Modelling Cognition
Edited by P. Morris
© 1987 John Wiley & Sons Ltd.

4

Cognitive principles in the design of
computer tutors

JOHN R. ANDERSON, C. FRANKLIN BOYLE, ROBERT FARRELL and
BRIAN J. REISER

Advanced Computer Tutoring Project, Carﬁegie-Mellon University

In this chapter a set of eight principles are derived from the ACT+ theory for
designing intelligent tutors: use production system models of the student,
communicate the goal structure of the problem space, provide instruction on
the problem-solving context, promote an abstract understanding of the
problem-solving knowledge, minimize working memory load, provide
immediate feedback in errors, adjust the grain size of instruction according to
learning principles, and enable the student to approach the target skills by
successive approximation. These principles have guided our design of tutors
for LISP and geometry.

There has been and continues to be a great deal of hope for the role of
computers in education (Cohen, 1982; Papert, 1980; Taylor, 1980). The
actual record of accomplishment is still quite modest, however. Most com-
puter education takes the form of simple drill and practice and is often not as
effective as classroom drill and practice. There has always been the hope that
artificial intelligence techniques would illuminate computer instruction. The
buzz word of a decade ago was ‘intelligent computer assisted instruction’ or
ICAI (Carbonnel, 1970). The relative lack of progress in that field led to a dis-
enchantment with that expression, and we now see new descriptors. The basic
problem with the earlier work was lack of a clear paradigm for bringing intelli-
gence to bear in delivering instruction. A current belief is that the most prom-
ising paradigm for bringing intelligence to bear is to emulate a private human
tutor. This is the intelligent tutoring paradigm (Sleeman and Brown, 1982).

The basic observation that motivates the intelligent tutoring approach is the

93

94 MODELLING COGNITION

great effectiveness of private human tutors over either classroom instruction
or standard computer education. Bloom (1984) reports that 98 percent of
students instructed by private tutors performed better than the average
student in the classroom. In an experiment reported at the end of this chapter,
we found private tutors were able to bring students to the same level of
achievement in perhaps as little as a quarter of the time that was needed in the
classroom. The hope of intelligent tutoring is to find some way of ‘bottling’ the
skill of the human tutor and putting it in a computer tutor.

The most straightforward application of artificial intelligence techniques to
intelligent tutoring.would be an expert systems approach. In this approach,
one would treat the human tutor as the expert whose knowledge has to be
extracted and build an expert system to apply that knowledge. Work such as
that of Stevens, Collins and Goldin (1982) on teaching topics such as rainfall
seems to have this character. However, human tutoring does not have the
characteristics of a domain that proves susceptible to the expert system
methodology. It is not a clearly circumscribed knowledge domain, it is heavily
dependent on natural language understanding, and human tutors show
enormous individual differences in their tutoring styles. Thus, it seems
unlikely that there is a well-defined expertise to be captured and emulated.

It is probably for this reason that most approaches to intelligent tutoring
have not tried to really emulate human tutors (see the papers in Sleeman and
Brown, 1982). Rather they have tried to identify abstract principles of
effective tutoring and design tutors that embody these principles without
concern with whether these tutors emulate humans. While the tutoring system
is not itself an expert system, an intelligent tutor often has an expert system as
a submodule for solving problems in the domain to be tutored. For instance,
Brown, Burton and DeKleer (1982) include an expert circuit analysis system
as part of their SOPHIE tutor for troubleshooting circuits. Such a system can
reason correctly about the domain and thus provide the correct answer, which
is, of course, an important piece of information in instruction.

We feel that the actual pedagogical design of the tutor must be based on
detailed cognitive models of how students solve problems and learn. The state
of the art in cognitive science has reached the point where we now are able to
produce theories capable of applications to intelligent tutoring. In this paper
we would like to develop a set of principles for computer tutoring based on
the ACT+ theory of cognition (Anderson, 1983). This theory has been
developed at a sufficient level of detail that it is possible to produce simula-
tions of the theory that actually solve problems the way students would solve
problems and which learn from problem-solving much as students learn.
These simulations form the core of our tutorial efforts because part of every
tutor is what we call an ideal model, which models how successful students
solve problems in the domain. Such models have an additional requirement
not found in the expert systems of most tutors. Not only must they be able to

'

COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 95

solve the problems in the domain, they must be able to solve them the way
students do. For instance, Clancey (1983) has found it necessary to rework
mycin in order to build a tutor for medical reasoning.

The major portion of this paper will be devoted to identifying and justifying
eight principles for doing intelligent tutoring. Then the last two sections of the
paper will describe two tutors we have built partially embodying these
principles. One is a tutor for the LISP programming language and the other is
a tutor for high-school geometry. However, before embarking on any of this
we should state a major limitation on the principles that we will articulate. We
can only defend their application to a relatively restricted set of topics—those
for which we can develop ideal student models. These include the domains of
high-school and early-college math and introductory programming. These
domains are relatively sparse in their importation of extra-domain know-
ledge, and thus the ideal model need only address domain knowledge. It is
possible to develop much more articulate tutors for domains for which one
has precise student models. If one does not know exactly what it is the student
is supposed to do, it forces one to back off into a different tutoring strategy.

Throughout this paper we will be making reference to observations we have
made of high-school students learning geometry and college students learning
to program in LISP. We have observed four students spend approximately 30
hours studying beginning geometry and three students similarly spending 30
hours learning LISP. These sessions have all been recorded and have been
subjected to varying degrees of analysis. Some of these analyses have been
reported in a series of prior publications (Anderson, 1981a,b; 1983; Ander-
son, Farrell and Sauers, 1984; Anderson, Pirolli and Farrell, in press). This
data base of protocols has served as a rich source of information about the
acquisition of problem-solving skill and has heavily influenced design of our
computer tutors. In addition to gathering this protocol data, we have per-
formed a good number of more analytic experiments which we will refer to
throughout this chapter.

REVIEW OF THE ACT* THEORY

Before turning to the cognitive principles it is useful to give a brief review of
the ACTe theory on which they are based. This theory has been embodied in
computer programs which have successfully simulated many aspects of human
cognition (Anderson, 1983). The ACT# theory is an attempt to identify all
the principal factors that affect human cognition and organize them into a
complete cognitive theory. The ACT* theory is quite complex, consisting ofa
set of assumptions about a declarative memory and a procedural memory.
However, it appears that only certain aspects of the theory are relevant to the
tutoring of cognitive skills: in particular, the procedural assumptions. The
procedural component in the ACT#* theory takes the form of a production

——sss

<

96 MODELLING COGNITION

system. Much of human cognition appears to unfold as a sequence of actions
evoked by various patterns of knowledge. Productions attempt to capture this
by pattern—action pairs describing individual steps of cognition. The actual
productions are implemented in a computer system that simulates human
cognition. An ‘Englishified’ version of a production from one of the ACT=
simulations is:

IF the goal is to prove AUVW = AXYZ
THEN set as subgoals to
1. Prove UV=XY
2. Prove VW= YZ
3. Prove ZUVW = /XYZ

This is a backwards chaining rule that embodies the SAS (side—angle—side)
rule of geometry. If the goal is to prove two triangles congruent, it sets as a
subgoal to prove two sides and an included angle congruent. One can also
have forward inference rules such as:

IF the goal is to make in inference from the fact that XY = UV
and it is true that ZXYZ = ZUVW
and it is true that YZ = VW
THEN infer that it is true that AUVW = AXYZ
because of the side-angle-side postulate.

As these examples illustrate, productions in the ACT+ theory are goal-
factored. That is, they make reference in their condition to a specific goal to
which they are relevant. These productions can only be evoked when that goal
is active.

The conditions of these productions are patterns that match to information
being held in working memory. The ACT* theory assumes people have only a
limited capacity to keep information active in working memory. It is possible
that the capacity will be exceeded in a problem, and critical information for
the matching of a production will be lost. This can result in the failure to
execute the appropriate production or the execution of an inappropriate
production. A good many errors of learners are due to working memory
failures rather than failures of understanding (Anderson and Jeffries, in
press).

Knowledge compilation

Key to any theory of tutoring are the learning mechanisms by which new
procedures (productions above) are acquired. Knowledge compilation is a
major mechanism for procedural learning in ACT=. Elsewhere (Anderson,

COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 97

1983) I have argued that knowledge compilation and production strengthen-
ing account for all forms of procedural learning. There are two subprocesses
involved in knowledge compilation. The first, proceduralization, creates
productions that eliminate the retrieval of information by pattern matching of
a production condition. Proceduralization builds that information into the
proceduralized production. One example of this involves retrieval of infor-
mation from long-term memory about LISP programming. In ACT+ there isa
production that will retrieve function definitions from long-term memory and
apply them:

IF the goal is to code a relation defined on an argument
and there is a LISP function that codes this relation
THEN use this function with the argument
and set a subgoal to code the argument

In this production, relation and function are variables which allow the
production to match different data. The second line of the condition might
match, for instance, ‘CAR codes the first member of a list’. If this rule is
proceduralized to eliminate the retrieval of the CAR definition, it becomes:

IF the goal is to code the first member of a list
THEN use the CAR of the list
and set as a subgoal to code the list

This is achieved by deleting the second clause that required long-term
memory retrieval from the first production. In addition, the rest of the
production is made specific to the relation first element and the function CAR.
Now a production has been created which can directly recognize the appli-
cation of CAR. This will result in a reduction in the amount of long-term
memory information that needs to be maintained in working memory.

Composition involves collapsing a number of successful operators into a
single macro-operator that produces the same overall effect as the sequence
of individual operators. As an example of this from LISP, suppose one wanted
to insert the first member of Listl into List2. Then the following two
operators would apply in sequence:

IF the goal is to insert an element into a list
THEN CONS the element to the list
and set as subgoals to code the element
and to code the list

IF the goal is code the first member of a list
THEN take the CAR of the list
and set as a subgoal to code the list

98 MODELLING COGNITION

The first rule above would apply and bind an element to ‘the first member of
List1’ and a list to ‘List2’. The second production would apply and bind a list
to ‘List]l’. A simple case of composition would involve combining these two
productions together to produce:

IF the goal is to insert the first member of one list into another list
THEN CONS the CAR of the first list to the second list
and set as subgoals to code the first list
and to code the second list

Such composition would collapse repeated sequences of coding operations to
create macro-operators. The result would be a speed up in coding because
problems could be coded in fewer steps. McKendree and Anderson (in press)
provide evidence for such speedup of frequently repeated combinations of
LISP functions.

We have briefly reviewed four features of the ACTs theory (use of
productions, goal structure, working memory limitations and knowledge
compilation) that prove to be key to the cognitive principles that we will be
describing.

STATUS OF THE COGNITIVE PRINCIPLES

Before describing our principles of computer tutoring, it is importart for us to
clarify the relationship among these principles, our ACT* theory, and various
empirical results. Each principle is in fact derived from the ACT+ theory.
However, the derivation is not always transparent, and in fact it was often a
discovery for us that ACT+ implied these principles. This is frequently the
relationship between a scientific theory and design principles based on it. The
theory is typically cast to predict what the results will be of particular
manipulations, not to predict what manipulations will achieve a particular
optimal outcome. Also, these principles often have boundary conditions—it is
not the case that in all circumstances a particular manipulation is optimal.

The ACT+ theory has a fair degree of empirical support (e.g. Anderson,
1983) but, as with any psychological theory, hardly has the status of an
established fact. Therefore, we would like to have more evidence for those
principles than simply that they are implied by ACT+. We will also describe
empirical evidence consistent with these principles. In fact, one of the major
reasons for our interest in tutoring research is to gather further empirical
evidence for these principles and hence for the ACTs theory on which they
are based.

Principle 1: Represent the student as a production set

Probably the most important role for a cognitive theory in tutoring is to
f;govide explicit process models of how the ideal student should behave and of

=

COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 99

how the current student is behaving. The process model of the ideal student
allows one to be very precise about instructional objectives. The process
model of the current student allows one to be very precise about the current
state of the student and how he or she deviates from the desired state. The
current student model also allows one to interpret the student’s behavior.

The implications of the ACT+ theory for student models are, of course, that
they should be cast as production systems. Much of our success in constructing
tutors is to be credited to this design choice. It is an interesting question what
the evidence is for production systems. The hypothesis of a production system
is too abstract to be put to direct empirical test. Rather, the evidence for
production systems comes from their success as the basic formalism for
developing explanations of human problem-solving (e.g. Newell and Simon,
1972). It is also the case that numerous other efforts in the general domain of
intelligent tutoring have taken to representing the to-be-tutored skill as a
production set (e.g. Brown and Van Lehn, 1980; O’Shea, 1979; Sleeman,
1982).

Production systems not only enable the system to follow student problem-
solving, but the individual productions define an appropriate grain size for
instruction. Each production is a package of knowledge that can be communi-
cated to a student in one interaction. Basically, a tutoring system monitors
whether a student has the correct form of each rule, and the system provides
missing rules and corrects buggy rules. Also, as emphasized by Brown and
Van Lehn' (1980), student misconceptions or bugs can be organized as
production rules which are perturbations of correct rules. For example, a
buggy rule may be missing a condition, resulting in an over-general rule that
applies in incorrect situations.

Principle 2: Communicate the goal structure underlying the problem-solving

According to the ACT+ theory, and indeed most cognitive theories of
problem-solving, the problem-solving behavior is organized around a hier-
archical representation of the current goals. It is important that this goal
structure be communicated to the student and instruction be cast in terms of
it. Below we discuss the fact that it is not communicated in typical instruction
for LISP or geometry and some of the unfortunate consequences of this fact.

Geometry

Figure 1 shows the two-column proof form that is almost universally used in
geometry. It is basically a linear structure of pairs where each pair is a
statement and justification. Typical instruction encourages the belief that the
goal structure of the student should mimic this linear structure—that at any
point in the proof the student will have generated an initial part of the
structure and the current goal is to generate the next line of the structure.

2 ’%ﬁ%aé’* e

100 MODELLING COGNITION

Figure 1 also illustrates the typical instruction that is given about how to
generate a proof. This is all the instruction a student receives from the
textbook about how to generate a proof, and many teachers provide no more
in their classroom instruction. Clearly, there is very little identification of the
goal structure a student should assume in generating a proof.

Figure 2 illustrates the mental representation that we believe a successful
student creates for the proof of a geometry problem. The conclusion to be

1-7 Proofs in Two-Column Form

You prove a statement in geometry by using deductive reasoning to show that
the statement follows from the hypothesis and other accepted material. Often the
assertions made in a proof are listed in one column, and reasons which support the
assertions are listed in an adjacent column.

EXAMPLE. A proof in two-column form. 8
Given: AKD; AD = AB

Prove: AK + KD = AB 4 P Y
Proof:
STATEMENTS REASONS
1. AKD 1. Given
2. AK + KD = AD 2. Definition of between
3. AD=AB 3. Given
4. AK + KD = AB 4. Transitive property of equality

Some people prefer to support Statement 4, above, with the reason The Substi-
tution Principle. Both reasons are correct.

The reasons used in the example are of three types: Given (Steps 1 and 3),
Definition (Step 2), and Postulate (Step 4). Just one other kind of reason, Theorem,
can be used in a mathematical proof. Postulates and theorems from both algebra
and geometry can be used.

Reasons Used in Proofs

Given (Facts provided for a particular problem)
Definitions

Postulates

Theorems that have aiready been proved.

Figure 1. An example of the instruction about a two-column proof used in high-
school geometry from Jurgensen et al. (1975).

~ COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS

X
GIVEN: XY £XZ, LWMY T (TMZ
w T M midpoint of YZ
Y z PROVE. YT 2
™M
STATEMENT REASON
M is midpoint of YZ Given
Y™ & M2Z Definition of midpoint
XY & X2 Given
LXYZ = LXZY Base angles of
isosceles triangles
LWMY £ LTMZ Given
AWMY 2 ATMZ Angle-side-angle (ASA)
WY :=T2Z Corresponding parts
AWYZ 2 ATZY Side-angle-side (SAS)
YT = Zw Corresponding parts
T; ZwW
CORRESPONDING
PARTS
AWYZ S ATZY
|
SAS
Yz:vZ
REFLEXIVE CORRESPONDING
PARTS
AWMY E ATMZ
ASA
YN £ M2 IXYZ ELXZY
MIDPOINT ISOSCELES
LWMY ¥ LTMZ M MIDPOINT OF XY £ XY
YZ

Figure 2. (a) A proof problem; (b) a representation of the
logical structure of inferential support.

101

102 MODELLING COGNITION

proven is related to the givens of the problem by a hierarchical structure. In
that structure rules of geometry relate givens to intermediate statements and
these statements to the conclusion. Hopefully, the readers will find nothing
surprising in this representation of the logical structure of the proof, but it
needs to be emphasized that conventional instruction does not communicate
this structure and students hardly find it obvious when they first encounter
such proofs (Anderson, 1981a,b).

Figure 3 illustrates the proof in Figure 2 embedded in a set of additional

/TZ\

—— 2

CORRESPONDING CORRESPONDING CORRESPONDING
PARTS (2) PARTS (3) PARTS (11)
AWMZ £ ATMY AWXY T ATXY AWYZ TATZY WXE
SAS (10) SEGMENT

\ SUBTRACTION

CORRESPONDING
PARTS (7)

CORRESPONDING
PARTS (8)

AWMY £ ATMZ

L(WMZ & LYMT

A

z LXYZ = LXZY

A

SUPPLEMENTARY (4) MIDPOINT (1) ISOSCELES (5)

4 _

LWMY = [TMZ M midpoint of ZY =X2Z

B

Yz

Figure 3. A representation of the order of inferences made in
discovering the proof in Figure 2.

» COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 103

inferences generated by one of the authors (J.R.A.) in constructing the proof.
The inferences are numbered in the order that they were made. The structure
includes many inferences that were made in an attempt to construct the proof
but were not part of the final proof. These extra inferences reflect some of the
search that was involved in producing the final proof. Because standard
pedagogy fails to communicate either the proof structure or the search based
upon it, there is no way to provide instruction about this critical aspect of the
learning process. This aspect is entirely a matter for the student to induce.
Thus, typical instruction focuses only on the desired results without explaining
the mental planning required to generate such a result. Given its complexity,
it is no wonder that students have the difficulties they do with geometry
proofs.

LISP programming

As in geometry, the goal structure underlying writing a LISP function does
not correspond to the syntax of the problem solution and yet instruction is
usually cast in terms of the syntax. Our studies indicate that generating a LISP
program is largely a top-down planning process (Anderson, Farrell and
Sauers, 1982; Anderson, Pirolli and Farrell, in press). The surface form of
most programming languages involves a linear sequence of symbols. Thus,
there is the natural danger of casting instruction in the terms of this linear
structure. Fortunately, more enlightened instruction does emphasize a hier-
archical, structured program. There is evidence that this is a better instructional
mode (Shneiderman, 1980) although it is notoriously difficult to prove
obviously correct hypotheses in this field with conventional experimental
methodology (Sheil, 1981).

While structured programming is definitely a step in the right direction, it
only ameliorates the basic problem. As Soloway, Bonar and Ehrlich (1983)
show, the structured program itself is only a syntactic object which will have
an imperfect correspondence to the structure of the programmer’s plan.
Consider an example we have studied at length (Anderson, Pirolli and Farrell,
in press) from learning to program recursive functions, a recursive function
that calculates the intersection of two lists:

(defun intersection (setl set2)
(cond ((null set1) nil)
((member (car setl) set 2)
(cons (car setl)
(intersection (cdr setl) set2)))
(t (intersection (cdr setl) set2))))

From a syntactic point of view, this function consists of a conditional structure
that is composed of three clauses, each consisting of a condition and an action.

104 MODELLING COGNITION *

The student is encouraged to believe that it is just a matter of ‘programmer’s
intuition’ that leads to the division of the conditional into the right set of three
conditions and actions. Instruction is largely focused on explaining how the
code works rather than on how to write it. As an instance of the kind of
discussion that can be found in many texts, Siklossy (1976, p. 55) gives the
following explanation of intersection:

The simplest case occurs when one of the sets, say Setl, is the empty set (). The
intersection is then the empty set. In the next simplest case, Setl could be a set
with only one element, for example (HAYADOIN). If the element HAYADOIN
is a MEMSET of SET?2, then the intersection is the set (HAYADOIN). On the
other hand, if HAYADOIN is not a MEMSET of SET2, then the intersection is
the empty set (). In the general case, we move down SET1 (taking CDR’s) and
accumulate those elements of SET1 which are also MEMSETs of SET2.

Clearly no algorithm is specified for deciding how to generally break such a
function into cases.

However, there are very precise principles that underlie the division of this
code into its components (Soloway, 1980; Rich and Shrobe, 1978). This is an
example of what we call the CDR-recursion plan. This plan applies when an
argument of the function is a list such as serz/. The plan involves coding a
terminating case for when the list is nil and a recursive case that relates the
result of the function applied to the tail (cdr) of the list to the result of the
function applied to the full list. In the code above, the first clause of the
conditional implements the terminating case and the second and third clauses
perform the recursive step. So, the plan that generated the conditional
consists of two major subgoals, not three. However, it is necessary to break
the recursive step into two subcases—one to deal with the situation where the
first element is in the list and one where it is not. This division is dictated by a
standard list search plan.

We have evidence (Pirolli and Anderson, in press) that students learn
significantly faster when told about the CDR-recursion plan and encouraged
to use it rather than having recursive evaluation explained to them. Our
protocol studies (Anderson, Pirolli and Farrell, in press) show the extreme
cost of not informing students of such goal structures. We have seen students
work for ten hours with some popular LISP texts on problems like intersection
and not figure out the CDR-recursion plan. Rather, they pay attention to
surface characteristics of the examples and fail to identify the powerful
principles for coding recursive functions. As a consequence, they were still
floundering after the ten hours.

Summary

Traditional instruction does not explain the goal structure of the problem-
solving plan nor the search involved in the problem-solving. Private human

-~

COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 105

tutors often communicate this information as they direct and assist students’
problem-solving. For instance, all three of the LISP tutors we observed in our
protocols suggested dividing the code into terminating and recursive cases. A
computer tutor should strive to communicate the goal structure to the student
as this is absolutely critical to effective problem-solving.

Principle 3: Provide instruction in the problem-solving context

Students appear to learn information more effectively if they are presented
with that information during problem-solving rather than during instruction
apart from the problem-solving context. For example, providing a student
with hints or answers to confusions is much more effective while the student is
trying to solve a problem, as opposed to prior to the problem-solving or
following it. That this should be true is a direct consequence of ACT+*’s
knowledge compilation mechanism. Because knowledge compilation only
works on traces of problem solutions, productions are only acquired in the
process of problem-solving; they cannot be learned in the abstract. In all of
our studies of skill acquisition (see Anderson, 1981a,b), we have noted a
great speedup after the first few problems. Detailed analyses of protocols
suggest that students are compiling domain-specific productions from this
experience with the first few problems, and that they did not have these
productions prior to solving the first problems. Thus it seems that ACT* is
correct in its basic claim that skill is only acquired by doing. Instruction should
be most effective if given in the context of the problem-solving while the
student is forming these productions.

In addition to this basic reason, there are four other reasons for believing
instruction will be more effective when provided in context. First, there is
evidence that memories are associated to the features of the context in which
they were learned. The probability of retrieving the memories is increased
when the context of recall matches the context of study (Tulving, 1983;
Tulving and Thomson, 1973). An extreme example of this was shown by Ross
(1984) who found that secretaries were more likely to remember a text-editor
command learned in the context of a recipe if they were currently editing
another recipe.

Second, it is often difficult to properly encode and understand information
presented outside of a problem context. Thus the applicability of knowledge
might not be recognized in an appropriate problem context. For instance,
students may not realize that a top-level variable is really the same thing as a
function argument in LISP even though they are obliquely told so. As another
example, many students reading the side-angle-side postulate may not know
what included angle means and so misapply that postulate.

Third, even if students can recall the information and apply it correctly,
they are often faced with many potentially applicable pieces of information

106 MODELLING COGNITION -

and do not know which one to use. We have frequently observed students
painfully trying dozens of theorems and postulates in geometry before finding
the right one. The basic problem is that knowledge is taught in the abstract
and the student must learn the goals to which that knowledge is applicable. If
the knowledge is presented in a problem-solving context its goal relevance is
much more apparent.

Fourth, we do not want to overload the student by providing in advance
every possible hint and explaining every possible pitfall. But we do not know
in a classroom lecture or in writing a textbook what help the student will need.
In fact, the students in listening to a lecture may not know what help they will
need either. If we wait until the problems arise, we can provide just the
information that is needed.

Private human tutors characteristically provide information in the
problem-solving context. Some, but not all, of the tutors we observed gave
almost nonstop comment as students tried to solve problems. They take great
advantage of the multi-modality character of the learning situation—with the
student solving the problem in the visual modality and their instruction in the
auditory modality. Although it would be difficult for a computer tutor to be as
interactive as these human tutors and take full advantage of multi-modal
processing, we shall see that it is possible to partially achieve this by providing
appropriate instruction tailored to the students’ current goal context.

Principle 4: Promote an abstract understanding of the problem-solving
knowledge

Students differ in the level of abstraction at which they bring knowledge to
bear in problem-solving. Pirolli and Anderson (in press) compared the
approaches of three students to writing recursive programs. One student
wrote such programs by literally copying code from an example program.
Another student focused on a more abstract representation of the syntax of
the condition-action structure. A third student relied on an even more
abstract representation of division into terminating and recursive cases. In
terms of ability to transfer to coding other recursive functions, ACT+ simula-
tions of these three students learned the least in the first case and the most in
the last case, as did the actual students. The reason for the ACT* behavior
was that the most abstract representation corresponded best to the right
problem-solving organization.

Again in geometry, student success is ordered by the level of abstraction at
which they solve problems. For instance, some students will represent the
side—angle-side postulate as involving only the lower left angle because that
is the way it is illustrated in the book. Thus, they learn an overly specific rule,
which leads to later difficulties in problem-solving.

It is much easier for a student to encode knowledge concretely but much

« COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 107

less effective to do so. A good tutor should see to it that a student achieves the
right level of abstraction. It should be noted, however, that this principle does
not deny the usefulness of concrete examples. As noted with respect to
Principle 3, it is much easier to understand an abstract principle when one
sees it applied to a concrete example. The recommendation here is that
students should be encouraged to produce the right abstract encoding of that
concrete example. For example, in the case of recursion they should represent
an example function according to its division into terminating and recursive
cases.

Principle 5: Minimize working memory load

As mentioned earlier, a principal source of learner errors in ACT= is loss of
critical working memory information. Anderson and Jeffries (in press) pro-
vide evidence that almost all of the errors in the first few hours of LISP are
from this source.

A good human tutor can recognize errors of working memory and typically
provides quick correction (McKendree, Reiser and Anderson, 1984). Tutors
realize that there is little profit in allowing the student to continue with such
errors. However, human tutors really have no easy means at their disposal for
reducing the working memory load. This is one of the ways we think computer
tutors can be an improvement over human tutors—one can externalize much
of working memory by rapid updates in the computer screen. This involves
keeping track of partial products and visually presenting the goal structures.

Working memory errors increase the time to solve a problem but also,
according to ACTs, limit what can be learned from a problem. If students
cannot hold the key factors to a solution in working memory, they cannot
build them into the compiled productions.

Principle 6: Provide immediate feedback on errors

Novices make errors both in selecting wrong solution paths and in incorrectly
applying the rules of the domain. Errors are an inevitable part of learning, but
the cost of these errors to the learner is often higher than is necessary. They
can severely add to the amount of time required for learning. More than half
of our subjects’ problem-solving sessions were actually spent exploring wrong
paths or recovering from erroneous steps.

According to the ACTs theory, it is difficult for a student to learn the
correct production from an episode involving applying the wrong production,
applying a sequence of other productions predicated on the wrong produc-
tion, hitting an impasse, evetually finding the difficulty, and correcting it. The
student needs to represent in working memory all of this complex sequence of
events in order to be guaranteed successful compiling of a correct production.

108 MODELLING COGNITION -

Obviously, representing so much information can pose a severe information-
processing load. ACTs predicts best learning of the correct operator if
students are told immediately why they are wrong and what the correct
actions are.

Of course, the student can learn something from the error episode, if not
what the correct production was. The student can learn how to diagnose and
correct error states. For instance, one normally learns to debug programs by
making errors in one’s own program. Given that debugging is a valuable skill,
time should be set aside to teach it. However, the prescription of the ACT+
theory is that it should be taught in the same way as programming. That is,
there should be an ideal cognitive model for debugging, and the student
should be given immediate feedback when his or her behavior seriously
deviates from the ideal model.

We have found our emphasis on immediate feedback to be the most
controversial of our principles. One reason for the controversy is just a
misunderstanding. This is the belief that we are advocating that it is not
important to learn to identify and correct errors. The other reason reflects a
fundamental disagreement. Many people have strong beliefs that we learn
better when we discover our errors rather than when we are told about them.
However, it needs to be emphasized that the importance of immediacy of
feedback to skill acquisition is one of the best documented facts in psychology
(e.g. Bilodeau, 1969; Skinner, 1958). Much of this research has been with
somewhat simpler skills than the complex cognitive skills we have studied.
However, we have shown the same principle in a complex problem-solving
domain (Lewis and Anderson, in press). Subjects learned more slowly when
they were allowed to go down erroneous paths and were only given feedback
at delay. This is despite the fact that these students spent much more time in
the learning situation than the immediate feedback students because it took
them longer to solve the same number of problems.

Another cost of errors is the demoralization of the student. These are
domains in which errors can be very frequent and frustrating. We believe that
much of the negative attitudes and math phobias derive from the bitter
experiences of students with errors. It is hard to convey on paper the
emotional tone of some of the protocols we have gathered, but below are the
excerpts from students struggling with LISP errors:

... No, I need another set of parentheses, and I think I want it around—but I
can’t do that—that’s got to be—damn!—I think the first argument of CONST has
to be a list ... and why is that? No—I don’t need const!! What am I talking
about?! I need to use Union! . . . No, no! That didn’t work before because . . . oh
(groan) . .. let'’s see . .. I don’t know what I'd use the Union of! . . .

...I don’t know. I lost where I am. That’s usually what happens when I do
that—when I slow down and stop—’cause I forget what I am doing. Err . . . It’s
taken that much time!! Ok. Geez! Ugh ... I guess I will have to go back to it
again. ..

COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 109

... I’'m just so slow today. Damn! . .. so that means if this element of set] is in
set2 ... the value of setdiff is gonna be . .. the ... the ... Union of Cons? ...
Doesn’t matter what I guess . . . So it’s gonna be setdiff of . . . is it that simple!?
. . . something with the cdr of setl with . . . the cdr of set] and set2 . . . Let me see
if that works . . . Is that right? If that’s right, 'll be p . . . ed. God, I hate myself. I
can’t even think about it "cause I'll be so p . . . ed. But I have got to think about
it...

The potential advantages of a private tutor are clear in this regard. The
tutor can prevent the student from wasting inordinate amounts of time
searching wrong paths. The tutor can both provide immediate feedback when
errors are made and point out to the students which aspects of the problem
solution are correct and which are in error. Actual human tutors vary in how
much feedback they give (McKendree, Reiser and Anderson, 1984). Typi-
cally, they point out immediately what they perceive to be slips. They may
allow a more conceptual error to pass if they believe the subject may be able
to detect it. However, they tend to be very concerned about the emotional
tone of the learning situation, and if the subject is frustrated they will gently
put the subject back on the right track.

Principle 7: Adjust the grain size of instruction with learning

The productions in the ACT+ theory define the grain size with which a
problem is solved. Because of the knowledge compilation process, this grain
size will change with experience. As an example from LISP, a novice
approaches each symbol in the definition syntax as a separate subgoal. Later
the student writes out the whole structure as a unit. As another example,
geometry students come to recognize that they can apply a whole sequence of
inference steps. Clearly, if the tutor is going to be helpful, the tutor will have
to adjust instruction with the growing grain size of the instruction.

Human tutors often adjust their instruction according to individual differ-
ences between students and advances in the student’s performance during a
lesson. One of the things the tutor does is to chunk the instruction, thus
stopping the student before taking in too much material to practice. For
example, on encountering a page of new LISP functions, one tutor stopped his
student after the first function in order to insure that the student understood
that function before continuing with the rest of the functions. Prior to this the
student had had a difficult time understanding the basic LISP structures, and
presumably the tutor calculated that simply reading through the descriptions
of each of the functions would not be very effective until the student saw one
of these functions working and was able to understand the basic idea of LISP
operations.

We have also observed students getting into trouble when their tutors have
made incorrect assumptions about the level of instruction appropriate. For
example, one tutor we observed explained the details of the LISP read-

110 MODELLING COGNITION

eval-print loop (the internals of LISP’s interactive system) when the student did
not understand about when function arguments needed to be quoted.
Although the student appeared at first to have understood this explanation,
he made several quote errors in later problems until the tutor then decided to
work through an example concerning quotes in more detail.

Principle 8: Facilitate successive approximations to the target skill

Students do not become experts in geometry or LISP programming after
solving their first problem. They gradually approximate the expert behavior,
accumulating separately the various pieces (production rules) of the skill. It is
important that a tutor support this learning by approximation. It is very hard
to learn in a situation that requires that the whole solution be correct the first
time. The tutor must accept partial solutions and shape the student on those
aspects of the solution that are weak.

Generally, it is better to have the early approximations occur in problem
contexts that are as similar to the final problem context as possible. It is a
consequence of the ACTs learning mechanisms that skills learned in one
problem context will only partially transfer to a second context. Students are
learning features from early problems to guide their problem-solving
operators. If these features are different from the final problem space the
problem-solving rules that the students learn will be misguided. For instance,
early problems in geometry tend to involve algebraic manipulations of
measures. Consequently, the student learns to always convert congruence of
segments and angles into equality of the measure of the parts. Later problems
such as those involving triangle congruence do not involve converting congru-
ence of sides and angles into equality of measures. Students frequently carry
over their over-general tendency to convert and get into difficulties because of
this. This is just what the ACT+ learning process would do given this
experience.

It is often extremely difficult for students starting out to solve the kind of
problems that they will eventually have to solve. For instance, in geometry
students cannot initially generate proofs. To deal with this, standard pedagogy
often evolves intermediate tasks such as giving reasons for the worked-out
steps of a proof. The problem is that the process of finding reasons for the
steps of a proof is different from the process of generating that proof. In our
ACT* simulations of these tasks, there is almost no overlap between the
productions involved in reason-giving and proof generation. As another
example, in programming students are often given practice evaluating recur-
sive functions as preparation for writing recursive functions. Again, these are
separate tasks. Both in the geometry case and the programming case we have
shown that there is not much transfer from one task to another. Neves and
Anderson (1981) found no transfer from ten days of reason-giving to proof

COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 111

generation. McKendree and Anderson (in press) found no transfer from four
days’ practice of function evaluation to the task of generating the LISP code.

The advantage of private tutors is that they can help the student through
problems which are too difficult for the student to solve entirely alone. Thus,
it is common to see a sequence of problems where the tutor will solve most of
the first problem with the student just filling in a few of the steps; the tutor will
help less with the second problem, etc., until the student is solving the entire
problem. Consequently, the tutor can enable the student’s early learning to be
in problem contexts very similar to the more advanced problem contexts.

ISSUES OF HUMAN ENGINEERING

We have tried to achieve the principles enumerated above in our develop-
ment of computer tutors. However, many of the problems that we face in
creating actual computer tutors were not with seeing how these principles
should apply but were at a level which might best be called human engineer-
ing. This refers to issues of designing the interface and the natural language
dialogue so that information exchanges occur that satisfy our cognitive
principles. If one cannot communicate the knowledge effectively, the cogni-
tive bases for these systems will become lost. Our human-engineering efforts
have been somewhat guided by what we know from cognitive psychology,
somewhat guided by results in the literature on the human—computer inter-
face, but largely the result of trial and error exploration. This human-
engineering aspect is far from trivial. Before we are going to have a good
theory of intelligent tutors, we will need a good theory of their human
engineering.

In the remaining two sections of this paper we will describe our geometry
tutor and our LISP tutor. We will try to show how these tutors approximate
the design criteria we have set forth. We will also try to communicate some of
our experience with the human-engineering problems.

THE GEOMETRY TUTOR

High-school geometry has all the characteristics of a topic which should be
amenable to the intelligent tutoring approach. Of all the high-school math
courses, it is most frequently rated as the least liked, although students who go
on to have successful mathematical careers often rate it as their favorite
(Hoffer, 1981). So there is a wide range of educational outcomes and a real
need for improvement. The most difficult part of geometry is doing proofs.
While proof generation in general is hard, high-school proof problems are
within the range of artificial intelligence techniques. Therefore, it appears that
intelligent methods might make an impact on this most difficult aspect of this

h / | '

~

112 MODELLING COGNITION

most difficult of the high-school math subjects. Our geometry tutor (Boyle
and Anderson, 1984) is focused on teaching students how to generate proofs.

A geometry proof problem as stated in a high-school geometry text (see
Figure 1) consists of three ingredients—a diagram, a set of givens and a
to-be-proven statement. Despite claims to the contrary, the diagram plays a
critical role in many high-school geometry proofs. Frequently (although this
not the case in Figure 1), the diagram is the only source of critical information
about what points are collinear and which points are between which others.
This information often is not provided in the givens. Most other information
which can be read off the diagram, such as relative measure, is not to be taken
as true in general. It is a rare high-school proof problem that involves
constructions or creating new entities not in the diagram. Indeed, some
geometry textbooks have a policy of never requiring the student to do proofs
by construction although all conventional texts must use proof by construction
in establishing theorems for the student. Therefore, to a good approximation,
the student’s task is to find some chain of legal inferences from the stated
givens and the givens implicit in the diagram to the conclusion.

The ideal model

Consider the problem in Figure 4. There are a set of forward and backward
deductions that can be made. Forward deductions take information given and
note that certain conclusions follow. So, we can infer from the fact that the M
is the midpoint of AB that AM = MB. We can also infer from the vertical
angle configuration that ZAMF = /BME. Backward inferences involve not-
ing that a conclusion could be proven if certain other statements were proven.
So, we could prove M is the midpoint of EF if we could prove EM = MF. We
could prove the latter statement if we could prove EM = AM and MF = AM.

A c E
GIVEN : M is the midpoint
of AB and CD
M PROVE: M is the midpoint
of EF
F D -]
Figure 4. A relatively advanced proof problem
for high school geometry.

COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 113

As these examples illustrate, sometimes forward and backward inferences are
part of the solution and sometimes they are not. In challenging problems the
student cannot always know whether an inference is part of the solution.
Rather, the student must make heuristic guesses about which inferences are
likely. We saw this with respect to Figure 3.

In our view, the ideal student extends the proof backward from the
to-be-proved statement and forward from the givens until there is a complete
proof. At each point the ideal student makes the heuristically best inference
where this is defined as the inference most probably part of the final proof.
‘Most probable’ depends on some induction over the space of high-school
problems. Currently, we have no formal definition of the probability that an
inference will be part of a proof, but our intuitions are usually quite defens-
ible. So, we create the ideal student model as a set of rules that seem heuristic.
For instance, one rule is that when vertical angles are parts of to-be-proven
congruent tirangles, infer that they are congruent but not otherwise. Basically,
the rules all take the form of ‘apply a particular rule of inference when such
and such conditions prevail’. These conditions refer to properties of the
diagram, givens, established inferences, and goals set in backward inference.
These rules can be represented as production rules; for example:

IF AXYZ and AUVW are to-be-proven congruent triangles
arrd XYW and ZYU are intersecting lines
THEN infer ZXYZ = ZUYW because of vertical angles.

We have developed a set of 194 such production rules which seem to be
sufficient for the problems in the first four chapters of Jurgensen et al. (1975),
which is what our geometry tutor covers (about half of a high-school course).
Many such rules can apply at any point in time, and the conflict-resolution
principle selects the most highly rated rule to apply. Given this organization,
we are able to solve all the problems in the text, develop proofs that strike us
as the same as what we would do, and generate such proofs rapidly.

The proof graph

As noted earlier, standard instruction does a very poor job of communicating
the goal structure to the student. Therefore, our first human-engineering
problem was to find a way of communicating this information to the student.
We decided to use a graphical formalism in which the to-be-proven statement
was at the top and the givens were at the bottom. A proof is created as a
logical network connecting the givens to the to-be-proven statement. The
basic unit of this network is a structure connecting one or more givens to a
conclusion through a rule of inference. Figure 5 shows four states of the proof
network from beginning to end for the problem in Figure 4. The network can

il wntti——
114 MODELLING COGNITION
A $ E M is midpoint of EF
")
F D B
M is midpoint of AB M is midpoint of CD
(a)
A ¢ € M is midpoint of EF -
DEF- Ml?POlNT
L) EMaMF
F D B
AMBD: AMAC
SAS
_ / T
~B TAM LAMC=/BMD ™D Tcm
DEF-MIDPOINT VERT DEF-MIDPOINT
Mismidpiimof AB M is midpoint of CD

(b)

COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 115

A ¢ E ™ is midpoint of EF
#oer-mopom
™ EMaW
CORRES-PARTS

AAME 7ABMF

ASA

LMDB=& LMCA LMBD& LMAC
msws-mms

AMBD:AMAC

LMCA supp LMCE WMBaAM LAMCSZBMD WDaCM LAME & LBMF
A
ADJ-SUP-ANGS DEF-MIDPOINT VERT DEF-MIDPOINT VERT
M is midpoint of AB Mismidpiimafﬁ

(c)

Figure 5. Four states of the tutor screen in a students construction of a graph proof
' for the problem in Figure 5.

be grown from the bottom by forward inference or from the top by backward
inference. As Figure 5 illustrates, it is certainly possible to generate inferences
off the correct path. We have testimonials from three pilot students that they
better understood both the structure of the proof and nature of our proof
generation because of the graphical formalisms of the proof structure.

Interacting with the system

The basic cycle of interaction with the system is as follows. The student points
to one or more statements on the screen from which he or she wants to draw
an inference. Pointing causes these statements to blink. If at least one legal
inference can apply to these statements, the system asks the student for the
rule of inferent that applies. The student then types in the rule of inference. If
it is applicable to these statements the system will prompt the student for the
conclusion that follows. The student either types in the conclusion or points to
it if it is on the screen. If correct the student can now initiate another cycle of
interaction with the system, which will result in the posting of another
deductive inference. This continues until a complete proof has been gener-
ated.

.116 MODELLING COGNITION

The human engineering of the system has involved a lot of trial and error to
decide issues such as how to position the graph, what abbreviations to use,
when to correct misspellings, how to let the student point, and how to relate
the proof structures to the diagram. We have also found it useful to have the
student spend an hour with a warm-up system that uses the same graphical
conventions but with the familiar domain of arithmetic. The student can learn
to use the system much more rapidly if this learning is decoupled from
learning to do proofs in geometry. One problem with a complex screen is that
the student may not notice when new information is added. We have found
that color and motion are fairly effective ways of capturing attention. We we
have taken to changing the colors of the windows, bringing up new windows in
another color or blinking critical information.

For the accomplished geometry student, this system is a convenient and
efficient vehicle for constructing proofs. It serves as an external memory so
that forgotten information can be quickly recovered. It also catches slips of
mind quickly. However, more is needed when dealing with a novice. The most
basic problem for a student is not knowing how to proceed. There are a
number of ways that our system helps students during problem-solving. Most
directly the student can ask the system for help. Less directly, the student may
choose to make inferences off nodes from which no inferences or no useful
inferences follow. In either case, the system will provide the student with a
hint in the form of suggesting the best nodes from which to infer.

The student may be uncertain about what inference rule to apply or how to
apply the inference rule. He can manifest this again by asking for help or by
inappropriately applying a rule. In this case windows can be brought up to
display which rules of inference are currently applicable and to display a
definition of each rule of inference. When the student displays a known bug,
such as applying the side-angle—side postulate when the angles are not
included by the sides, a window will appear explaining why the student’s
choice is not correct.

Students get in ruts in which they try to make an inference from an
inappropriate set of statements over and over again or apply the same rule
over and over again. In such cases, the system will interrupt and display what
it regards as the next best inference step and interrogate the student to make
sure that the step is understood.

An interesting property of the graphics screen is that the student has no
access to solutions of previous problems. Therefore, it is very difficult to do
any problem solution by copying parts of prior solutions—an unfortunate
tendency of many students in the conventional classroom. When the students
gets instruction, the instruction is about the inference rules in the form of
general problem-solving operators. For instance, the system will give the
following statement of the corresponding parts rule when it is evoked in
backward inference to prove two sides congruent:

COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 117

IF you want to prove the conclusion UV = XY
THEN try to prove the premise AUVW = AXYZ

along with a pattern diagram to help the student instantiate the abstract terms
in this statement.)

It is difficult to get access to high-school students, but we have looked
intensively at three students working with the system—one with above-
average ability, one of average ability and the other of below-average ability
(as defined by their math grades). The below-average student came to us for
remedial purposes having failed tenth-grade geometry. The other two stu-
dents were eighth graders with no formal geometry experience. We can only
report that the system works, i.e. all students learned with it and without great
difficulty. We think they learned faster than with traditional instruction, but
we have no way to document this belief. All students were able to do
problems that local teachers consider too difficult to assign to their tenth-
grade classes. They also all claimed to like the subject of geometry, which
seems an important outcome given the negative ratings geometry typically
gets.

Design principles in the geometry tutor

It is worth reviewing how the geometry tutor does and does not realize the
design principles set forth in the beginning of this chapter.

1. As we have noted, we have an ideal model represented as a production
system. We have yet to integrate a similar model of student bugs into the
tutor.

2. The proof graph is an attempt to reify the goal structure and communicate
it to the student.

3. The postulate, definition and theorems of geometry are taught in the
context of their use in problem-solving.

4. The problem-solving is guided by abstract instruction, not by superficial
properties of examples.

5. Working memory load is minimized in a number of ways. The proof graph
is an attempt to represent subgoals. A color-coding scheme facilitates
integration of the diagram and the abstract statements. This involves
marking congruence on a diagram in the same color that they are displayed
in the proof graph.

6. The system does provide immediate feedback on logical errors. It does not
yet provide much strategic feedback about inferences that are logically
correct but do not lead to proofs. We have observed students seriously
flounder as a consequence. Providing such strategic advice is a current
research goal.

1

118 MODELLING COGNITION

7. Another deficit of the tutor is that it does not adjust grain size to reflect the
level at which the student is working. Its grain size always corresponds to a
single step of inference. However, beginning students need to be led
through some inferences in mini-steps, while advanced students prefer to
plan in multi-step inferences.

8. The system is a beautiful illustration of how a tutor can enable a skill to
arise through successive approximation. Students start out relying on the
tutor to provide almost all of the steps of the proof but reach the point
where they are doing proofs completely on their own, proofs that school-
teachers consider too difficult to assign to conventional classes.

THE LISP TUTOR

Our work on the LISP tutor is based on earlier research (Anderson, Farrell
and Sauers, 1984; Anderson, Pirolli and Farrell, in press) studying the
acquisition of basic LISP programming skills by programming novices. Given
standard classroom instruction, a programming novice typically takes over 40
hours to acquire a basic facility with the data structures and functions of LISP.
At the end of this period they can write basic recursive and iterative functions.
In this time the student has probably not written a LISP program more than
three functions deep and still does not know how to use LISP for interesting
applications.

We believe that the LISP tutor will be able to cover the same material in
under 20 hours (we are currently over halfway there). After this point the
tutor would step back and become an ‘intelligent editor’ which could help the
student create programs and catch obvious slips, but would no longer instruct.
Besides the desire to have a manageable project, we do not feel we are
capable of modeling the problem-solving that occurs after learning the basics
of LISP.

The ideal model

Brooks (1977) analyzed programming into the activities of algorithm design,
coding and debugging. We are currently focusing on algorithm design and
coding. Our past research on LISP involved creating simulations of both
errorful and ideal students in the algorithm design and coding phases. Brooks
characterized programming as first designing an algorithm and then convert-
ing it into code. However, the break is seldom so clean. The student alternates
between algorithm design and coding, sometimes omitting the algorithm
design altogether and going directly from problem statement to code. Often
novices and experts differ as to whether there is a distinct algorithm design
stage. One example we have studied involves writing LISP code to take a list
and return that list with the last element removed. A number of experts

COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 119

generated (reverse (cdr (reverse lis))) immediately upon hearing the state-
ment, whereas some novices went through a ten minute phase of means—ends
analysis to come up with the algorithm.

The ideal model for code generation, both for experts and novices, involves
a top-down generation of the code. Figure 6 illustrates the goal structure
underlying the generation of the code for the function powerset, which takes a
list and returns the list of all sublists. This is recognized as involving recursion
on the list and subgoals are set to code the terminating step and the recursive
step of the recursion. Both of these steps are broken down into algorithm
design plus code generation. Writing the code for the recursive step involves
writing a ‘helping function’ addto that will add an element to each list in a list
of lists.

The actual code generated along with the goal structure in Figure 6 is:

(defun powerset (list)
(cond ((null list) (list nil))
(t (append (powerset (cdr list))
(addto (car list) (powerset (cdr list))))

WRITE POWERSET (L)
TRY CDR -RECURSION
DO TERMINATING DO RECURSIVE STEP
(CONDITION)
CODE FIND RELATIONSHIP CODE RECURSIVE
VALUE BETWEEN (POWERSET L) RELATIONSHIP
8 (POWERSET (COR L)) ‘ USE APPEND
‘ L CHECK ARGUMENTS
CALL ON SET (LISP NIL) CALL ON SET - THEORY
THEORY KNOWLEDGE &
KNOWLEDGE MATCHIN
PATTERN CHING FIRST . SECOND

ARGUMENT (Y) ARGUMENT (2)

GET FROM WRITE CHECK

RECURSION FUNCTION ARGUMENT

(POWERSET

(COR L)) ‘
FIRST (A) SECOND (Y)
(CAR L) (POWERSET

(con

Figure 6. A representation of the hierarchical goal structure underlying generation of
the LISP function to calculate POWERSET.

120 MODELLING COGNITION

There are a number of features to note about the goal decomposition
shown in Figure 6. First, code is generated top-down. Second, there is
alteration between algorithm design and code generation. Third, the encoding
of the embedded function, addto, is postponed until the top function is coded.

It is difficult to develop ideal models for the algorithm design aspect of the
problem-solving. Students can potentially bring any of their past experiences
and prior knowledge to bear in designing an algorithm. With each problem we
have to specially provide the ideal model with potentially relevant prior
knowledge. So, for instance, to model the creation of a graph search function
we had to provide the system with knowledge of the fact that paths in a graph
can loop (Anderson, Farrell and Sauers, 1982).

Interacting with the LISP tutor

Figure 7 illustrates a typical state of the screen in interacting with the tutor.
We used the hierarchical structure of LISP to support representation of the
top-down structure of the programming activity. At all times during the
problem the code window displays the part of the problem that has been
coded. Placeholders are used to indicate the structures requiring top-down
expansion: e.g.:

(defun'rotator (lis)
(append (last (3)) (2)))

where the symbols (2) and (3) denote the points for top-down expansion. The
tutor moves the student to the next symbol for expansion, and the student
types the code to replace this symbol. So, at this level the system is just a
structured editor for creating the code.

In some cases, the hierarchical structure of the LISP code does not
correspond to the goal structure. A good example of this was the intersection
function discussed earlier where the COND structure had three clauses but
the goal structure for CDR-recursion just involved one goal for doing the
terminating case and one goal for doing the recursive step. In such cases we
have the subject generate the code according to the underlying goal structure
rather than the syntax of the LISP code. The placeholder symbols indicate the
conceptual breakdown of the problem before they are transformed into LISP
code. Thus, for instance, at one point in powerset the code is displayed

(defun powerset (lis)
(cond (TERMINATING-CASE)
(RECURSIVE-CASE)))

Sometimes, the student has to branch into algorithm design where the
problem-solving will not correspond to the hierarchical structure of the code.
In this case the tutoring window is used to work out a successful algorithm.

° COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 121

What are you going to write to get the argument list?
You are trying to get a list, fike (a b ¢ d) in our
example

CODE FOR rotater

(defun rotater (lis)
append (last (3)) (2))

GOALS

Write code to rotate the argument list

Write code to get a list of the last element of the
argument list

*** Write code to get the argument list ***

Figure 7. A typical state of the tutor screen in interacting

with a student. The tutor’s query is displayed at the top of the

screen. The ‘code’ window displays the current code, and the

‘goals’ window summarizes the problem solving so far and
indicates the current goal.

Figure 8 illustrates the tutor in the algorithm-design mode. The final product
of the algorithm design ing will be some specific code that must be mapped
into the abstract code of the function. So, for instance, if the student needs to
design an algorithm for returning a list of all but the last of the lis, we will have
him work out a solution for a concrete instance of lis, say lis = (a b c d). The
final product in this case would be:

(reverse (cdr (reverse ’(a b c d)))
which can be mapped into the abstract function to produce:
(reverse (cdr (reverse lis)))

Again, when doing the recursive step for powerset (see Figure 6) with the

P o

What can we do to change (a b c d) into (a b ¢)?

PRESS IF YOU WANT TO:

1 Get each element of (a b ¢ d) and put them in a
list.

2 Remove d from (a b c d).

3 Have the tutor choose.

PLAN CHOICE: 2

CODE FOR ROTATER

(defun rotater (lis)
(append (last lis) (2)))

PLAN

Transform (a b ¢ d) into (a b c)

What function will remove d from (a b ¢ d)?

FUNCTION: cdr

CODE FOR rotater

(defun rotater (lis)
(append (last lis) (2)))

PLAN

Transform (a b ¢ d) into (a b c)

COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 123

c
You can use CDR to remove the first item of a list,
but in this case, d is the last element. So, to use
CDR we have to get d into the first position. How can
we do this?

PRESS IF YOU WANT TO:

1 Flip the list so that d becomes the first item.

2 Go down the list until we get d.

3 Let the tutor choose.

PLAN CHOICE: 1

CODE FOR rotater

(defun rotater (lis)
(append (last lis) (2)))

PLAN
Transform (abcd)into (d...)

Figure 8(a, b, c). Three stages of the tutor screen during the

tutoring of the algorithm. Note the description of the al-

gorithm as applied to a concrete example. The ‘plan’ window
summarizes the current plan for the example.

specific list (A B C), the final result in the algorithm window would be:

(powerset ’(a b c)) =
(al(’ipend (0 (¢) (b) (be)) (@) (ac) (ab) (abc)))
an

(powerset °(b ¢)) = (() (c) (b) (bc))

We feel that the code window and the algorithm window do a good job of
communicating the hierarchical structure of the programming activity as well
as the separate status of algorithm design.

We feel we have been successful in structuring the interface for the input of
code. However, generating and understanding a dialogue with the student
about algorithms are much more difficult. The most obvious method is to have
the student type in an English description of his algorithm and for our tutor to
try to understand that. The program has only the task of categorizing the

124 MODELLING COGNITION

student’s description into one of the algorithm categories it is prepared to
process. Even with this considerable constraint, we have only had modest
success at language comprehension. One of the frequent student complaints
about earlier versions of our tutor is its inability to understand algorithm
descriptions. In part this is due to the tutor’s limited natural language
understanding and in part this is because students often only have vague ideas
of algorithm choices. Our solution to both difficulties has been to implement a
menu system to replace the need for natural language parsing.

Our menus are generated dynamically from the instantiations of produc-
tions in the ideal model. The menus contain English descriptions of all the
algorithmic variations, correct and buggy, that we are prepared to process.
Menu selection is technically simpler than language comprehension. It is an
issue for further research as to which is more effective. We were surprised by
how well students appear to adapt to menu selection. This may be simply that
it is much easier to pick a menu entry than to generate a description.

As in the geometry system, there are general help facilities so that the
student can bring up information. Again, the information is given in terms of
abstract problem-solving operators. For example, rather than showing how
cons is used in a specific program, cons might be explained: ‘If you want to
insert an element into a list use the functions cons’ with an example to
instantiate the explanation.

Novices are prone to a substantial set of misconceptions and slips in writing
LISP programs. One of the strengths of the system is that we have created
recognizers for a great many of the possible bugs and provided for appropri-
ate feedback on the errors. In our pilot study, we have discovered a number of
other stereotypic errors which we have also entered into the system with
appropriate feedback. We are able to recognize 80 per cent of the errors our
students make once we have the errors carefully catalogued.

The rightp problem

Table 1 presents a dialogue which is focused on teaching a student how to
decompose a problem into a set of subfunctions. It is impossible in this limited
space to present the tutor as it really appears. Instead, Table 1 is essentially a
‘teletype’ version of the student—tutor interactions. The actual interactions
involve use of several windows displayed on the terminal screen: a code
window in which the student types the code, a tutoring window in which
tutoring feedback is displayed, and a goals window in which reminders are
displayed about the current portion of the problem. In the ‘teletype’ versions
that we present, the tutor’s output is given in normal roman characters, while
the student’s input is shown in bold characters. This table presents ‘snapshots’
of the interaction—each time the student provokes a response from the tutor
we have listed the student’s input and the tutor’s response (numbered for

COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 125

Table 1 rightp

Define rightp. It takes three arguments, sidel, side2 and side3, which represent
the lengths of the three sides of a given triangle, where side3 is the longest side.
The function rightp tests whether the three sides form a right triangle. In a right
triangle, the sum of the squares of sidel and side2 is equal to the square of side3.
However, your function should allow for a measurement error of 2 percent. In
other words, your function should return ¢ if the sum of the squares of the first two
sides is within 2 percent of the square of the third side.

For example (rightp 3 4 5.01) = ¢, because 3 squared + 4 squared = 25, which
is within 2 percent of 5.01 squared.

1. (defun rightp (sidel side2 side3) (cond))
Yes, you could use COND here, but there is a much easier way to test if
the sum of the squares of the first two sides is within 2 percent of the square
of the third. You can use a predicate, since we only have one test to do.

2. (defun rightp (sidel side2 side3)
(lessp (difference) (NUM2)))

You want to code the amount of difference between the sum of the
squares of the first two sides and the square of the third side, and you do
NOT care which of these two numbers is larger. So we want to take the
absolute value of their difference.

3. (defun rightp (sidel side2 side3)
(lessp (abs (difference (NUM3) (NUM4)))

(NUM2)))
Which do you want to do first?
PRESS: IF YOU WANT TO:

1 Write code to get the sum of the squares of the first two sides
2 Write code to get the square of the third side

Menu choice: 1

4. (defun rightp (sidel side2 side3)
(lessp (abs (difference (plus) (NUM4)))
(NUM2)))

No. You should create a helping: function for this code, rather than coding
it directly. Our function, rightp, is now four levels of embedding deep, and
the relation we are about to code—the sum of squares of two numbers—
would be a useful helping function. Thus, let us code the sum of the squares
of the first two sides using a helping function.

5. (defun rightp (sidel side2 side3)
(lessp (abs (difference (sumsq (ARGUMENTS)) (NUM4)))

(NUM2)))
What do you want the helping function sumsq to do?
PRESS: IF YOU WANT TO:

1 Takes two arguments, the square of the first side and the square of the
second side. Computes their sum.

2 Takes two arguments, the first side and the second side. Computes the
sum of the squares of these numbers.

126

MODELLING COGNITION

Table 1 (continued)

3 Have the tutor choose.

Menu choice: 1

No. We would not need a helping function JUST to compute the sum of
two numbers. You should create your helping function so that it does more
than just a sum.

It would be better to define sumsq so that it takes two arguments, in this
case, [1] the first side, and [2] the second side, and computes the sum of the
squares of these numbers.

Menu choice: 2

6. (defun rightp (sidel side2 side3)

(lessp (abs (difference (sumsq sidel side2) (times)))
(NUM2)))
You should use a helping function that you have already coded, square.
Since this function computes the square of a number, you can use it to code
the square of the third side.

7. (defun rightp (sidel side2 side3)

(lessp (abs (difference (sumsq sidel side2) (square side3))
(plus)))

I do not understand that, Rob. How are you going to code 2 percent of
the square of the third side?
[EXPLAIN]

OK. I will explain what I wanted. You could either code this directly or
create a helping function here to code 2 percent of the square of the third
side. Let us create a helping function just to make things easier. We will call
this helping function percentage. We will define percentage when we are
finished coding rightp.

What do you want the helping function percentage to do?

PRESS: IF YOU WANT TO:

1 Takes two arguments, one-hundredth of 2 and the square of the third
side. Computes their product.

2 Takes two arguments, 2 and the third side. Computes the given percen-
tage of the square of its second argument.

3 Takes two arguments, 2 and the square of the third side. Computes the
given percentage of its second argument.

4 Takes one argument, the square of the third side. Computes 2 percent of
its argument.

5 Have the tutor choose.

Menu choice: 3
Very good.

8. (defun rightp (sidel side2 side3)

(lessp (abs (difference (sumsq sidel side2) (square side3)))
(percentage 2 (square side3))))
OK. Now we have finished coding the function rightp. Let us now code the
helping function(s) we used but have not yet defined.
Which do you want to do first?

COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 127

Table 1 (continued)

PRESS: IF YOU WANT TO:
1 Define the helping function sumsq
2 Define the helping function percentage

Menu choice: 1

Define the helping function sumsq. It takes two arguments. (num1 num2)
are the suggested names for the arguments, but you may name them what-
ever you wish. The function sumsq should compute the sum of the squares of
numl and num2.

9. (defun sumsq (s y)
(plus (square s) (square y)))
OK. Now we have finished coding the function sumsq. Let us now code
the helping function(s) we used but have not yet defined.
Define the helping function percentage. It takes two arguments. (pcnt
total) are the suggested names for these arguments, but you may name them
whatever you wish. Percentage should compute pent percent of total.

10. (defun percentage (x y)
(PROCESS))
[EXPLAIN]

OK. I will explain what I wanted. Let us figure out how to code x percent
of the second number. How can you code x percent of the second number?
PRESS: IF YOU WANT TO:

1 Multiply the second number by one-hundredth of x.
2 Multiply the second number by x.

3 Divide the second number by 100.

4 Have the tutor choose.

Menu choice: 1
Good.

11. (defun percentage (x y)
(times (NUM1) (NUM2)))
What do you want to do first?
PRESS: IF YOU WANT TO:
1 Write code to get one-hundredth of the first number.
2 Write code to get the second number.

Menu choice: 1

12. (defun percentage (x y)
(times (quotient X .01) (NUM2)))
No, that is not the right number. How are you going to specify 100 in
LISP?

13. (defun percentage (x y)
(times (quotient X 100) y))
OK. Now we have finished coding the functnon percentage. There are no
more helping functions to define.

128 MODELLING COGNITION

convenience.) The total code as it appears on the screen is shown, although
the student has added only what is different from the previous code, shown in
bold face type. For example, in line 2 of Table 1 the student has typed ‘(lessp
(difference’ as an extension of the code in line 1. It is important to point out
several things about these dialogues. First, the tutor balances parentheses and
provides placeholders (e.g. (CASE), (NAME), (NUM)) for portions of code
that must be expanded. Second, although we are showing in some cases large
portions of code being added from one line to the next, the tutor has
understood each separate word or symbol the student has entered, and would
have responded with an error message if it were necessary for any of those
items.

Although the frequency of errors in this dialogue is somewhat greater than
for the typical student, the dialogue is a good illustration of the various ways
that the tutor responds to student errors and requests for assistance. As can be
seen, the tutor allowed the student to input information until the student
typed cond, at which point the system pointed out that a conditional structure

Yes, you could use COND here, but there is a much
easier way to test if the sum of the squares of the
first two sides is within 2% of the square of the third.
You can use a predicate, since we only have one

test to do.
CODE FOR rightp
(defun rightp (side1 side2 side3)
(cond)
)
GOALS

Define the function rightp. (rightp 3 4 5.01) = t.
*** Test if the triangle is a right triangle. ***

Figure 9. Screen configuration after line 1 in Table 1.

COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 129

was not necessary. The actual screen image at this point in the interaction is
shown in Figure 9. Line 2 illustrates that the student next types (lessp
(difference and receives a hint which causes the student to correctly insert the
absolute value function (abs) before difference in line 3. Note that the tutor
presents a menu when it is uncertain what the student will do next. For
instance, since the arguments to difference in rightp can be in either order, the
tutor needs to know which the student will type next, and it asks the student
via a menu after line 3.

After line 4 we see the tutor give the student information about when it is
useful to code a separate helping function. The tutor queries the student after
line 5 to make sure the student and tutor agree on what that helping function
will compute. This is an example of the planning mode in the tutor. In this
case, the student has a mistaken idea about what the subfunction should
compute, which is then rectified by the tutor.

After line 7 the tutor detects that the student’s code will not achieve the
goal. However, this input does not match any of the buggy rules in the model,
so the tutor provides minimal feedback: it indicates that it cannot understand
the input, and queries the student to remind him about what he should be
trying to code. This hint is not enough for the student who asks for an
explanation by hitting a special key, whereupon the tutor helps the student
specify another helping function percentage.

The final form of rightp is displayed in line 8. In line 9 the student defines
the helping function sumsq without error and goes on to defining percentage
in line 10. He is stuck as to what to do after typing the function body and
requests an explanation. The tutor helps the student refine his algorithm.
After this the student defines percentage with one error in line 12.

After defining rightp and its helping functions, the LISP tutor puts the
student into a real LISP environment where the student can experiment with
the functions that have just been defined, and can also try variations on those
functions, perhaps to see what type of error would be produced by a function
the student had in mind but was prevented from coding by the tutor. After the
student has experimented to his satisfaction, the tutor provides the next
problem in the lesson.

Evaluation

Because of the availability of the college population, we have been able to
evaluate the quality of our LISP tutor more carefully than we have the
geometry tutor. We have run a fairly robust version of the tutor that took ten
students through basic LISP functions and data structures, function compo-
sition, function definition, predicates, conditional expressions, auxiliary func-
tions and recursion. In a questionnaire administered to classes of students of
comparable background, students reported an average of 43 hours spent

S

130 : MODELLING COGNITION

studying this material, attending class and (the bulk of the time) solving
problems. We ran two comparison groups of ten subjects each. One group,
the human-tutor group, had private human tutors to help them work through
the material. The other group, the ‘on-your-own group’, read the instruc-
tional material written for the other groups and solved the same sequence of
problems on their own with help from a proctor only when they really got
stuck (average amount of help = 6 mins/hour). In all three groups the
majority of the time was spent solving problems, not reading instructions.
Subjects solved 20 problems not involving function definition and 38 function
definition problems spread over six lessons, one per day.

Not all subjects were able to solve the recursion problems in the allotted
time, so we extrapolated how long it would have taken them to finish.
Averaging the actual and extrapolated times, subjects took 11.4 hours with a
human tutor, 15 hours with the computer tutor and 26.5 hours in the
on-your-own condition. The difference between the computer-tutor condi-
tion and the human condition is not statistically reliable, but both are faster
than the on-your-own condition.

We compared their performance on a test just before the recursion exer-
cises. In a series of small problems the human-tutor subjects got 56 percent
correct, the computer-tutor subjects got 65 percent correct and the on-your-
own subjects got 64 percent correct. There are no significant differences. We
also asked them to recall all the functions they could and describe what these
functions did with a simple example. Subjects in the human-tutor condition
recalled 22.1 functions; in the computer-tutor condition, 19.3 functions; and
in the on-your-own condition, 19.3 functions. In terms of percentage of these
functions given correct definitions, the results were human tutor, 82 percent;
computer tutor, 77 percent; and on-your-own, 75 percent. Again there are no

‘statistically significant differences.

To summarize, both human and computer tutors take significantly less time
to bring subjects to the same criterion as the on-your-own condition. How-
ever, there is no difference in final level of knowledge. It is interesting that the
on-your-own estimate (26.5 hours) is less than the class estimate (43 hours).
This may reflect an overestimate by class students or the better design of our
instructional material.

Cognitive principles in the design of the LISP tutor

As with the geometry tutor, it is worth reviewing how the LISP tutor does and
does not achieve the cognitive-design principles set forth earlier:

1. In this system we represent both the ideal student model and the bugs as
production rules.

2. We try to reify the coding goal structure in the code and placeholder

‘o

COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 131

symbols. We have been less successful with communicating the goal
structure behind the algorithm design but do try to communicate it by the
hierarchy of menus.

3. All of the instruction about LISP is provided in the context of writing LISP
code.

4. As with the geometry tutor, we try to focus the student on the critical
abstract properties of problems and not on their superficial properties. For
instance, error messages are general descriptions of the relevant issues.

5. There are a number of ways we try to minimize working memory. The

annotated code that we display is an attempt to represent the goal

structure. When students are working on examples all relevant infor-
mation in these examples is kept displayed in an example window.

The system does provide immediate feedback on errors.

As with the geometry tutor, a serious deficit of this tutor is that it does not

adjust grain size with the student’s development.

8. As for the issue of successive approximation, the LISP tutor has had one
success case and one failure case. The failure case was from a demonstra-
tion in the summer of 1984. Many students complained that they were
moved onto more advanced topics before mastering easier ones. Partly in
response to that we instituted more practice problems for a demonstration
in the fall of 1984. In this case, students were able to successively
approximate more and more advanced problem-solving skills.

No

FINAL CONCLUSIONS

This is a report of work in progress. We have yet to get our tutors for
geometry or LISP into their final states. We have yet to completely formalize
our general methodology for creating tutors. Our evaluation is still prelimi-
nary, both of the general methodology and of the specific tutors. However, we
believe that the results are sufficiently encouraging to present at this time. The
basic result is that it does seem possible to create computer tutors that are
capable of making a major improvement in the education for at least some
topics. An important additional observation is that the computer technology
to deliver these tutors is rapidly becoming economically feasible. For exam-
ple, the personal computers soon to be distributed to each undergraduate
student at Carnegie-Mellon University are powerful enough to run our tutors.

REFERENCES

Anderson, J. R. (1981a). Tuning of search of the problem space for geometry proofs.
In Proceedings of IJCAI-81, pp. 165-70.

Anderson, J. R. (1981b). Acquisition of Cognitive Skill. ONR Technical Report 81-1.
Carnegie-Mellon University, Pittsburgh. Pa.

132 MODELLING COGNITION

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge. Mass.: Harvard
University Press.

Anderson, J. R., Farrell, R. and Sauers, R. (1982). Learning to Plan in LISP. ONR
Technical Report ONR-82-2. Carnegie-Mellon University.

Anderson, J. R., Farrell, R. and Sauers, R. (1984). Learning to program in LISP.
Cognitive Science, 8, 87-129.

Anderson, J. R., and Jeffries, R. (in press). Novice LISP Errors: Undetected Losses of
Information from Working Memory. Human—Computer Interaction.

Anderson, J. R., Pirolli, P. and Farrell, R. Learning recursive programming. In
forthcoming book edited by Chi, Farr and Glaser.

Bilodeau, I. McD. (1969). Information feedback. In E. A. Bilodeau (ed.) Principles of
Skill Acquisition. New York: Academic Press.

Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group
instruction as effective a one-to-one tutoring. Educational Researcher, 13, 3-16.
Boyle, C. F., and Anderson, J. R. (1984). Acquisition and automated instruction of

geometry proof skills. Paper presented at the 1984 AERA meetings.

Brooks, R. ‘E. (1977). Towards a theory of the cognitive processes in computer
programming. International Journal of Man—Machine Studies, 9, 737-51.

Brown, J. S., Burton, R. R. and DeKleer, J. (1982). Pedagogical, natural language and
knowledge engineering techniques in SOPHIE I, II and III. In D. Sleeman and J. S.
Brown (eds) Intelligent Tutoring Systems. New York: Academic Press, pp. 227-82.

Brown; J. S., and Van Lehn, K. (1980). Repair theory: A generative theory of bugs in
procedural skills. Cognitive Science, 4, 379-426.

Carbonell, J. R. (1970). Al in CAI: An artificial intelligence approach to computer-
aided instruction. IEEE Transactions on Man—Machine Systems, 11, 190-202.

Clancey, W. J. (1983). The epistemology of a rule-based expert system—a framework
for explanation. Artificial Intelligence, 20, 215-51.

Cohen, V. B. (1982). Computer software found weak. New York Times (20 April),
C4. Summary of a research. ‘

Halasz, F., and Moran, T. P. (1982). Analogy Considered Harmful. Technical Report.
Proceedings of the Human Factors in Computer Systems Conference, 15-17 March.
Gaithersburg, Md.

Hoffer, A. (1981). Geometry is more than proof. Mathematics Teacher, 1981 (Janu-
al'y), 11-18.

Jurgensen, R. C., Donnelly, A. J., Maier, J. E. and Rising, G. R. (1975). Geometry.
Boston, Mass.: Houghton Mifflin.

Kant, E., and Newell, A. Problem solving techniques for the design of algorithms.
Proceedings of the symposium on the Empirical Foundations of Information and
Software Science. Atlanta. (Ga.)

Lewis, M., and Anderson, J. R. (in press). The role of feedback in discriminating
problem-solving operators. Cognitive Psychology .

McKendree, J., and Anderson, J. R. (in press). Frequency and practice effects on the
composition of knowledge in LISP evaluation. In J. M. Carroll (ed.) Cognitive
Aspects of Human—Computer Interaction.

McKendree, J., Reiser, B. J. and Anderson, J. R. (1984). Tutorial goals and strategies
in the instruction of programming skills. Proceedings of the Sixth Annual Confer-
ence, Cognitive Science Society. Boulder, Colo.

Neves, D. M., and Anderson, J. R. (1981). Knowledge compilation: Mechanisms for
the automatization of cognitive skills. In J. R. Anderson (ed.) Cognitive Skills and
their Acquisition . Hillsdale, NJ: Erlbaum.

Newell, A., and Simon, H. (1972). Human Problem Solving. Englewood Cliffs. NJ:
Prentice-Hall.

COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS 133

O'Shea, T. (1979). A self-proving quadratic tutor. International Journal of
Man—-Machine Studies. 11(1), 97-124.

Papert, S. (1980). Mindstorms. New York: Basic Books.

Pirolli, P., and Anderson, J. R. (in press). The role of learning from examples in the
acquisition of recursive programming skills. Canadian Journal of Psychology .

Rich, C., and Shrobe, H. (1978). Initial report of a LISP programmers’ apprentice.
IEEE Trans. Soft. Eng., SE-4:6, 456—66.

Ross, B. H. (1984). Remindings and their effects in learning a cognitive skill.
Cognitive Psychology, 16, 371-416.

Sheil, B. A. (1981). The psychological study of programming. Computing Surveys, 13,
101-20.

Shneiderman, B. (1980). Sofiware Psychology. Cambridge. Mass.: Winthrop.

Siklossy, L. (1976). Let’s Talk LISP. Englewood Cliffs, NJ: Prentice-Hall.

Skinner, B. F. (1958). Teaching machines. Science, 128, 889-977.

Sleeman, D. (1982). Assessing aspects of competence in basic algebra. In D. Sleeman
and J. S. Brown (eds) Intelligent Tutoring Systems. New York: Academic Press.
Sleeman, D., and Brown, J. S. (eds) (1982). Intelligent Tutoring Systems. New York:

Academic Press.

Soloway, E. (1980). From Problems to Programs via Plans: The Context and Structure
of Knowledge for Introductory LISP Programming. COINS Technical Report
80-19. University of Massachusetts at Amherst.

Soloway, E., Bonar, J. and Ehrlich, K. (1983). Cognitive strategies and looping
constructs: An empirical study. Communications of the ACM, 22, 853-60.

Stevens, A., Collins, A. and Goldin, S. E. (1982). Misconceptions in student’s
understanding. In D. Sleeman and J. S. Brown (eds) Intelligent Tutoring Systems.
New York: Academic Press.

Taylor, R. (1980). The Computer in the School: Tutor, Tool, Tutee. New York:
Teachers College Press.

Tulving, E. (1983). Elements of Episodic Memory. London: Oxford University Press.

Tulving, E., and Thomson, P. M. (1973). Encoding specificity and retrieval processes
in episodic memory. Psychological Review, 80, 352-73.

Van Lehn, K. (1983). Felicity Conditions for Human Skill Acquisition: Validating an
Al-based Theory. Technical Report CIS-21, Xerox Parc. Palo Alto, Calif.

