subjects (/7). An
experimental classroom in a Pittsburgh
public high school that has a set of
powerful computer workstations will test
the geometry tutor in the fall of 1985. We
are also working toward establishing the
geometry tutor on more economical ma-
chines. Growing understanding about
how to optimize code and the increasing
power of personal computers should
make this feasible.

The LISP Tutor

The LISP tutor, which is used to teach
basic programming constructs for the
writing of LISP programs. has been used
to teach introductory programming at
Carnegie-Mellon University. The tutor is
based on studies of how students learn
programming (7, /8). As was true of the
geometry tutor, the design of the LISP
tutor was guided by an ideal model for
LISP programming, an interface for
communicating the goal structure of pro-
gramming tasks, instruction in context,
and immediacy of feedback.

The Ideal Model for LISP
Programming

We have developed a production sys-
tem capable of simulating the way that
good students code introductory-level
LISP programs. Currently, the tutor’s
ideal model contains approximately 325
production rules, including the two pro-
ductions shown here:

IF the goal is to multiply
NUMBER! by NUMBER2

use the function TIMES and
set as subgoals to code

NUMBERI and NUM-
BER2

IF the goal is to code a recur-
sive function. FUNC-
TION, with an integer ar-
gument, INTEGER

use a conditional structure
and set as subgoals

1) to code the terminating
case when INTEGER
is 0. and

2) to code the recursive
case in terms of
FUNCTION (INTE-
GER - 1).

SCIENCE. VOL. 228

THEN

THEN

The first rule codes use of the basic
LISP function for multiplication. The
second, a more advanced production,
defines a recursive function dealing with
integers. The rule sets a first subgoal to
code the terminating case for the recur-
sion. For example, to code a factonal
function. the first subgoal generates | as
the value of 0!. The other subgoal defines
the recursive case in terms of a function
call with one less than the integer. Thus.
the factorial of n is computed from the
factorial of n - 1; that is. n'=
nx(n-1".

Both of these productions involve set-
ting subgoals. LISP code is generated by
decomposing goals into subgoals, and
these into further subgoals, until goals
are set that can be directly achieved.
Students are taught to program accord-
ing to the goal decomposition methods in
the tutor’s ideal model.

The Tutorial Interface

A major design feature of the interface
has been to provide the student with a
structured editor with which to enter
code. The structured editor automaticai-
ly balances parentheses and provides
placeholders for the arguments of each
function. For example, to define a LISP
function, one specifies the function *'de-
fun,”* the name of the function, a param-
eter list, and the function body. To be-
gin, the student types a left parenthesis
and the word ‘*defun.’’ At that point the
tutor redisplays the code as

(defun <NAME> <PARAMETERS>

<PROCESS>)

The symbols in brackets indicate argu-
ments that must be coded. The tutor
places the cursor underneath the symbol
<NAME> and illuminates it to indicate
that this symbol must be coded next.
This structured editor relieves stu-
dents of the burden of balancing paren-
theses and checking syntax, thus en-
abling them to focus on the aspects of
LISP that are conceptually more diffi-
cult. Our results demonstrate that en-
abling students to pay more attention to
the central conceptual issues in program-
ming leads to faster learning of these
major skills, with no deficit in the stu-
dent’s knowledge of syntax. In addition,
the structured editor facilitates commu-
nication between the student and the
tutor. The student types directly into the
code, replacing one of the placeholding
symbols, and thus it is always clear
which part of the problem is being cod-
ed. In the question-answer format of
most educational software, the student

26 APRIL 198

can easily get “"out of synch™ with the
tutor when the student is not sure which
part of the problem the tutor is discuss-
ing or querying.

The Goal Structure of LISP
Programming

The tutor has been designed to com-
municate the conceptual structure of
programming problems. This is accom-
plished in part by using the placeholders
to provide a template for the rest of the
problem solution. The tutor also commu-
nicates the goal structure in its guidance
in planning LISP programs. When re-
quested or when the student encounters
sufficient difficulty, the tutor initiates a
planning mode in which it leads the stu-
dent through the design of an algorithm
to accomplish the current portion of the
problem. Thus. the student learns how a
complex problem can be broken down
into simpler problems to be solved. In
both coding and planning modes, a spe-
cial goals window reminds the student
about the current goal in solving the
problem.

Instruction in Context

As in the geometry tutor, instruction is
provided in the context of solving prob-
lems. After each new concept is intro-
duced. the student is given a number of
problems designed to put that concept to
use. The instruction can then be tailored
to the difficulties encountered and can be
provided while the student is trying to
apply new ‘skills rather than merely read-
ing about them.

Immediacy of Feedback

Like the geometry tutor. the LISP
tutor provides immediate feedback and
guidance on incorrect and nonstrategic
steps. In addition to the correct produc-
tion rules in the ideal model, the tutor
contains a bug catalog, a collection of
47S rules that represent errors made by
novice programmers. The tutor com-
pares each item of code entered by the
student to determine which correct or
incorrect production rule led to that in-
put. If the input matches a correct rule,
the tutor is silent and waits for further
input. If the input is diagnosed as an
error, the tutor interrupts with advice.
Thus, the feedback is immediately pro-
vided, and necessary instruction can be
given both in general terms and in the
context of the current problem.

The tutor also curtails unnecessary
floundering by providing guidance of
various sorts. The student can request
clarification of the current part of the
problem and can also ask for the next
step in the solution. In addition, if the
student has sufficient difficulty in coding
a particular part of the problem. the tutor
will intervene. If the current portion of
code is complex. the tutor initiates a
planning mode for designing an algo-
rithm. If the current part of the problem
is more straightforward. the tutor pro-
vides the next step. setting the student
back on one of the correct paths to a
solution.

The type of feedback and guidance
provided by the tutor can be seen in Fig.
2. aand b. In this example the student is
writing a recursive function to code the
factorial of a number. Figure 2a presents
an early stage in that interaction in which
the student receives a hint that another
LISP function is more appropriate than
the one he or she used. In Fig. 2b. the
tutor helps the student design an algo-
rithm after he or she had difficuity in
coding the recursive case. At the bottom
of the screen the student has worked out
some examples of the relation between
fact (n) and fact (n — 1). and he or she is
being asked to generalize that relation.

Evaluation of the LISP Tutor

We have completed two studies of the
LISP tutor in action. One, completed in
the summer of 1984, compared ten stu-
dents learning LISP from the computer
tutor, ten learning LISP from a human
tutor, and ten doing all their problem-
solving on their own (which is the normal
situation). All three groups of subjects
read the same instructional matenal and
worked on the same problems. The hu-
man-tutored subjects took !1.4 hours.
the computer-tutored subjects took 15.0
hours. and the subjects on their own
took 26.5 hours to cover this matenal.
The difference between the two condi-
tions in which the students were tutored
was not significant, but both were signifi-
cantly faster than the students learning
on their own. The three groups per-
formed equally well on tests of their
LISP knowledge. However. this result
may be deceptive because a number of
subjects learning on their own did not
finish the more difficuit lessons as a
result of the amount of time they had
spent on the ecarlier lessons. Thus. our
test scores for that condition are based
on only the best subjects.

In the fall of 1984 we assigned ten
students to the computer tutor and ten

61

students to learning on their own. Both
groups got the same lectures and read
the same material. All students complet-
ed the lessons. However, students work-
ing with the computer tutor spent 30
percent less time doing the problems
associated with the lessons and scored
43 percent better on the final exam than
the students working on their own.

Overall Assessment

Research on intelligent tutoring is now
on the threshold of a methodology that
will make qualitative changes in our abil-
ity to. instruct students on topics that
many students find difficult. This resuits
from a fortuitous convergence of techno-
logical advances in the availability of

computational power and scientific ad-
vances in the understanding of cognition.
We have focused on the consequences of
intelligent tutoring methods for pedago-
gy. However, we should stress that data
collected in these pedagogical experi-
ments advance the science of human
cognition.

References and Notes

1. J. S. Brown and J. Greeno. in Research Brief-
ings. 1984 (National Academy Press. Washing-
ton. D.C.. 1984).

. D. Sleeman and J. S. Brown. Eds.. Intelligent
!T;slgnng Svsiems (Academic Press. New York.

)

(]

- New York Times (20 April 1984). summary of a

research report by V. B. Cohen. p. C4.

F‘).“B. Fiske. .Vew York Times (9 December
).

J. R. Carbonnell. /[EEE Trans. Man-Machine

Systems 11. 190 (1970).

D. Osgood. Bvre 9. 162 (June 1984).

. J. R. Anderson et al.. Cognitive Sci. 8. 87 (1984).

. J. Larkin. J. McDermott, D. P. Simon. H. A.

Simoa. Science 208. 1335 (1980).

T TR

9 J R Anderson. The Archutecture o Cognition
d:sa;vard University Presys. Cambridge. Mass .
|).

10. ACT*® 15 the most recent in a senes of theones
Which have been denoted by the acronym ACT.
The acronym stands for Adapuve Control of
Thought. a name that has only histoncal signifi-
cance.

1. J.S. Brown and K. VanLehn. Cogmitive Sci. 4,
379 (1980).

12. D. Sleeman. in /ntelligent Tutoring Svstems. D.
Sleeman and J. S. Brown. Eds. (Academic
Press. New York. 1982).

13. J. R. Anderson and R. Jeffnes. Hum. Compur.
Interact.. in press.

14. B. S. Bloom. Educ. Reseurcher 13. 3 (1984).

1S. C. F. Boyle and J. R. Anderson. "*Acquisition
and automated instruction of geometry proof
skills ", paper presented at the Amencan Educa.
tion Research Association meetings. New Or.
leans. Apnl 1984,

16. J. R. Anderson. Proceedings of IJCAI-81 (Inter-
national Joint Conference on Artificial [ntelli-
gence (1981)).

17. A. Hoffer. Marh. Teach. 11. 18 (1981).

18. J. R. Anderson. P. Pirolli. R. Farrell. in The
Nature of Ex&cm'u. forthcoming book. M. Chi.
M. Farr. R. Glaser. Eds.

19. Supmed by contract N0O0O|4-84-K-0064 from
the e of Naval Research and by grant IST-
8318629 from the National Science Foundation.

