vt

COGNITIVE PRINCIPLES IN THE DESIGN OF COMPUTER TUTORS

John R. Anderson
C. Franklin Boyle
Robert Farrell
Brian Reiser
Carnegie~Mellon University

This paper will identify and justify a set of principles derived from
ACT (Anderson, 1983) for designing intelligent computer tutors (Sleeman &
Brown, 1982). In doing this we will be drawing on our studies of high
school students learning geometry and college students learning to program
in LISP. We have observed four students spend approximately 30 hours
studying beginning geometry and three students similarly spending 30 hours
learning LISP. We recorded these sessions and have analyzed them to varying
degrees. Some of these analyses have been reported in a series of prior
publications (Anderson, 1981; Anderson, 1982; Anderson, 1983a; Anderson,
Farrell, & Sauers, 1984; Anderson, Pirolli, & Farrell, in press). This data
base has served as a rich source of information about the acquisition of
problem~solving skill and has heavily influenced our design of computer
tutors. We have used this data base to develop tutors both the LISP and
geometry. These tutors are described elsewhere (Boyle & Anderson, 1984;
Farrell, Anderson, & Reiser, 1984).

Principle 1: Identify the Goal Structure of the Problem Space

According to the ACT theory, and indeed most cognitive theories of
problem-solving, the problem solving behavior is organiied around a
hierarchical representation of the current goals. It is important that this
goal structure be communicated to the student and instruction be cast in
terms of the poal structure. It is not communicated in typical imstruction
in courses like geometry.

Proofs in geometry are almost universally inm a two-column form. It is
basically a linear structure of pairs where each pair is a statement and
justification. Typical imstruction encourages the belief that the goal
structure of the student should mimic this linear structure-—that at any
point in the proof the student will have generated an initial part of the
structure and the current goal is to generate the next line of the
structure.

There are two serious flaws with using linear proofs as goal structures.
First this practice denies the validity of problem~solving search. It
encourages the idea that the correct next line should be obvicus, but
finding the next line often involves considerable planning and search.
Students engage in search but feel bad about themselves because they do.
Second, search in such a linear structure is doomed to be hopelessly
unguided. If the only constraint is to generate a legal line, the search
space for the correct proof is hopelessly large.

We have observed students flail at solving geometry problems because
they try to work within this linear goal structure. We have evidence that
succesaful students represent proofs to themselves as hierarchical
structures of implications that start with the givens of a problem and end




jn the conclusion to be proven. It needs to be emphasized that conventional
instruction does not communicate thls structure and students hardly find it
obvious. This deficit is particularly grievous because the successful
gtudent's goal structure is much more closely related to this hierarchical
proof structure than it is to the linear structure of a two-column proof.
Basically, the successful student engages in a forward search from the
givens and a backward search from the to-be-proven statement.

Principle 2: Provide Instruction in the Problem—Solvieg Context

Students appear to learn information better if that information is
presented during problem solving rather than during instruction that is
apart from the problem~solving context. There are a number of reasons why
this should be so:

First, there 1s evidence that memories are associated to the features of
the context in which they were learned. The probability of retrieving the
memories is increased when the context of recall matches the context of
study (Tulving, 1983; Tulving and Thomson, 1973). An extreme example of
this was shown by Ross (1984) who found that secretaries were more 1likely to
remember a text—editor command learned in the context of a recipe if they
were currently editing another recipe.

Second, it is often difficult to properly encode and understand
information presented outside of a problem context and so its applicability
might not be recognized in a problem context. For instance, students may
not realize that a top-level variable is really the same thing as a function
argument even though they are obliquely told so. As another example, many
students reading the side—angle-side postulate may not know what included
angle means and SO misapply that postulate.

Third, even if a student can recall the information and apply it
correctly, they are often faced with many potentially applicable pieces of
information and do not know which one to use. We have frequently observed
students painfully trying dozens of theorems and postulates in geometry
before finding the right one. The basic problem is that knowledge is taught
in the abstract and the student must learn the goals to which that knowledge
is applicable. If the knowledge is presented in a problem-solving context
its goal-relevance is much more apparent.

Principle 3: Provide Immediate Feedback on Errors

Novices make errors both in selecting wrong solution paths and in
incorrectly applying the rules of the domain. Errors are an inevitable part
of learning, but the cost of these errors to the learmer is often higher
than is necessary. They can geverely add to the amount of time required for
learning. More than half of our subjects’ problem—solving sessions were
actually spent exploring wrong paths or recovering from erroneous steps.
Relatively little is learned while students are trying to get out of the
holes they have dug for themselves.

In additiom, errors often confuse the picture and make it difficult to
determine which steps were right or wrong: The classic example of this is
the student who finally stumbles onto the correct code but does not




understand why it works. Students often progress in this trial and errox
mode with respect to LISP evaluation: they don't know when an element will
be treated as a function, a variable, or a 1iteral but play around with
parentheses and quotes until they get something to work. It 1s particularly
difficult to learn from errors when the feedback on the errors comes at a
delay. We (Lewls & Anderson, submitted) have shown that subjects learn more
slowly in a problem-solving situation where they are allowed to go down
erroneous paths and are only given feedback at delay. Also, the importance
of immediate feedback has been well documented in other learning situations
(Bilodeau, 1969; Skinner, 1958).

Another cost of errors 18 the demoralization of the student. In these
problem—solving domains errors can be very frequent and frustrating. We
believe that much of the negative attitudes and math phobias derive from the
bitter experiences of gtudents with errors.

Principle 4: Minimize Working Memory Load

Solving problems often requires holding a great deal of requisite
jnformation in a mental working memory. If some of that requisite
information is lost there will be errors. It surprised us to find in our
LISP protocols that most of the student errors appear to be due to working
memory failures. A frequent and disastrous type of error is "losing a level
of complexity”. One way this manifests itself is that subjects lose track
of one level of parentheses. Another way this occurs is when subjects plan
to use functionl within function? within function3, but forget the
intermediate function and write function3 directly within functionl.

A good human tutor can recognize errors of working memory and typically
provides quick correction (McKendree, Reiser, and Anderson, 1984). Tutors
realize that there is little profit in allowing the student to continue
after making such errors. However, human tutorgs really have no means at
their disposal to reduce the working memory load. This is one of the ways
we think computer tutors can be an improvement over human tutors——one can
externalize much of working memory OR the computer Screen. This involves
keeping partial products and goal structures available in windows.

Principle 5: Represent the Student as a Production Set

All of our work on skill acquisition has modelled students' behavior as
being generated by a set of productions. There je a falr amount of evidence
for this view of human problem-solving (e-.g-, Anderson, 1983; Newell &
Simom, 1972). It is also the case that numerous other efforts in the domain
of intelligent tutoring have represented the to-be—-tutored skill as a
production set (e.g-, Brown and Van Lehn, 1980; 0'Shea, 1979; Sleeman,
1982).

Productions in ACT represent the knowledge underlying a problem—solving
gkill as a set of goal-oriented rules. Some representative examples for
LISP and peometry are:

IF the goal is to insert an element into a list
THEN plan to use CONS and set as subgoals

1. 'To code the element

2. To code the list




IF the goal is to code a function that calculates a relation on a list
THEN try to use CDR-recursion and set as subgoals

1. To code the terminating condition

2. To code the recursive condition

IF the goal is_to prove (XVZ U
and X T 00
and YZ = VW

THEN plan to use gide—angle—-side and set as a subgoal
1. To prove <¥X¥Z = <UWW

Such rules not only enable the system to follow student problem-solving
but they define an appropriate grain size for {nstruction. Basically, our
tutoring systems monltor whether a student uses each rule correctly and
corrects any incorrect o missing rules. As emphasized by Brown and Van
lLehn, student misconceptions or bugs can be organized as perturbations of
correct rules.

fuman tutors seem tO intuit an appropriate grain size of rules for
instruction but often their intuitions are wrong. This is one place where a
system based on careful analysis of student problem~solving may he able to
outperform the typical human tutor.

Principle 6: Adjust the Grain Size of Instruction According to
Learning Principles

One of the reasons human tutors have difficulty with the grain size for
jnstructing students is that the grain size changes as experience 1s
acquired in the domain. According to the ACT learning theory, this change
is produced by a knowledge compilation process that collapses a sequence of
productions into larger "macTo” production rules. Human tutors, being
highly skilled in the domain, exemplify a large grain size in their problem-—
solving and have a considerable difficulty intuiting the appropriate grain
size for the student.

An effective computer tutor will have to adjust the grain size of
jnstruction as the student progresses through the material. Using a theory
of production jearning it will have to predict when the original productions
become complled into macro productions so that it can change the grain size
of imstruction.

Principle 7: Enable the Student to Approach the Target Skill by
Successive Approximation

grudents do not become experts in geometry ot LISP programming after
salving their first problem. They gradually approximate the expert
behavior, accumulating separately the various pleces (production rules) of
the skill. 1t is important that a tutor support this learning by
approximation. It is very hard to learn in a tutorial situation that
requires that the whole solution be correct. The tutor must accept
partially correct solutions and shape the student on those aspecis of the
solution that are weak.

Generally, it is better to have the early approximatiomns occul in
problem contexts that are as similar to the final problem context as



possible. skills learned in one problem comtext will only partially
transfer to a second context. Students learn features from early problems
to. guide their problem-solving operators. If these features are different

" from the final problem space the problem—solving operators will be

- misguided. TFor i{nstance, early problems in geometxry tend to involve
algebraic manipulations of measures. Consequently, the student learms to

. convert segment and angle congruence into equality. ZLater problems, such as
‘ those involving triangle congruence, do not involve converting congruence of

.. sides and angles into equality of measures.

: The advantage of a private tutor is that he/she can help the student
through problems which are too difficult for the student to solve entirely
alone. Thus, it is common to see a sequence of problems where the tutor
will solve most of the first problem with the student just filling in a few
of the steps, less of the second, etc. until the student is solving the
entire problem.

Principle 8: Promote Use of General Problem-Solving Rules Over Amalogy

There are two basic methods that we have observed students using to
solve the first problems in a domain. One is to use analogies to earlier
problems in the text or problems from other domains to help guide the
problem solving. The basic strategy is to try to map the structure of a
solution of one problem to another problem. Anderson (1981 tech report),
Anderson, Farrell, and Sauers (1984), and Anderson, Pirolli, and Farrell (in
press) discuss specific examples from our protocols on geometry and LISP.

The other method is to extract general problem—solving operators from
the instruction and apply these to the problem. For imstance, if the goal
is to prove triangles comgruent, one can apply postulates about triangle
congruence. 1f the goal is to create a list structure, one can try to apply
a function that creates list structures. The problem with such general
operators 1s that in many domains the search space of the combinations of
these operators becomes enormous. This is perhaps why only a little
additional information tends to be introduced with each new section of a
textbook. The student can restrict search to these new potential operations
(¢f. Van Lehn, 1983).

Another difficulty with the general problem-solving approach is that it
is often difficult to encode the needed problem-solving operators. Often
the instruction does not contain explicit statements of such operators.
Rather the operators have to inferred from the instruction. Even on those
occasions in which the operators are directly stated, students have a hard
time understanding them because they are stated so abstractly. Students are
often only able to encode the operators correctly when they see them applied
to an example problem.

Students appear to prefer analogy as a method of solution in both
geometry and LISP. The preference is not overwhelming in geometry and there
are many episodes of problem solution by general problem-—solving operators.
In contrast, the preference is overwhelming in novice LISP programming. In
almost every case where a student was writing a first instance of a
particular type of LISF function, the student relied on analogy to example
LISP functiomns.




private human tutors differ as to whether they tend to guide the student
to solution by analogy or by general problam~solving operators. We claim
that solution with general operators would lead to the best long-term gains.
This is because the student often successfully generates a solution by
analogy but does not understand why the solution works. We have seen
students work their way through problems by analogy and not learn anything
of permanent value. What they often learn is how to do analogies. 1If we
take away the problems from which to analogize and they are unable to solve
problems- Halasz and Moran (1983) have alsoc commented on the negative
consequences of problem solving by analogy. They point out that students
are prone o incorrect inferences in using the analogy- An analogy is
frequently used in place of a deep understanding of the problem domain.

Conclusions

We have stated a aumber of cognitive principles that seem important O
designing intelligent tutoTrs. Qur specific geometry and LISP tutors (Boyle
and Anderson, 1984; Farrell, Anderson, and Reiser, 1984) can be consulted
for successful application of such rules. To the extent that such
applications are successful, they are support not only for these cognitive
principles of design, but also for the underlying ACT theory of cognition on
which they are bhased.




References

_Aﬁderson, J.R. (1981). Tuning of search of the problem space for geometry
" proofs. In Proceedings of IJCAI-81 (pp- 165-170}.

Anderson, J«R. (1981). Acquisition of Cognitive Skill. ONR Technical
. Report 8l-1, Carnegie-Mellon University, Pittsburgh, PA.

fAnderson, J.R. (1982). Acquisition of proof skills in geometry. in J.G.
: Carbonell, R. Michalski & T. Mitchell (Ed.), Machine Learning, An
Artificial Intelligence Approach.

.Anderson, J.R. (1983)., The Architecture of Cognition. Cambridge, MA:
fgarvard University Press.

Anderson, J.R., Farrell, R., & Sauers, R. (1982). Learning to Plan in LISP.
ONR Technical Report ONR-82-2, Carnegie-Mellon University.

Anderson, J.R., Farrell, R., & Sauers, R.» (1984). Learning to program in
LISP. Cognitive Science, in press.

Anderson, J.R., Pirolli, P., & Farrell, R. Learning recursive programming.
Tn forthcoming book edited by Chi, Farr, & Glaser.

Bilodeau, I. MeD. (1969). Information feedback. In E.A. Bilodeau (Ed.),
Principles of Skill Acquisition. New York: Academic Press.

Boyle, C.F., & Anderson, J.R. Acquisition and automated instruction of
geometry proof skills. Paper to be presented at the Annual Meeting of

the American Educational Regearch Association.

Brown, J.S5., & Van Lehm, K. (1980). Repair theory: A generative theory of
bugs in procedural skills. Cognitive Science, &, 379-426.

Cohen, V.B. (April 20, 1982). Computer software found weak. New York
Times, C4, Summary of a research.

Farrell, R., Andersom, J., & Reiser, B. Interactive Student Modeling in a
Computer—Based LISP Tutor, 1984, submitted to Cognitive Science.

Balasz, F., & Moran, T.P. (March 15-17, 1982). Analogy considered harmful.
Technical Report, Proceedings of the Human Factors in Computer Systems
Conference, Gaithersburg, MD.

Lewis, M., & Anderson, J.R. The role of feedback in discriminating problem-—
golving operators.

McKendree, J., Reiser, B.J., & Anderson, J.R. Tutorial goals and strategies
in the instruction of programming skills. Paper submitted to the 1984
conference of the Cognitive Science Soclety.

Newell, A., & Simon, H. (1972). Human Problem Solving. Englewood Cliffs,
NJ: Prentice-Hall.




O'Shea, T. (Januatry, 1979). A gelf-Proving Quadratic Tutor- International
Journal of Man-Machine Studies, }iﬂl}, 97-124.

Ross, B-H. (1984). Remindings and their effects in learning 2 cognitive
skilil- Cognitive Psychology, in press.

Skinner, B.F-. (1958). Teaching machines. Science, 128, 889-977-

¢leeman, D (1982). Assessing aspects of competence in basic algebra. In
D. Sleeman & J.S. Brown (Eds.), Intelligent Tutoring Systems, New York:
Academic Press.

Sleeman, D., & Brown Je5- (Eds.) - (1982). Tntelligent Tatoring SystemsS-
New York: Academic Press-

Tulving, E- (1983)- Elements of Fpisodic Memory. London: Oxford
University Press.

Tulving, Be, & Ghomeon, P.M- (1973) - Encoding gpecificity and retrieval
processes in episodic memoTy: Psychological Review, 80, 352-373.

Van Lehn, XK. (1983). Fellcity conditions for buman skill acquisition:
Yalidating an Al-based theory: Technical Report c1S-21, Xerox Parc, Palo
Alto, CA.




