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Introduction

Research on intelligent tutoring serves two goals. The obvious goal is to
develop systems for automating education. Private human tutors are very
effective [16] and it would be nice to be able to deliver this effectiveness
without incurring the high cost of human tutors. However, a second and
equally important goal is to explore epistemological issues concerning the
nature of the knowledge that is being tutored and how that knowledge can be
learned. We take it as an axiom that a tutor will be effective to the extent that
it embodies correct decisions on these epistemological issues.

We chose intelligent tutoring as a domain for testing out the ACT* theory of
cognition (Anderson [4]). It was a theory that made claims about the organiza-
tion and acquisition of complex cognitive skills. The only way to adequately
test fhe sufficiency of the theory was to interface it with the acquisition of
realistically complex skills by large populations of students. When we read the
Intelligent Tutoring book, edited by Sleeman and Brown [37], it became
apparent that the authors in it were explicitly or implicitly performing such
tests of theories of cognition and that it was an appropriate methodology for
testing the ACT* theory.

The ACT* theory has been used to construct performance models of how
students actually execute the skills that are to be tutored and learning models
of how these skills are acquired. These two cognitive models are incorporated
into our tutors and are used to interpret the student’s behavior. A performance
model consists of a set of correct and incorrect rules for performing the skill in
question and is used in a paradigm we call model tracing. In this paradigm we
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compare the student’s responses to the rules in the model in an attempt to
follow in real time the cognitive states that the student goes through in solving
a problem. The learning model consists of a set of assumptions about how the
student’s knowledge state changes after each step in solving a problem. This
model is employed in knowledge tracing (as opposed to model tracing) to track
the changes in the student’s knowledge across problems. The information that
results from knowledge tracing can be used to disambiguate alternative inter-
pretations in model tracing and can be used for selecting problems to optimize
learning.

We are currently working on tutors for beginning LISP programming [35], for
proof generation in high-school geometry [8], and for solving algebraic manipu-
lation and word problems [30]. These domains were selected because they
involve the acquisition of well-defined skills and we can catch students at the
point where they are just beginning to learn the skill. Our LISP tutor currently
teaches a successful university-level course, our geometry tutor has completed
two years of successful use in a local public high school, and the algebra tutor is
being used in a local public high school in the 1987-1988 academic year. We
believe that these tutors owe their success to the cognitive principles from
which they were derived. However, it is not the case that the cognitive
principles have remained unchanged in the face of these applications. In fact,
we have found reasons to reject certain assumptions of the ACT* cognitive
architecture and are working with a new architecture called PUPS (for PenUlti-
mate Production System). So, even at this early stage of our endeavor, we have
seen a fairly profitable flow of influence back and forth between the theory and
the application.

This paper has three major sections. Section 1 describes the cognitive theory
that serves as the basis for our tutoring endeavors. Section 2 describes the
model-tracing methodology and how it derives from our cognitive theory.
Section 3 discusses the issues that arise in implementing the model-tracing
methodology.

1. The Cognitive Theory

In describing this cognitive theory, we want to make clear from the outset that
we are not necessarily describing what is in our tutors. Instead, we are
describing a theory that forms the basis for the tutors. If the mind functions
according to our theory, then the tutors should prove to optimize the learning
process. To derive predictions from our cognitive theory, we have developed a
number of simulations of aspects of it. At some points the code in these
simulations has been taken over whole cloth for the tutors, at other points it
has influenced tutor code, and at other points the tutor code is just a derivation
of the theory. Later we will discuss the tutor implementations. We will just
outline the basic cognitive theory here. For details and empirical evidence the
reader is referred to Anderson [4, 5] and Anderson and Thompson [13].
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In both the PUPS theory and its ACT* predecessor, a fundamental theoretical
distinction was made between declarative and procedural knowledge. This
distinction borrowed its label from the distinction drawn in Al a decade ago
(e.g., Winograd [38]) but has been fundamentally transformed to be a psycho-
logical distinction. Declarative knowledge is distinguished by the fact that the
human system can encode it quickly and without commitment to how it will be
used. Declarative knowledge is what is deposited in human memory when
someone is told something, as in instruction or reading a text. Procedural
knowledge on the other hand can only be acquired through the use of the
declarative knowledge, often after trial and error practice, and is further
characterized by the fact that it embodies the knowledge in a highly efficient
and use-specific way. In the theory, procedural knowledge derives as a
by-product of the interpretative use of declarative knowledge. We use the term
knowledge compilation to refer to the learning process which creates the
procedural knowledge.

1.1. Procedural knowledge: Productions

In the ACT* and PUPS theories, procedural knowledge is represented by a set of
production rules that define the skill. Our goal in tutoring is basically to create
experiences that will cause students to acquire the production rules which
would be possessed by the competent problem solver. It would be worthwhile
to examine some examples of productions that are used in our three domains
of tutoring—i.e., LISP, geometry, and algebra.

1.1.1. Lisp

Below are “Englishified” versions of a couple of the productions that are used
in the LISP tutor:

IF the goal is to merge the elements of lisl and lis2 into a list,
THEN use append and set as subgoals to code lisl and lis2.

IF the goal is to code a function on a list structure and that
function must inspect every atom of the list structure and the
list structure can be arbitrarily complex,

THEN try car-cdr recursion and set as subgoals
(1) to figure out the recursive relation for car-cdr recursion
(2) to figure out the terminating cases when the argument is nil

or an atom.

The first is a production that recognizes the relevance of a basic LISP function
and the second is one that recognizes the applicability of a recursive program-
ming technique. These and approximately 500 more production rules model an
ideal student writing basic LISP code to solve problems that would appear in an
introductory LISP textbook. These productions all have this goal decomposition
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character of starting with some programming goal and decomposing it into
subgoals until goals are reached which can be achieved with direct code. For an
extensive discussion of a model of beginning LISP programming see [10].

1.1.2. Geometry

The character of the production rules underlying the geometry tutor are
somewhat different. Below are two examples from the approximately 300 in
that system:

IF the goal is to prove AXYZ=AUYW
and X, Y, W are collinear,
and U, Y, Z are collinear,
THEN conclude ZXYZ = LUYW because of vertical angles.

IF the goal is to prove AXYZ=AUVW
and XY = UV
and YZ=VW,
THEN set a subgoal to prove £ XYZ = /UVW so SAS can be used.

The first production makes a forward inference from what is known about a
problem while the second makes a backward inference from what is to be
proved. A proof is completed when a set of subgoals from the to-be-proven
statement makes contact with a set of forward inferences from the givens of the
problem. The production rules for forward and backward inference are con-
textually constrained. That is, they make reference not only to the information
necessary for application of the rule but also to other information about the
proof which is predictive of the aptness of that inference. Thus, for instance,
the first rule not only makes reference to the collinearity information which is
logically necessary for application of the vertical angle rule, it also makes
reference to the fact that these angles are corresponding parts of to-be-proven
congruent triangles. For more discussion of the nature of the ideal student
model in geometry read [1, 8].

1.1.3. Algebra

The production system for the algebra tutor is again somewhat different in
character from the production systems for LISP or geometry. Below are seven
of the production rules involved in modeling the ideal student’s knowledge of
distribution:

IF the goal is to solve an equation with a subexpression of the
form “coefficient(expl + exp2)”,

THEN set as a subgoal to rewrite the equation with the subexpression
distributed.

IF the goal is to rewrite an equation with a subexpression dis-
tributed,
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THEN set as subgoals ‘
(1) find the coefficient associated with the subexpression,
(2) multiply the parenthesized part by the coefficient,
(3) replace the subexpression by the product.

IF the goal is to find the coefficient of “term”,
THEN the answer is 1.

IF the goal is to find the coefficient of “-— term”,
THEN the answer is —1.

IF the goal is to find the coefficient of “num term”,
THEN the answer is num.

IF the goal is to multiply “num1” by “terml + term2”,
THEN set as subgoals

(1) to multiply terml by numl,

(2) to multiply term2 by numl,

(3) to combine the two products.

IF the goal is to multiply an expression by a number,

THEN set as subgoals
(1) to find the coefficient associated with the expression,
(2) to multiply the coefficient by the number,
(3) to combine the product with the rest of the expression.

These rules would be invoked if, for instance, there were an expression of
the form ...3(5x +2)... somewhere in the equation to be solved. The first
rule recognizes the applicability of distribution and the second sets three
subgoals to accomplish this. The third and fourth rules are special cases of
extracting coefficients of 1. The fifth applies in this case and extracts the
coefficient of 3. The sixth rule decomposes the distribution into two simpler
multiplications. The final production sets the subgoals to extract the 5 from the
5x, multiply 5 by 3, and then to combine the 15 with x.

The algebra rules highlight the issue of grain size which is also an issue for
other production systems. We could have compacted all of these rules into a
single production rule which recognized and applied distribution to the equa-
tion in one fell swoop (as, for instance, Sleeman [36] does). On the other hand,
we could have broken each of these steps into multiple substeps. For instance,
note that we do not decompose the process of calculating the product of numl
and num3 into a set of substeps as it might well be implemented cognitively.
Our decision about the level at which to model the student was determined by
pedagogical considerations. Students entering the algebra course usually have
their multiplication skills well-learned and do not need to be tutored on these.
In contrast, students do have problems with the subcomponents of distribution
and so we need to separate these out for purposes of separate tutoring.
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An implication is that the production rules that we use in the algebra tutor,
and indeed in the other tutors, represent only upper levels of the skill. These
productions set subgoals which are met by other productions whose action we
do not bother to simulate. These include such things as the actual typing of
answers into the computer. The assumption is that such productions, below the
level that we are modeling, are well-learned.

While the production systems for the different domains do have some
features in common, the production rules in each domain create different goal
structures. Our learning theory would predict that the different task structures
of the different domains produce different organizations of the production
rules. Generating LISP code is a design activity and lends itself to a problem
decomposition structure. The search character of generating geometry proofs
produces an opportunistic structure in which there can be large switches of
attention among parts of the proof. The linear structure of the algebra
equations and the algorithmic character of algebra equation solving produces
the symbol substitution character of the algebraic rules. One of the major
functions of a tutor for a particular domain should be to communicate the ideal
problem-solving structure of that domain.

1.2. Declarative knowledge: PUPS structures

According to our cognitive theory, knowledge is initially encoded declaratively
in what we have come to call PUPS structures. At first these structures are used
by weak problem-solving productions. As a result of this activity, the knowl-
edge is converted into use-specific production form. PUPS structures are
basically schema-like structures which are distinguished by the fact that they
have certain special slots which prove critical to their interpretive application in
problem solving. These include the function slot which serves to indicate the
function of the entity represented by the structure, the form slot which
indicates its form or physical appearance, and the precondition slot which
states any preconditions that must be satisfied for that form to achieve that
function. To illustrate such structures let us consider how an ideal student
might encode the following fragment of text from the second edition of
Winston and Horn [39, p. 24]:

The value returned by car is the first element of the list given as its
argument.

(CAR *(FAST COMPUTERS ARE NICE))
FAST

This Winston and Horn example is interesting because it contains a nice
juxtaposition of some abstract instruction with a specific example. However,
the PUPS encodings of the two (given below) are basically structurally iso-
morphic. The abstract encoding of car indicates in its function slot that it serves
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as the function in the abstract LISP code represented by car-structure. The
representation of car-structure shows in its form slot the abstract template for
function calls involving car and in its function slot it specifies what these
function calls calculate. The examplel structure has the same form as car-
structure, except that an argument is specified. The other PUPS structures
encode that argument and the value returned by the example call.

car

ISA: function

FUNCTION: (function-in car-structure)
FORM: (text car)

car-structure

ISA: lisp-code

FUNCTION: (calculate-first arg)
FORM: (list car arg)

examplel

ISA: lisp-code

FUNCTION: (illustrate car)
(calculate-first lis)

FORM: (list car lis)
lis
ISA: list

FUNCTION: (argument-in examplel)
(hold (fast computers are nice))

FORM: (text ’(fast computers are nice))
+ fast
ISA: atom

FUNCTION: (value-of example)
(first lis)
FORM: (text fast)

The structures above represent the outcome of successful encoding of the
text; however, it should be stressed that there is a lot of room for “misunder-
standing” (incorrect encoding). Clearly, a critical issue for learning is correct
interpretation of the instruction. One problem with virtually all instructional
material is that it omits many things that the student needs to know in order to
perform the tasks, and the student is left to figure them out by trial and error
experimentation. One of the payoffs in developing an ideal student model,
even before it is used in tutoring, is that it provides a cognitive analysis of what
the student really needs to know. Instruction can then be designed to com-
municate that. In our work we have found that instructional materials designed
to communicate all the information in the ideal model (and to not waste prose
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communicating non-information) are more effective than standard texts even
without a tutor. This emphasis on economy and focus in instruction has been
confirmed by a number of other researchers (Carroll [20], Reder, Charney and
Morgan [34]). It is the motivation for our text on LISP (Anderson, Corbett and
Reiser [9]).

However, we believe that it is not possible to avoid all or even most
misinterpretations. In communicating unfamiliar material there is the inevit-
able difficulty of the student being weak on the key concepts. For instance, we
have never observed a student go from reading any textbook on LISP to
practicing that knowledge without errors. One important role for a tutor is to
monitor for these errors of misunderstanding and correct them as they show up
in the performance of a task.

1.2.1. Interpretive use of declarative knowledge

We assume that the declarative PUPS structures illustrated above are deposited
in memory essentially as the product of language comprehension. It is im-
portant that the necessary structures get encoded correctly, but this is by no
means the end state of the learning process. These structures do not directly
lead to any performance and it is necessary to interpret them to get perfor-
mance. This interpretive process is of high demand cognitively and is a major
cause of slips in performance [11, 32]. Thus, it is important to create produc-
tions like the ones in the ideal model which will automatically apply the
knowledge.

There is essentially a double loop of inefficiency promoted by interpretive
use of declarative knowledge. The outer loop involves a search through the
operations the student knows to find an appropriate next step. For instance, a
student might search through all the postulates for proving the triangles
tongruent: side-side-side, side-angle-side, etc. While it is not possible to
entirely avoid search, the productions in the ideal model have features built
into them that greatly cut down on this search. The example productions we
displayed earlier illustrate this in that they include heuristic tests that check the
likelihood that a rule of inference would contribute to a final proof. The inner
loop involves the analogical application of a declarative PUPS-structure repre-
sentation of an operation to the problem at hand in order to produce a
response. This analogical application of declarative knowledge is costly in
terms of the amount of information that must be held in working memory. For
instance, a great deal of prolonged effort can go into an attempt to map the
general statement of the side-angle-side postulate to a specific problem [2].
Once the corresponding information is proceduralized, however, its application

makes a much smaller demand on working memory.

1.2.2. Analogy

We have observed that the major way that students solve problems involving
concepts is by analogy to examples of solutions involving these concepts. To
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illustrate the analogy process, suppose the student has the goal of getting the
first element of the list (A B C). This is represented by the PUPS structures
below:

goall

ISA: lisp-code
FUNCTION: (calculate-first lis2)
FORM: ?

lis2

ISA: list

FUNCTION: (hold (A B C))
FORM: ?

As is typically the case in the PUPS representation of a problem-solving
situation we have PUPS structures with functions represented but forms empty.
The goal is to devise a form that satisfies each functional specification. Both of
the required forms can be calculated by analogy to the earlier PUPS structures
created from comprehension of the Winston and Horn instruction. Using
examplel as the source for the analogy and goall as the target, PUPS creates the
following analogy:

function(examplel):form(examplel)::function(goall):?

In solving this analogy, lis from examplel is mapped to lis2 from goall and
the specification (LIST CAR lis2) is created for the goall form slot. A similar
analogy between lis and lis2 leads to the description (LIST ’(A B C)) for the
form slot of lis2. This constitutes a solution to the problem.

1.3. Knowledge compilation

What we have just described is a solution by analogy for a specific example
problem. Such analogical reasoning is not optimal for problem solving, how-
ever, because it is costly to compute the mapping, and because it will only
work when there is an example at hand. Therefore, knowledge compilation
tries to analyze the essence of the analogical solution and generate a produc-
tion rule that can produce the solution at will. Basically, it does this by looking
at the problem states before and after generating the analogical solution and
creating a production rule that maps one onto the other. Essential to knowl-
edge compilation is diagnosing what was critical in the before situation and
what is critical in the solution. This depends on the semantics of the PUPS
structure. The result of the compilation process for this example is a produc-
tion with one variable (=list) that can bind to any list:

IF the goal is to get the first element of =list,
THEN type (car =list).
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The knowledge compilation process that produced this has to know about
the correspondences computed in calculating the analogy. Thus, this learning
mechanism has built into it knowledge of how PUPS structures are interpreted
in analogy.

A second thing knowledge compilation will do is eliminate some of the
relatively blind search that characterizes early problem solving. Consider the
diagram in Fig. 1, which shows a problem that appears early in the geometry
problem sequence. The student is given that two sides of the triangles are
congruent and must try to prove that the triangles are congruent. At this point
the student has only been taught the side-side-side and side-angle-side post-
ulates for proving triangles congruent. One student, not atypical, was observed
to (1) try side-angle-side but fail because there is not an angle congruence; (2)
try side-side-side but fail because only two sides are given as congruent; (3)
apply the definition of congruence to infer that the measure of AD is equal to
the measure of CD; (4) apply the reflexive rule to infer AD is congruent to
itself; and, (5) finally, apply the reflexive rule, to infer that BD is congruent to
itself. This last step was the key one that allowed the student to apply the
side-side-side rule to achieve his goal. It seemed that the subject engaged in an
almost random search of legal operators until he came across one that was
useful.

Knowledge compilation creates rules that skip over the steps that were not
relevant to the final solution and tries to produce a rule that connects key
features in the original situation with the ultimately useful operator. The rule
that should be produced in this case is:

IF the goal is to infer AXYZ = AUYZ,
THEN infer YZ = YZ because of the reflexive property of

’ congruence.

Note this rule is not specific to the solution of this problem by side-side-side

D

Given. AB = BC
AD = CD
Prove: 2 ABD = aCBD

Fig. 1. A problem that occurs early in the problem sequence used with the geometry tutor.
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nor to the fact that there are already two sides proven congruent. This is what
we noted of our subject: He emerged from this episode with a tendency to
infer that the shared side of two triangles is congruent to itself whenever he set
as his goal to prove these triangles congruent.

This geometry example illustrates the general features of learning from
search: If the student applies a number of operators and some of the operators
prove successful—in the geometry example a number of inferences were
applied and one was part of the final proof—then some knowledge may be
proceduralized while additional declarative structures may be formed that
encode how the operators achieved their successful function. With subsequent
practice these additional declarative structures can lead to the formation of
more productions. It is critical that the students properly encode their ex-
perience and this is again where tutors can be critical—by assuring the proper
encoding of the experience. So, for instance, in the reflexive case discussed
above, if the student represented the function of the rule as establishing
side-side-side, he would have created too specific a rule. On the other hand, if
he represented it as just making a legal inference, he would have created too
general a rule.

1.4. Strengthening

In addition to knowledge compilation, there is a simple strengthening of
declarative and procedural knowledge with use. As knowledge becomes
strengthened it comes to be applied more rapidly and reliably. There is ample
empirical evidence for such a simple learning process in humans although its
exact nature is in some dispute [2]. The major implication of a strengthening-
like process for tutoring concerns the introduction of new knowledge. As the
execution of acquired knowledge becomes more proficient there is more
capacity left over to properly process the new knowledge.

1.5. Other learning mechanisms?

An important characteristic of this model is what it does not contain. Unlike
the ACT* line of learning theories there are no inductive learning mechanisms
that automatically compare the current situation with past situations and try to
form generalizations and discriminations about when rules will and will not
apply. This is not to say that subjects do not engage sometimes in inductive
behavior as a conscious problem-solving activity—they certainly do. Rather the
claim is that there is not an automatic learning mechanism of the status of
compilation and strengthening. Generalizations and discriminations are de-
clarative knowledge structures produced by problem-solving productions rather
than productions produced by automatic learning mechanisms. There is a fair
amount of evidence that people are aware of their inductive generalizations
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and discriminations (Lewis and Anderson [29], Dulany, Carlson and Dewey
[24]).

This has major implications for instruction. Rather than leaving students to
induce generalizations and discriminations from carefully juxtaposed examples,
which would have been the pedagogical implication of ACT*, one should simply
tell the student what the critical features are. Thus, if a student is overusing the
vertical angle inference, he should be told the circumstances under which he
wants to use it. This is not to argue that examples are not important, but they
should be annotated with information about what they are supposed to
illustrate. ‘

2. Converting Theory to Tutoring: Model Tracing

This theory of knowledge acquisition is radical in the juxtaposition of its
simplicity and its claim to completeness. To review, learning in the theory
involves:

(1) acquisition of new declarative knowledge by the processing of ex-
perience through existing productions (e.g. for language comprehension);

(2) application of declarative knowledge to new situations (i.e., situations
for which productions do not exist) by means of analogy and pure search;

(3) compilation of domain-specific productions;

(4) strengthening of declarative and procedural knowledge.

Probably there is little controversy that these things (or things very similar to
them) are involved in knowledge acquisition, but the issue is whether these
assumptions are sufficient to account for all knowledge acquisition. The
question is how to put that theory to test. As argued in detail elsewhere [6] our
tutoring work is a methodology for testing the theory. Since the design of the
tutors is based on the theoretical analysis, the success of the tutors, as
measured by post tests and total learning time, is one test of the theory.
Moreover, one can ask whether detailed analyses of the student’s interaction
with the tutor accord with theoretical predictions.

The simplicity of the underlying theory maps onto a rather straightforward
tutoring methodology that we call model tracing. The theory provided us with
a performance model which specifies how a student’s knowledge state will map
onto performance on a particular problem. The performance model can be
used to interpret the student’s performance on a particular problem. Instruc-
tion is generated to address any confusions that the student is interpreted as
showing and to keep students on a correct solution path. In addition, a learning
model which specifies how the student’s knowledge state will change as a result
of problem-solving experiences can be used to trace the student’s knowledge
state over time. Problems and accompanying instruction are selected to
practice the student on productions that are diagnosed as weak or missing in
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the student’s knowledge state.! Given this structuring of the learning situation,
we trust the automatic learning mechanisms in (1)-(4) above to move the
student forward on an optimal learning trajectory. In the following sections we
will give some examples of this model-tracing methodology. Then, we will
discuss some issues in implementing it.

2.1. The LISP tutor

The LISP tutor is based on our earlier efforts to model learning to program in
LIsP [10]. Appendix A contains a dialogue with a student coding a recursive
function to calculate factorial. This does not present the tutor as it really
appears. Instead, it shows a “teletype” version of the tutor where the
interaction is linearized. In the actual tutor the interaction involves updates to
various windows. In the teletype version the tutor’s output is given in normal
type while the student’s input is shown in bold characters. These listings
present ‘“‘snapshots” of the interaction; each time the student produces a
response, we have listed his input along with the tutor’s response (numbered
for convenience). The total code as it appears on the screen is shown, although
the student has added only what is different from the previous code (shown in
boldface type). For instance, in episode (2) he has added ‘“zero” as an
extension of ‘“(defun fact (n) (cond ((”.
In the first line, when the subject typed “(defun”, the template

(defun (name) (parameters) (body))

appeared. The terms in angle brackets ({ )) denote pieces of code the student
will supply. The subject then filled in the (name) slot and the (parameters)
slot and had started to fill in the (body) slot. Parentheses are automatically
balanged and syntax is checked. The motivation here is to remove from the
student some of the cognitive load required for checking low-level syntax and
to enable the student to focus on higher-level coding problems.

Although the student has some difficulty with the syntax of the conditional
tests in episodes (1) and (2), he basically codes the terminating case for the
factorial function correctly. Typically, we find students have little difficulty with
terminating cases but have great difficulty with recursive cases. Therefore, after
episode (3) the tutor interrupts the student to see if the student understands
how to write the recursive code. When the student’s answer to the first
question indicates lack of knowledge, the tutor starts a dialogue to guide the
student through a design of the recursive function. Basically, it leads the
student to construct a couple of examples of the relationship between fact (n)
and fact (n — 1) and then gets the student to identify the general relationship.

! The actual learning system is not simulated in our tutor—rather we more directly (and much
more efficiently) calculate its implications.
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In examples A and B what do you have to do to get the result
of fact called with n?

PRESS: IF YOU WANT TO:

1. Multiply n by one less than n.

2. Muitiply n by fact of one less than n.

3. Add n to the result of fact called with one less than n.
4. Have the tutor choose.

Menu Choice: 2

CODE FOR fact

(defun fact (n)
(cond ((zerop n) 1)
<RECURSIVE-CASE >))

EXAMPLES
fact (n) fact (n-1)
A (fact 1) = 1 (fact 0) 1

"o

B. (tact 3) = 6 (lact 2) 2

Fig. 2. The screen configuration before episode (4) in Appendix A.

Figure 2 shows the screen image at a critical point in the design of this
function.

The dialogue after this point shows two errors that students make in defining
recursive functions. The first, in episode (4), is to call the function directly
without combining the recursive call with other elements. The second, in
episode (5), is to call the function recursively with the same argument rather
than a simpler one.

After the student finishes coding the function, he goes to the LISP window
and experiments. He is required to trace the function, and the recursive calls
embed and then unravel. Figure 3 shows the screen image at this point with the
code on top and the trace below it.

This example illustrates a number of features of our tutoring methodology.

(1) The tutor constantly monitors the student’s problem solving and pro-
vides direction whenever the student wanders off one of the correct solution
paths.

(2) The tutor tries to provide help with both the overt parts of the problem
solution and the planning. However, to address the planning a mechanism had
to be introduced in the interface (in this case menus and short answers) to
allow the student to communicate the steps of planning.

(3) The interface tries to eliminate aspects like syntax checking, which are
irrelevant to the problem-solving skill being tutored.
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-- YOU ARE DONE. TYPE NEXT TO GO ON AFTER ---
-- TESTING THE FUNCTIONS YOU HAVE DEFINED ---

(defun fact (n)
(cond ((zerop n) 1)
(t (times n (fact (sub1 n))))))

THE LISP WINDOW

= > (trace fact)
(fact)

=> (fact 3)

1 <Enter> fact (3)
|2 <Enter> fact (2)

| 3 <Enter> fact (1)
| |4 <Enter> fact (0)
| |4 <EXIT> fact 1
| 3 <EXIT> fact 1
|12 <EXIT> fact 2
1 <EXIT> fact 6
6

Fig. 3. The screen configuration at the end of the dialogue in Appendix A.

(4) The interface is highly reactive in that it makes some response to every
symbol the student enters.

It is interesting to note the contrast between the LISP tutor and the PROUST
system of Johnson and Soloway [27]. That system provides feedback only on
residual errors in the program and does not try to guide the student in the
actual coding. One technical consequence is that the PROUST system has to
deal with disentangling multiple bugs. Since the LISP tutor only corrects errors
immediately, the code never contains more than one bug at a time.

2.2. The geometry tutor

The geometry tutor is similarly based on our earlier work studying geometry
problem solving (Anderson [1-3]). Figure 4 illustrates how a problem is
initially presented to a student. At the top of the figure is the statement the
student is trying to prove. At the bottom are the givens of the problem. In the
upper left corner is a problem diagram. The system prompts the student to
select a set of statements using a mouse. Then the system prompts the student
to enter a rule of geometric inference that takes these statements as premises.
When the student has done so, the system prompts the student to type in the
conclusion that follows from the rule. The screen is updated with each step to
indicate where the student is. The sequence of premises, rule of inference, and
conclusion completes a single step of inference. Figure 5 illustrates the screen
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PNFEPNTS

OXEI2OAK LXLIZ LYY znuuzxx X bisects OUY

WHAT STATEMENT(S) ARE YOU WORKING FROM?
TO GET INORMATION ABOUT WHAT YOU MAY DO SELECT NFO' FRCM THE COMMAND Mis,

Fig. 4. An initial screen configuration with the geometry tutor.

at the pomt where the student has selected the definition of bisector to apply to
the premise JK bisects Z XJY but has not yet entered the conclusion. A menu
has been brought up at the left of the screen to enable the entry of the
conclusion. It contains the relations and symbols of geometry. By pointing to
symbols in the menu and to points in the diagram, the student can form the
new statement Z XJK = £ KJY. We find it useful to have the student actually
point to the diagram to make sure the student knows the reference of the
abstract statements.

Figure 6 shows the geometry diagram at a still later point. The student has
completed the bisector inference and added a plausible transitivity inference,
but one that proves not to be part of the final proof. At this point the student
begins to flail and has tried a series of illegal applications of rules, the most
recent being application of angle-side-angle (ASA) to the premises £ EJX =
LEJY and £LEXJ= £EXK. The tutor points out that ASA requires three
premises, and so it clearly is inappropriate. Since the student is having so much
difficulty, the tutor points the student to the key step in solving this problem:
To prove AEJY=AEKX one will have to prove AEJY=AEJX and
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QbIYzoEKX

DEF -BSECTOR

LXEIE 00K LR IZLVES XIE ZXK X bisects XY
“WHAT IS THE CONCLUSION?  SELECT 'INFO' FROM THE COMMAND MENU FOR HE.P ON wHAT 1O DC

MM ANDS!

Fig. 5. The screen configuration after the student has selected the premises and the rule and is
about to enter the conclusion.

AEJX=AEKX and then apply transitivity. The tutor indicates this key step
by boxing the conclusion. Thus, the student is asked to use backward inference
to enter a rule and a set of premises from which the conclusion logically
follows. If necessary, the tutor can step the student through how transitivity of
the two triangle congruences will enable the conclusion to be proven. The
student then will have the task of proving the two triangle congruences.

Figure 7 shows the state of the diagram at a still later point where the
student has proven one of the triangle congruences while the other remains to
be proven. It nicely illustrates how students can mix reasoning forward from
the givens and reasoning backwards from the conclusions.

Figure 8 shows the completed proof in which there is a graph structure
connecting the givens to the to-be-proven statement. Students find such
representations of proof solutions enlightening in two ways. First, it enables
them to appreciate how inferences combine to yield a proof, something they
tend not to get from the traditional two-column formalism. Second, the search
inherent in proof generation is explicitly represented. So, for instance, students
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ASA requires 3 premises. You
picked 2 premises.

The statements you chose: SJEJX&
N JXIEEXK , are not used by
any rule.

3 '3 I'm goin? to start you off with a
inew set of premises.

OB LVES ZXEZN

TRANSITMITY DEF -MBECTOR

O IE OTK O Iz NS LEXI& JXK X bisects OUY

- PWHAT 1S THE RULE? — SELECT 'INFO' FROM THE GOMMAND MENU FOR HELP ON AMA' "L DO

Fig. 6. The student has just tried to apply angle-side-angle to the two premises Z EJX = L EJY,
LEXJ= LEXK.

can immediately identify inferences, such as the angle transitivity inference,
which are off the main path.

Much of our work on the geometry tutor has been concerned with principles
for providing immediate feedback. We will postpone discussion of these
principles until the next section on issues involving the model-tracing
methodology. The example in Figs. 4-8 illustrates what Brown has referred to
as reification. The proof graph makes concrete two abstract features of
problem solving in geometry—the logical relationships among the premises and
conclusions and the search process by which one hunts for a correct proof.
Normally, students have a great deal of difficulty with both of these constructs.
By creating an external referent in the form of a proof graph we facilitate
instruction about these abstract concepts. Students unanimously report that
they prefer this proof graph structure to the more traditional two-column proof
form. They typically justify their preferences with the assertion that it is “easier
to do a proof”’ with this formation.
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PNNEPNLS

AELATONS TRANSITIVITY

AEIXZAENY of X&aEKX

Fig. 7. The student has succeeded in proving one of the two requisite triangle congruences.

2.3. The algebra tutor

The algebra tutor (Lewis, Milson and Anderson [30]) is a more recent
endeavor of ours and does not have the prior history of domain study. It
reflects an attempt to see how well the methodology that we have developed
transfers to a new domain.

So far we have developed a curriculum which takes students through a
review of pre-algebra, and through linear and quadratic equations. Figure 9
shows the initial state of the screen at the beginning of solving a linear
equation. To the left is a solution window in which the student is going to
develop the solution. There are three areas to the right. At the top, there is a
blackboard on which the tutor posts messages to the student. In the middle,
there is a calculator scratchpad in which the student can perform arbitrary
manipulations. At the bottom, there is a menu of choices which the student can
point to in order to interact with the tutor. The menu varies; in Fig. 9 it largely
consists of options for piecing together a solution to the problem. The student
has the option of directly writing in the answer without showing intermediate
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Qb EofKX

TRANSITMTY

Fig. 8. The proof of the problem is now complete.

v

results. The student can also decompose the solution into a number of substeps
which can be indicated to the tutor by selecting the operations item in the
menu.

A new menu replaces the one at the bottom left of Fig. 9 when the student
selects ‘“‘operations”. This new menu is shown in Figure 10. The change is that
a new menu has come up with possible operations that might be performed on
equations. The correct choice at this point would be “‘cleanup” which refers to
eliminating parentheses and collecting like terms. Figure 11 shows the contents
of the solution window after the student selects “cleanup.” A cleanup form has
appeared and the student must figure out what arguments to pass to this
operation and what the result will be. The student can point to the equation
3 —3(x —4) = —x in the solve line above and it will appear as an argument to
cleanup. This is one example of many where we try to minimize the number of
operations that the student must perform.

Just as the student can decompose ‘‘solve-equation” into a number of
substeps so the student can decompose ‘‘cleanup” into a number of substeps.
The first substep for ‘“cleanup” is “distribute.” Again, “distribute” can be
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Sclve [3—3(X—4)= - X| for -0

Y|l B
zﬁc

Fallure

Fig. 9. The algebra tutor’s interfae as it appears at the beginning of a problem. On the left is the

solution window; at the top right is a blackboard for posting messages to the student; at the middle

right is a calculator scratchpad where the student can perform primitive operations; and the bottom
is a menu of choices for communicating with the tutor.

4
decomposed into a number of substeps and the first substep is “get-
coefficient.” Figure 12 shows the screen image with these substeps embedded.
Note how the tutor embeds boxes on top of boxes to indicate levels of

embedded goals.
Figure 13(a) shows the screen image after the student has completed all of

QUATIO P 10N
ACTI NUMBERS
Add to equation C-leanup
Collect Constants Collect Like Terms
Constants Other Side Distribute
Isclate Solve Var Multiply Equation
Simplify Equation Solve
Undo addition Undo all operations
Undo multiplication Variables One Side
You Do It

Fig. 10. The new menu that appears when the student selects the “operations” system in Fig. 9.
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sove o - O

ICleanup o =->0

Fig. 11. The solution window after *‘cleanup” is chosen from Fig. 10.

e E 5 0

Cleanup |3-3(X-=-X| -> ]

Distribute [~ 3(X~4)] in [3=3@-4)=-%]| ->

What is the coefficient of ->0

Fig. 12. A later state of the solution after the student has selected “distribute” as a substep to
“cleanup” and ‘“‘get-coefficient™ as a substep to “distribute.”

the substeps of cleanup. The screen maintains two levels of completed sub-
steps. Thus, the student can see that cleanup was solved by a “distribute”
followed by a “collect.” Having finished the cleanup substep the student has
turned to the next major step in solving the problem which is to move the
variable terms to one side. The student has chosen to try to answer this directly
rather than pursue it in substeps. Unfortunately, he has made the classic sign
error and entered 15= —4x. The tutor recognizes this error and enters a
remedial message on the blackboard. This error message is illustrated in Fig.
13(b).

Figure 14 shows the final solution window when the problem is solved. The
student finished the move-variables goal and started on the isolate goal.

’

Cleanup [3-3(X-4)=-X] > [15-3x=-%]

Try again.

Fig. 13. (a) A later state of the solution window after the student has gone on to try the substep of
“‘move-variable-to-one-side™ after completing the “cleanup” step. (b) The error message given to
the student who enters 15 = —4x as the result for the last step in (a).
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Sowve [B=3X-9)= =X for [X] -> |x=%

Cleanup [3-3(X-4)=-X| -> [15-3X=-X]|

IDimwme C3x-a) in B-3X-9)=-%] -> f-3X+12=-%] |
Collect constants in |3—3X+12=—X ->|15-3X=-X

Move [X] terms to one side of [15-3X=-X] -> [15=2%]
IAdditlve inverse of @ -> @ l

[Ada [5%] 10 votn siaes of [(5=3%=-%] -> [E-3x+3x=-x+3% |

Cottect [X] terms in [15-3X +3X=-X +3%] —> [15=2%]
Isolate E in ->0
rWhat is the coefficient of -> E] I

IReciprocal ofJ->0 I
e 4

Fig. 14. The final state of the solution window after solving 3 — 3(x —4) = —x.

However, in the midst of solving the isolate goal the student saw the answer
and chose what is called the popout option. This lets him put in the answer to
the isolate goal without filling in the suboperations. Finally the student posted
that result as the answer to the top goal of solving the equation.

At all points there is an option on the current menu called “you do it.” If the
student selects this when an argument or a goal is required, the tutor describes
the argument or goal. If the student selects “you do it” when a result is
required, the tutor will decompose the task of obtaining the results into a set of
substeps unless the result comes from a primitive goal. In this case the tutor
just gives the student the result.

As in the case of the other tutors, the algebra tutor moves the student along
towards a solution. The one thing unique about the algebra tutor is our policy
of decomposing a result calculation into substeps recursively until primitive
steps are reached. Our informal observation is that this seems to be pedagogi-
cally effective in that it enables the tutor and student to determine the locus of
a misconception.

+

2.4. Summary of the tutors

Underlying each of the tutors is an ideal model of how students should solve
the respective problems and a model of how students err. The error model is
used to recognize and remediate errors. The ideal model is used to guide
students along a correct solution path if necessary. This combined use of the
ideal and error model (together called the generic model) is what defines the
model-tracing methodology—the tutor traces out the path the student tries to
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take through the generic model and insists that the student stay on a correct
path.

The major activity of the tutor is monitoring students’ problem solving. We
attempt to create highly interactive interfaces that quickly let the students
know when their solutions deviate from ideal solution behavior and just where
they deviate. This kind of instructional environment has a highly procedural
flavor and contrasts with the more abstract and declarative instruction in some
tutoring efforts (e.g., [22]). This reflects fundamental differences in the nature
of the knowledge to be communicated and how that knowledge is communi-
cated. Our current tutors are focused on helping the procedural component of
learning although we are currently considering extending them to declarative
instruction where we might adopt a methodology more like Collins, Warnock
and Passafuime [22]. '

2.5. Evaluating the model-tracing methodology

A critical issue is whether the model-tracing methodology really works in
improving the learning of the subject domains. A general problem with work in
intelligent tutoring is that it has tended to progress without any empirical
feedback as to whether the proposed mechanisms work. What feedback there
is has been largely anecdotal. We have been able to perform some systematic
tests of the effectiveness of our tutors which we will briefly report here. After
reviewing these evaluations we will discuss issues concerned with why such
summative evaluations are not completely satisfying and we will try to identify
further research directions.

2.5.1. Lisp

The LISP tutor was systematically evaluated in a course we taught in the fall of
1984. A class of 20 students was divided into two groups counterbalanced
according to statistics such as math SATs and prior computing experience. All
students attended the same lectures and did the same problems as homework.
One group of students did these problems with the LISP tutor and the other
group did them in the standard FRANZLISP environment. There was a proctor
available to all students to answer questions. The proctor spent most of his
time with students who lacked the tutor. We estimate that perhaps 5% of these
students’ time was spent with the proctor. Thus, we have a fairly controlled
comparison of a group of students working with the tutor and a group of
students learning in a fairly representative college environment with perhaps a
little more access to human help than is typical.

The LISP curriculum taught by the tutor at that time was a subset of the
curriculum currently taught. It involved the following nine lessons: an intro-
duction to basic LISP functions, defining new functions, conditionals and
predicates, structured programming, input-output, integer-based iteration, in-
teger-based recursion, list-based recursion, and advanced recursion. Figure 15
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Fig. 15. Comparison of time spent per lesson by subjects learning LISP in the tutor and control
groups.

shows the amount of time spent solving the problems in each lesson with and
without the tutor. As can be seen, there is very little difference between the
conditions over the first four lessons. In fact, students take less time without
the tutor on the first two lessons. One reason tutored subjects might spend
more time is that the tutor was somewhat slow—a condition that has been
improved upon in succeeding years. On the other hand, students are taking
more than twice as long without the tutor on the ninth lesson which involves
programming some difficult recursive functions. The basic result seems to be
that the tutor reduces time on tasks where there is considerable difficulty and
search in finding a correct solution. Certainly, subjects in the on-your-own
condition spent a lot of time on lesson 9 trying solutions that they had to
completely abandon.

Students in the class took two paper-and-pencil exams which provide an
assessment of performance outside the learning environment. There was no
difference between the two groups on an exam after lesson 6, but a statistically
significant advantage for the tutored group appeared following the ninth
lesson. Tutored students scored 43% higher on the final exam. All students
were required to do a final project without the tutor which involved writing a
program to solve the waterjug problem. Tutored students received 10% higher
grades, but this did not approach statistical significance.

2.5.2. Geometry

The geometry tutor has been used for two years in a local high school. This
first year (1985-1986) was devoted primarily to observing its reliability in a
classroom setting. The tutor was used throughout the third quarter of the
academic year by four classes. Two of these classes consisted of students who
were in the regular academic track, one class consisted of students placed in
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the “scholars” track on the basis of their high level of performance in past
math courses, and one class of students consisted of students designated
“gifted” on the basis of 1Q scores. The results of this evaluation were very
encouraging. Students were enthusiastic about using the tutor and all three
groups of students showed statistically significant improvement in test scores
between a pre-test and a post-test on geometry proofs. The mean score of the
students in the regular academic track rose from 44 points on the pre-test to 54
points on the post-test (out of a maximum score of 80 on each test). The mean
for the “scholars” track rose from 57 to 63 and the mean for the “gifted” class
rose from 55 to 72 points. About 10 points on this scale corresponded to a
letter grade difference, so average performance increased a minimum of about
a half-grade difference, to as much as a grade and a half across the three
groups, although the differences in degree of improvement across classes is not
significant.

Thus, the initial use of the tutor proved successful, but what is lacking in this
evaluation is an appropriate measure of how well comparable groups of
students would have done without the tutor. So, a controlled comparison of
tutor and non-tutor classes was carried out in the second year. In this
comparison, the same teacher taught five classes which varied in student ability
level and whether the tutor was present or not. We also had the teacher
instruct one class of larger size in which two students worked with each tutor.
In comparisons of classes of similar size and ability, tutored students scored 64
points (out of 80) on the post-test while non-tutored students scored 48 points.
This difference was statistically significant.

We ran a regression analysis of the difference among students on the
post-test using as predictor variables IQ, grade in the prior year’s algebra class,
whether the student used the tutor, and finally, if the tutor was used, whether
there was a 2-1 ratio of students to tutors. There were significant effects of
algebra grade, tutor and student-tutor ratio. Students scored an average of 7
points higher on the post-test with each higher algebra grade, 14 points higher
if they used the tutor, but 10 points lower if they were in a 2-1 ratio of students
to tutors. This indicates that the tutor has the same predictive impact as a
two-letter grade difference in algebra. It also indicates that the tailoring of
instruction for a particular student is important.

2.5.3. Algebra

Our evaluation of the algebra tutor is more preliminary since we have been
using it in laboratory situations only and have not introduced it in the
classroom. So far we only have evidence that it produces learning. That is to
say, all students who work with it know more about algebra than before they
started. We have no evidence that it is better than comparable time spent
without the tutor. We hope to address this question in a classroom test in the
1987-1988 school year.
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It is a fair summary of this evaluation research to say that our tutors do help.
This is a far from obvious outcome. When we started out it was a radical
proposal to assert that we could get students to improve their performance by
forcing them to follow the steps of our cognitive models. Clearly, if our
cognitive models did not have some substantial truth to them, we would have
failed miserably. Thus, this positive evaluation outcome is general support for
our theoretical position.

Nonetheless, it is hardly satisfactory evidence. We do not really know what
features of our tutors produced these positive outcomes nor do we know how
optimal our tutors are. The LISP and geometry tutors produce an improvement
of about one standard deviation in classroom performance, whereas human
tutors are known to produce an improvement of two standard deviations [16].
It is unclear whether performance of human tutors is achievable by computer
tutors. Some of the benefit of human tutors might be due to affective reactions
to human interaction. In addition, some of the benefits may depend on an
ability to process natural language questions and answers that exceed the level
that is practically obtainable in computer tutors. On the other hand, there is no
reason to believe that human-tutor performance defines an upper bound since
humans almost certainly are not always optimal in their decisions. The basic
point is that we need to begin to do systematic studies of design variations on
our tutors to determine which features of the tutor are critical to our positive
results, which are neutral, and which may be preventing us from achieving
even more positive results. Such research would also be more illuminating with
respect to the underlying theoretical issues. We are just embarking on such a
program of research.

3. Implementing the Model-Tracing Methodology

A major prerequisite to implementing a model-tracing tutor is to create all the
production rules that will be involved in the tracing. A significant subtask here
is adding an adequate set of buggy rules to the student model in order to be
able to account for the errors we see. In our experience the best we have been
able to do is to account for about 80% of the errors—the remaining being just
too infrequent and too removed from the correct answer to yield to any
analysis. One approach to coding the systematic errors has been simply to
observe the errors students make with our tutor, try to understand their origin,
and code the inferred buggy productions one by one into the system. In more
recent work such as in our algebra tutor we are trying to generate these errors
on a principled basis in a fashion similar to the notable work on subtraction
[17,19] and on algebra [31]. For instance, a frequent source of errors in
algebra is forgetting to perform a necessary substep in the calculation.

Given a production set which can model the range of behaviors we see in our
students, our tutor design then can be decomposed into three largely indepen-
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dent modules. There is the student module which can trace the student’s
behavior through its nondeterministic set of production rules. There is the
pedagogical module which embodies the rules for interacting with the student,
for problem selection, and for updating the student model. The separation
between student module and pedagogical module is similar to the separation of
instruction from the expert system in a number of tutoring systems, including
those of Brown, Burton, and de Kleer [18] and Clancey [21]. Finally, there is
the interface which has the responsibility of interacting with the student. As a
software engineering issue, these three components can be developed separ-
ately with the pedagogical module taking responsibility for controlling the
interaction among the three modules—getting interpretations and predictions
from the student module and making requests to the interface to present
information to the student or to get information from the student. While each
module is complex, dividing a major software project into three independent
components is a big step in the direction of tractability. Much of the sub-
sequent discussion will be organized around issues involving each of the
components.

3.1. The student module

The basic responsibility of the student module is to deliver to the pedagogical
module an interpretation of a piece of behavior in terms of the various
sequences of production rules that might have produced that piece of behavior.
The obvious methodology for doing this is to run our nondeterministic student
model forward and see what paths produce matching behavior. While there are
complexities and efficiencies that have been added to this basic insight this is
the core idea. The rest of the discussion of the student model is concerned with
issues raised in trying to implement this core idea.

3.1.1. Nondeterminacy

Nondeterminacy in the production sequence is a major source of problems in
implementing the model-tracing methodology. We face nondeterminacy
whenever multiple productions in the student module produce the same
output. (For instance, in the algebra tutor the student says he wants to apply
distribution, and there are multiple possible distributions in the equation.) A
special case of this is when productions produce no overt output as when a
student is doing some mental calculating or planning. What to do in the case of
such planning nondeterminacy is an interesting question. The set of potential
paths can explode exponentially as the simulation goes through unseen steps of
cognition. Also, the potential for actually effectively tutoring these steps is
weakened the greater the distance between the mental mistake and the
feedback on that decision. Therefore, one is naturally tempted to query the
student as to what he is thinking—that is, to force an association of some
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output with the mental steps. On the other hand, it is difficult to design an
interface which can trace planning in a way that does not put an undue burden
on the student. Students often resent even giving vocalized answers to the
question “‘what are you thinking about” and there is reason to believe such
simultaneous report generation may interfere with the problem solving [25].
The sample LISP tutor interaction that we traced earlier, in which the student
and tutor work through a recursive plan for factorial is one instance of our
effort at plan tracing. While we have some evidence that such interactions
help, students report that they do not like being slowed down by having to go
through such interactions.

Another example of the problem created by nondetermmacy is that mis-
understandings and slips can often produce the identical behavior. For in-
stance, students can confuse CONS and LIST in programming either because
they really do not understand the difference or as a result of a momentary
lapse [11]. The student model must be capable of delivering both interpreta-
tions to the tutor, leaving to the tutor the task of assessing the relative
probability of the two interpretations and deciding what remedial action should
be taken.

3.1.2. Production system efficiency

A major complication we face when we try to trace a student’s problem solving
is that running a production system in real time can create serious problems.
Students will not sit still as a system muddles for minutes trying to figure out
what the student is doing. They will not pace their problem solving to assist the
diagnosis program. Interestingly, our observation has been that human tutors
have problems with real-time diagnosis and one of the dimensions on which
human tutors become better with experience is real-time diagnosis.

Production systems, for all their advantages, are by and large not the fastest
way to solve problems. The inherent computational problems of production
systems are exacerbated in tutoring for a number of reasons:

(1) The grain size of modeling is often smaller than would be necessary in
expert system applications, and the complexity of the production patterns
required to expose the source of student confusions is often considerable.

(2) The system has to consider enough productions at any point to be able
to recognize all next steps that a student might produce. This contrasts with
many applications where it is sufficient to find a production that will generate a
single next step.

(3) Often it is not clear which of a number of solution paths a student is on
and the production system has to be used nondeterministically to enable a
number of paths to be traced until disambiguating information is encountered.

The production systems we have produced have all involved variations on
the RETE algorithm developed by Forgy [26] for pattern matching which has
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supported many of the OPS line of production systems. However, we have not
had good success with simply using OPS as our expert system because the
pattern matching for each domain has special constraints upon which we have
had to try to optimize. Anderson, Boyle and Yost [8] discuss this issue for the
domain of geometry.

A major issue in designing the pattern matcher for a domain is to decide how
much detail of the actual problem should be represented. For instance, if one is
developing an algebra tutor it is useful to have different representations for the
following two expressions during the early stages of teaching factoring:

2AB +4A,
2BA+4A.

There is evidence that the first expression can be more easily factored into
2A(B +2) than can the second expression: Commutativity of multiplication is
not automatic in many students, and the common factor of 2A might not be
seen in the second expression above. On the other hand, when we look at
students who have mastered algebra and are learning calculus, it is no longer
necessary to represent the distinction between these two forms. This means
that in calculus we can use certain ““canonicalizations” that simplify the pattern
matching and reduce the number of productions.

The computational cost associated with implementing such production sys-
tems has a space as well as a time dimension. The number of productions can
be on the order of thousands to tutor a domain and the RETE algorithm can be
space expensive storing partial products of pattern matching.

Of course, it is an open question just how efficient in time and space we can
make our production system implementations. In their current form they are
just within the threshold of acceptability, which is to say students are barely
satisfied with the performance of a machine like a Dandetiger with over three
megabytes of memory. However, there are reasons for us not to be satisfied
with this performance. In the first place such machines are still a good deal
beyond the range of economic feasibility. Secondly, efficiency issues impact on
the range of topics we handle. This manifests itself in a number of ways:

(1) Problems tend to become more costly as they become larger even if the
larger problems involve the same underlying knowledge. This is because
production system working memory tends to increase, as does the nondeter-
minism. Therefore, there is an artificial size limit on the problems we tutor
students on.

(2) Progress into more advanced topics is as much limited by dealing with
the added computational burden posed by these topics as with adequately
understanding and modeling the domain.

(3) The actual tutoring interactions become limited by the need to reduce
nondeterminacy. For instance, some of our tutors force a particular interpreta-
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tion of the student’s behavior on the student, rather than waiting until the
student generates enough of the solution to eliminate the ambiguity.

3.2. Compiling the model tracing

If one looks at all possible sequences of productions that can be generated in
any of our models, one finds that it defines a problem space of finite
cardinality. That cardinality can be quite large, but often simply because we
are looking at different permutations of independent or nearly independent
steps in a problem solution. This suggests that if we are clever in our
representation of the problem space we need not dynamically simulate the
student in order to interpret him. Rather, we can generate the problem space
beforehand and just use the student’s behavior during problem solving to trace
through this pre-completed problem space. Given the cost of real-time simula-
tion with a production system, this seems that it might be a worthwhile step. In
one case, we obtained a 50% performance improvement in our LISP tutor by a
partial implementation of this step. In a major project just completed, we used
this technique to transfer the geometry tutor from the Dandetiger to the
Macintosh and got a significant improvement in performance.

There are other advantages to having the complete problem space compiled
in advance of the actual tutoring session. This makes it easy for the tutor to
look ahead and see where a step in the problem solution will lead. Often in a
proof tutor, a production rule will be favored by the ideal model but in fact not
lead to a solution. For instance, there are geometry problems where even
experts make certain inferences which do not end up as part of the final proof.
It is the sort of heuristic inference which is successful nine times out of ten but
is not useful one time in ten. If the tutor recommended dead-end steps just
because the ideal model makes them, the student would quickly loose faith in
the tutor. Human tutors also tend to look ahead to make sure that their
recommendations lead somewhere.

3.3. The pedagogical module

One interesting observation about our overall tutoring framework is that it is
possible to decouple the pedagogical strategy from the domain knowledge.”
Domain knowledge resides in both the student model and the interface. It is
the pedagogical module that relates the two and which controls the interaction.
This module does not really require any domain expertise built into it. It is
concerned with (1) what productions can apply in the student model, not the
internal semantics of the productions; (2) what responses the student generates
and whether these responses match what the productions would generate, not

% This point was demonstrated much earlier in GUIDON (Clancey [21]). Our tutoring rules were
much influenced by the Clancey GUIDON rules.
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what these responses mean; and (3) what tutorial dialogue templates are
attached to the productions, not what these dialogues mean.

We are in fact working on a new PUPS-based tutor [12] which is a limited
realization of this idea. It is concerned with tutoring three programming
languages—LISP, PASCAL, and PROLOG. We hope to build student models for
different programming domains independent of tutoring strategy and to build
different tutors to implement variations on tutoring strategy independent of
domain. Specific tutors can be generated by crossing the tutorial module with
the domain module without tuning one to another.

There are theoretical reasons for believing that we can create domain-free
tutoring strategies and that the optimal tutoring strategy will be domain-free.
Our theory of human skill acquisition leads us to believe that the basic learning
principles are domain-free. The optimal tutoring strategy would simply optim-
ize the functioning of these learning principles.

However, in our current running systems we have built a separate tutor for
each domain. While it is not the case that the tutoring strategies they
implement are identical, they are quite similar and we have claimed publicly
that they are attempts to embody a strategy based on the ACT learning theory
[7]. 1t is useful to identify what the features of the common tutoring strategy
are and what the variations on the strategy could be. It will become clear that,
when we look at any dimension of tutoring, there are conflicting considerations
as to what the optimal choice should be.

3.3.1. Immediacy of feedback

The policy on immediacy of feedback is well illustrated by the LISP tutor. The
LISP tutor insists that the student stay on a correct path and immediately flags
errors. This minimizes problems of indeterminacy. There are a number of
reasons for desiring immediacy of feedback besides this technical one. First,
there is psychological evidence that feedback on an error is effective to the
degree that it is given in close proximity to the error [14, 29]. The basic reason
for this is that it is easier for the student to analyze the mental state that led to
the error and make appropriate correction. Second, immediate feedback
makes learning more efficient because it avoids long episodes in which the
student stumbles through incorrect solutions. Third, it tends to avoid the
extreme frustration that builds up as the student struggles unsuccessfully in an
error state.

However, we have discovered a number of problems with the use of
immediate feedback:

(a) The feedback has to be carefully designed to force the student to think.
If at all possible, the feedback should be such that the student is forced to
calculate the correct answer rather than just being given the answer [14]. It is
important to learning that the student go through the thought processes that
generate the answer rather than copy the answer from the feedback.
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(b) Sometimes students would have noticed the error and corrected it if we
just gave them a little more time. Self-correction is preferable when it would
happen spontaneously. As we know, people tend to remember better what
they generate themselves [4, Chapter 5].

(c) Students can find immediate correction annoying. This is particularly
true of more experienced students. Thus, novice programmers generally liked
the immediate feedback feature of our LISP tutor whereas experienced pro-
grammers did not. While our goal is not to produce positive affective response,
it probably does have some impact on learning outcome.

(d) Often it is difficult to explain why a student’s choice is wrong at the point
at which the error is first manifested because there is not enough context. To
consider a simple example, compare a student who is going to generate
(append (list x) y) where (cons x y) is better. It is much easier to explain the
choice after the complete code has been generated rather than after *“(append”
has been typed.

There is no reason why the model-tracing paradigm commits us to immediate
feedback, although as noted there are psychological reasons for choosing it.
One of the variations we would like to explore in the LISP tutor is a system that
gives feedback after “complete” expressions like (append (list x) y). This will
give the student some opportunity for self-correction and also provide a larger
context for instruction. On the other hand the distance between error and
feedback will still be limited. For more discussion of the different feedback
options in the LISP tutor see [23].

3.3.2. Sensitivity to student history

By and large the only student model we use is our generic model which is a
composite of all correct and incorrect moves that a student can make. At each
point’ in time we are prepared to process all the production rules that we have
seen any student use, correct or buggy. If students make an error we give the
same feedback independent of their history. The only place we show sensitivity
to student history is in presenting remedial problems to students who are
having difficulties. It is relatively easy to implement a generic student model,
and the question is whether there is any reason to go through the complexity of
tailoring the model to the student.

There is one aspect of this generic student model which derives from our
theory of skill acquisition and another aspect which does not. The aspect that is
theoretically justified is the belief that there are not different types of students
who will find different aspects of a problem differentially hard. That is, our
theory does not expect individual differences or traits in learning, beyond some
overall difference in ability or motivation. The theory implies that all people
learn in basically the same way. Of course, it is an open question whether there
is empirical evidence for the theory on this score. In our own research it does
appear that students differ only in a single dimension of how well they learn
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[6]. Despite valiant searches we have yet to find evidence that one set of
productions cluster together as difficult for one group of students while a
different cluster of productions are difficult for another group of students.

The aspect of a generic model that does not derive from the theory is the
assumption that past history of use with a rule implies nothing about the
interpretation of a current error. We have evidence that different subjects
continue to have trouble with specific different rules. (This is to be contrasted
with a trait view that says there is a nonsingleton set of productions that a
number of subjects will have difficulty with.) If the student has had a past
history of success on a rule it is more likely that error reflects a slip, rather than
some fundamental misunderstanding. Currently, our tutors treat all errors as if
they reflected fundamental misconceptions and offers detailed explanation, but
the better response sometimes would be simply to point the error out.

3.3.3. Problem sequence

The existing tutors implement a mastery model for controlling the selection of
problems to present to the student. They maintain an assessment of the
student’s performance on various rules and have knowledge of what problems
exercise what rules. The tutors will not let the student move on to problems
involving new rules until the student is above a threshold of competence on the
current rules. If the student has not demonstrated mastery, the tutor will select
additional problems from the current set which exercise rules on which the
student is weak.

While such a mastery policy for problem sequence may seem reasonable and
there is evidence in the educational literature for its effectiveness [16], it is
interesting to inquire as to its underlying psychological rationalization. Why
not go onto new problems while the student is weak on current knowledge and
teach both the new knowledge and the old weak knowledge in the context of
the new problems? Fundamentally, the mastery policy rests on a belief in an
optimal learning load—that if we overload a student with too many things to
learn, he will learn none of them well. On the other hand, students are
advanced to new material at some point when further training on the old
material could have improved their performance even more. So there is a
countervailing assumption about diminishing returns—that at some point the
gain in improving performance on old rules is not equal to gain in learning new
rules.

Our choice about exactly where to set the mastery level has been entirely ad
hoc. In the ACT and PUPS theories working-memory load affects learning and
problems pose less load as they become better learned. However, these
processes are not specified in a way that enables us to define an optimal next
problem. The issue of problem sequence and mastery levels remains to be
worked out in a model-tracing paradigm.
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3.3.4. Declarative instruction

A student’s first introduction to the knowledge required to solve a class of
problems is typically not from the tutor; rather it is declarative instruction
typically provided in a texbook or lecture. How should this declarative
instruction be formulated to make it maximally helpful in learning the skill?
Given our analysis of learning by analogy, instruction should take the form of
examples appropriate for mapping into problem solutions. Given our PUPS
structures, it is not enough that the student simply have the form slots of these
structures properly represented; it is critical for successful learning that the
student have properly represented the function of these structures and any
prerequisites to these structures achieving their functions. For example, Pirolli
and Anderson [33] showed that, while all students learn recursive programming
by analogy to existing programs, what determines how well they learn is how
well they represent how these programs achieve their function. Basically,
students often understand an example only superficially and thus emerge from
analogy with mischaracterizations of the range of problems for which the
structures in the example are appropriate.

In our efforts to create textual instruction to go along with our tutors, we
have focused on the issue of giving good examples for purposes of mapping and
trying to assure that the student achieves the right encoding of the example.
Indeed, we have produced a LISP textbook [9] which consists mainly of
carefully crafted examples with explanation aimed at promoting the right
encoding. However, what is missing is interactive instruction to assure that the
students have encoded the example correctly.

3.4. The interface

One might have thought that the discussion to this point would complete the
description of our tutoring systems. We have stated how a tutor models a
student and how it uses that model to achieve pedagogical goals. However, the
discussion is abstract and leaves completely unspecified what the student
actually experiences, which is the computer interface. We have learned that
design of the interface can make or break the effectiveness of the tutor. Below
are just a few examples:

(1) Early in the history of the LISP tutor we had a system in which the
student entered code in a buffer and then dispatched the contents of that buffer
to appear in a code window. Students get confused with the system because
they were frequently working on one goal while the tutor was processing a
different goal. We changed this to a system where one typed the new code right
into the old code and these confusions disappeared.

(2) An early version of the algebra tutor had a system in which students
entered a next equation, the tutor figured out what steps they engaged in, and
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tried to give appropriate feedback and point them back to the right track. The
problem was that the students’ error might well have occurred at some
intermediate step that the students were no longer fixated upon (e.g., adding
two fractions in the course of moving a number across the equation sign). It
was very difficult to communicate to the student what the problem was. We
introduced the system described earlier in this paper in which the student
actually stepped through the microsteps of the transformation in a relatively
painless way with the system. The tutor could flag the errors as they occurred
and these miscommunications disappeared.

(3) We used to have our students type in geometry statements through a
typical keyboard. Given the rather special syntax of geometry statements,
students would often enter basically correct statements in syntactically incor-
rect form. After entering a syntactically incorrect statement, the system would
tell them it could not understand what they meant. This response by the system
often caused them to doubt their understanding of the problem. To remedy
this we introduced a real-time parser which flagged them as soon as they
entered a character which would make their expression syntactically illegal.
Again our difficulties disappeared.

(4) The graphical structure we use to represent geometry statements (Figs.
4-8) seems to be the key to enabling students to understand the structure of a
proof even though it is essentially isomorphic in logical structure to a linear
proof. The graphical structures make explicit the logical relationships students
would have to infer.

(5) In all of our tutors it seems critical to spend considerable time fashioning
the English to make it as brief and as understandable as possible. If students
face great masses of hard-to-understand prose, they will simply not process the
message. :

" (6) Performance on the LISP tutor seemed to improve when we introduced a
facility to bring up the problem statement at any point in time, and when there
is room on the screen, the problem statement is now automatically displayed.
Performance in the geometry tutor seemed to improve when we introduced a
facility for bringing up statements of geometry postulates at will.

(7) One of the major disadvantages of all of our tutors compared to human
tutors is that, at least so far, they use only the visual medium. This means that
students must move their eyes from the problem to process the textual
instruction. In contrast, with a human tutor, the student can listen to the tutor
while continuing to look at the problem and even have parts of the problem
emphasized through the tutor’s pointing.

These observations illustrate two general points about interface design for
tutors:

(a) Itis important to have a system that makes it clear to a student where he



o g

COGNITIVE MODELING AND INTELLIGENT TUTORING 43

or she is in the problem solution and where their errors are (observations
(1)-3))-

(b) It is important to minimize working memory and processing load
involved in the problem solving (observations (4)-(7)).

While one wants an interface with these properties, it is important that the
interface itself be easy to learn and use. One does not want the task of dealing
with the interface to come to dominate learning the subject material. An easy
interface is one that minimizes the number of things to be learned and
minimizes the number of actions (e.g., keystrokes, mouseclicks) that the
student has to perform to communicate to the tutor. Its learnability is
enhanced if it is as congruent with past experience as possible. It should also
have a structure that is as congruent as possible with the problem structure.
Finally, the actions should be as internally consistent as possible.

So there are clearly an important set of criteria that our tutoring efforts place
on interface design. The problem is that criteria like “minimize working-
memory load” or “make learning the interface easy” are not generative. To
date we have dealt with interface design on an intuitive basis and on a trial and
error basis. We are always left to wonder whether there is some new insight
about interface design that would dramatically enhance the achievement gains
displayed by a particular tutor.

4. Conclusions

What we have described is a theoretical framework for our tutoring work and
some experiences based on that framework. Both the tutors and the tuco:y are
evolving objects and so it is not the case that the current embodiments of our
tutors reflect all of the current insights of our theory. Still there is an
approximation here and it is worthwhile to ask to what degree our tutoring
experience confirmed the theory.

The first observation is that students do seem to learn from the tutors. We
think this is quite a remarkable fact and not something that we had really
believed would work so well when we set out to build these tutors. We have
taken cognitive models of the information processing, embedded them in
instructional systems, and nothing has fallen apart. They can embody substan-
tial amounts of material, can be developed in feasible time, run within
acceptable bounds of efficiency, and are robust in their behavior. The evalua-
tions of the tutor clearly indicate that they are better than standard classroom
instruction. This feasibility demonstration gives some credence to the general
theoretical framework in which the tutors were built.

It is worth noting here that conventional computer-based instruction usually
produces less than half of a standard deviation of improvement [15, 28]. Such
instruction involves handcrafted interactions with the student in contrast to our
tutors in which the interactions are generated from general principles.
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It is a separate question of whether the students behave and learn with the
tutors as the theory would predict. This is a difficult question to assess because
the theory is probabilistic and does not specify in advance values such as the
probability of encoding a production; rather these probabilities must be
estimated from the data. It is also difficult because the theory only makes
predictions given students’ encodings of the instruction and of the problem,
and students clearly vary in how they encode this information. Nonetheless,
what analyses we have done do seem to confirm the theory. Figure 16 presents
an analysis of some data from the LISP tutor that monitors time to type in units
of code that correspond to the firing of individual productions. So for instance
typing “(cons” corresponds to the firing of a production that recognizes the
applicability of the CONS function. We have plotted average times associated
with the firing of productions learned in lessons 2, 3, and 5 as a function of the
number of times students used the production in the lesson. What these times
correspond to psychologically is somewhat complex because they include a lot
of low-level interactions with the tutor. However, they should reflect the
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Fig. 16. Plot of learning data from the LISP tutor. Time to code the LISP symbols that are
introduced in the first three lessons is plotted as a function of practice. The coding of one of these
symbols corresponds to the firing of a production in the student model.
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learning of the production or productions associated with the execution of the
code. These learning curves have just the shape we would predict. There is a
big drop in coding time from first application of a production to second as the
knowledge is compiled into production form and a gradual speedup after that
as the production rules become strengthened.

Another observation is that the knowledge acquired does seem to have the
expected range of application. For instance, in the geometry tutor students are
able to apply new combinations of the inference rules that they have learned to
solve a new problem as long as the contextual heuristics that recommend the
application of these rules are ones they have already encountered. On the
other hand if they are presented with a problem that can be solved by the
knowledge which they have been taught, but which requires applying a new
contextual heuristic to see the applicability of that rule, students experience
great difficulty.

Appendix A

Define the function fact. It takes a number argument, n and computes the
factorial of n, which is the result of multiplyingn Xn—1Xn—2X--- X 1. For
instance, (fact 3) =3 X2 x 1= 6. By definition, the factorial of 0 is 1.

(1) (defun fact (n)
(cond ((equal) { ACTION))
{RECURSIVE-CASE)))

I assume that you are trying to test if the number argument is equal to the
number zero. There is a special function for testing equivalence to zero.
Try to use that function instead of EQUAL.

What code can you write to test if the condition for terminating case is
true? Try writing a predicate.

(2) (defun fact (n)
(cond ((zero { ACTION))
(RECURSIVE-CASE)))

Did you mean zerop (y or n)? y

(3) (defun fact (n)
(cond ((zerop n) 1)
(RECURSIVE-CASE)))

Is the value of fact in the recursive cases calculated by:

PRESS: IF YOU WANT TO:
1 calling fact recursively with n
2 multiplying n by fact of n minus 1
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3 getting 12...n and then multiply the results
4 have the tutor choose

Menu choice: 3

That is a reasonable way to think of doing factorials but it is not a plan for
a recursive function. Since you seem to be having trouble with the
recursive cases let us work through some examples and figure out the
conditions and actions for each of these cases.

The recursive relationship is the relationship between fact called with n
and fact called with:

PRESS: IF YOU WANT TO:

1 n minus 1

2 n equal to 0

3 n plus 1

4 have the tutor choose

Menu choice: 1

We will consider some concrete examples. We will characterize the recur-
sive relationship between fact called with 1 and fact called with 0.

What is the value of (fact 1)?
Answer: 1

What is the value of (fact 0)?
Answer: 1

EXAMPLES
fact (n) fact (n—1)
A. (fact1)=1 (fact0)=1

We will consider some more concrete examples. We will characterize the
recursive relationship between fact called with 3 and fact called with 2.

What is the value of (fact 3)?
Answer: 6

What is the value of (fact 2)?
Answer: 2

EXAMPLES
fact (n) fact (n—1)
A. (fact1)=1 (fact0)=1
B. (fact 3) =6 (fact2)=2
Since there is only one recursive case characterized by the examples you

have just worked out, the condition in this case can be just coded as T. We
will just focus on characterizing the action in this case.
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In examples A and B what do you have to do to get the result of fact
called with n?

PRESS: IF YOU WANT TO:

1 multiply n by one less than n

2 multiply n by fact of one less than n

3 add n to the result of fact called with one less than n
4 have the tutor choose

Menu choice: 2

We have now worked through a series of examples that illustrate the
recursive relation.

We will now return to the goal of trying to produce LISP code that specifies
the recursive relation.

(4) (defun fact (n)
(cond ((zerop n) 1)
(t (fact ))))

You will have to use fact at some point but right now you want to multiply.

(5) (defun fact (n)
(cond ((zerop n) 1)
(¢ (times n (fact n)))))

You cannot just code n at this point. What you want to do is subtract one
from n.

(6) (defun fact (n)
+ (cond ((zerop n) 1)
(t (times n ( fact (difference ))))))

Difference would work in this case but it is more appropriate to use the
function subl when you are subtracting 1 from a number.

(7) (defun fact (n)
(cond ((zerop n) 1)
(t (times n ( fact (subl n))))))

— YOU ARE DONE. TYPE NEXT TO GO ON AFTER —
— TESTING THE FUNCTIONS YOU HAVE DEFINED —

THE LISP WINDOW

= (trace fact)
(fact)

> (fact 3)

1 (Enter) fact (3)
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2 (Enter) fact (2)
3 (Enter) fact (1)
4 (Enter) fact (0)
4 (EXIT) fact 1
3 (EXIT) fact 1
(EXIT) fact 2

1 (EXIT) fact 6

6
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