9

Use of analogy in a production
system architecture

JOHN R. ANDERSON and ROSS THOMPSON

Introduction

This is a report on our development of analogy within a production
system architecture. A couple of years ago we became persuaded that
analogical problem solving was fundamental in the skill acquisition
domains we were studying: programming and mathematical problem
solving. Students were always resorting to examples from their text-
books or to examples from more familiar domains for solving these
problems. We did a number of simulations of this problem solving
within the ACT* architecture (Anderson, Farrell, & Sauers, 1984;
Anderson, Pirolli, & Farrell, 1988; Pirolli & Anderson, 1985). How-
ever, the process of simulating this was awkward within that archi-
tecture. It was also ad hoc in the sense that the architecture offered
no explanation as to why students were using analogy as their primary
problem-solving method. This led us down the path of thinking about
how analogy takes place and how it fits into a production system
architecture. This is the first report of the new system that we have
developed in response to these ruminations.

The term analogy is used in multiple senses. We are concerned with
how analogy is involved in problem solving and in skill acquisition.
That is, how do people call up an analogous experience to help them
solve new problems? This experience can come from their own past
(when analogy is sometimes called repetition), it might come from
looking at the behavior of another (in which case it is sometimes called
imitation), or it might come from adapting an example given in a
textbook or some other expository medium (in which case it is some-
times called copying). The source for the analogy can be either an
explicit experience or a generic or schemalike representation. It also
might be from the “same” domain as the problem or from a different
domain. It may involve generating a solution to a problem or under-
standing a solution. This range of phenomena has not always been

267

L e

2 I e R R RS

268 JOHN R. ANDERSON AND ROSS THOMPSON

organized as a single psychological kind. However, they flow from a
single mechanism in our theory.

Our mechanism does not address the more literary or mnemonic
uses of analogy. For instance, we have nothing to say about the typical
use of the solar system to understand the atom. The typical uses of
that analogy do not involve any problem solving in our analysis. This
is not to say that these are not interesting psychological issues; it is
just to define the domain of reference for our chapter.

Our analysis of problem solving sees knowledge organized into
function and form. Generating a solution involves producing a form
that will achieve a desired function. Understanding a problem solution
involves assigning a function to an observed form. Analogy is a mech-
anism for achieving the function—form relationships in domains
where one has not yet acquired skills for doing so. Skill acquisition
involves acquiring productions that circumvent the need to go
through the analogy mechanism.

In this chapter we will first describe our knowledge representation,
which is factored into a function—form structure. Next we will describe
how the analogy process operates on this to fill in missing function
and form. Then we will discuss the knowledge compilation process,
which operates on the trace of an analogy process to produce new
productions (i.e., acquire skill). Finally, we will discuss some issues
associated with placing this process into a more general framework
of skill acquisition. Before doing any of this, however, we would like
to explain a little about the PUPS production system in which the
analogy mechanism is implemented.

The PUPS architecture

PUPS (for PenUltimate Production System) is intended as an imple-
mentation of the theoretical successor to the ACT* theory (Anderson,
1983). This new theory does not yet really exist. We are working on
this production system as a means of developing that theory. There-
fore, the extent of the difference between the PUPS-based theory and
its ACT* predecessor is not clear. Nevertheless, there are a series of
problems with the ACT* theory that PUPS intended to remedy.

1. The flow of control in ACT* was implemented by means of a
goal stack that yielded top-down, fixed-order traversal of goals. There
were two basic problems with this: (a) People can be more flexible in
their flow of control. For instance, as Van Lehn (1983) has noted,
children doing multicolumn subtraction problems will shift oppor-
tunistically among the preferred right-to-left processing of columns,

Analogy in a production system architecture 269

to a left-to-right processing of columns, to an inside-out processing.
Such flexibility is the rule rather than the exception when we watch
geometry students develop proofs. (b) The ACT* theory leads to
unreasonable expectations about people’s ability to remember goals.
It also does not predict the fact that people do much better at re-
membering goals when there is a concrete residue of their problem
solving such as marks on a page than when they must solve these
problems entirely in their heads. The solution to both of these prob-
lems is to abandon the use of goal stacks as separate control structures
and let the problem solution itself hold the goals. This ties memory
for solution to memory for pending goals as it appears to be. It also
makes goals declarative structures and so permits greater flexibility
in selection of the goal to follow.

2. In ACT*, generalization and discrimination were automatic pro-
cesses calculated by the architecture on productions. As a conse-
quence, they were not open to inspection or conscious control. In
contrast, it is argued (Anderson, 1986) that people have some access
and control over their induction. As we shall see when we discuss
analogy and skill acquisition, the new architecture of PUPS enables
this less automatic sort of skill induction.

3. Analogy itself was cumbersome to calculate in ACT* because
there were not the right representational or processing primitives. In
contrast, in every domain of skill acquisition we studied, we found
that analogy was the prime mechanism by which students learned to
solve new problems. Therefore, it seemed that the architecture had
to be reconfigured to permit more natural computation of analogy.

PUPS knowledge representation

Our theory is built around certain assumptions about the organization
of knowledge. The basic assumption is that knowledge is represented
in schemalike structures. The three obligatory slots for such a struc-
ture are a category (isa) slot that specifies the category of which the
structure is an instance, a function slot that specifies what function
the structure fulfills, and a form slot that specifies the form of the

structure. Below is our representation of the LISP function call (+ 2
3):

structurel
isa: function-call
function: (add 2 3)
form: (list + 2 3)
context: LISP
medium: CRT-screen
precondition: context: LISP

270 JOHN R. ANDERSON AND ROSS THOMPSON

medium: CRT-screen
precondition: context: LISP

This asserts that this is a function call, its function is to add 2 and
3, and its form is literally a list of a +, followed by a 2, followed by
a 3. Note there are three optional slots for this structure. The first
asserts that this function call is being used in the context of LISP, the
second asserts that this is being entered on a CRT screen, and the
third asserts that it is critical that the context be LISP for the form
to achieve the specified function. Entering this form in other pro-
gramming languages would not have this effect. On the other hand,
the medium is an accidental property of this example and so is not
listed as a prerequisite.

The function, form, and prerequisite slots have a certain implica-
tional semantics, which it is useful to set forth at the outset. This
implicational semantics is that the form and the prerequisites imply
the function.

We can represent this as

(list + 2 3) & context (LISP) — (add 2 3)

As we shall see, analogy creates function and form slots that plausibly
create such implications.

There are two complications that greatly enhance the expressive
power of our knowledge representation. One is that a structure can
serve multiple functions and so have multiple values in its function
slot. The second is that one structure can be embedded in another.
Consider the following structures that represent the LISP code:

(cons (cadr lis) (cons (car lis) (cddr lis)))

structure?2
isa: function-call
function: (reverse eleml elem2)
(insert elem?2 lis2)
(find lis1)

form: (list cons structure3 structure4)

structure3
isa: function-call
function: (extract-second lis)
(find elem?2)
form: (list cadr lis)

structure4
isa: function-call
function: (insert elem1 list3)
(find lis2)
form: (list cons structureb structure6)

\;&e@ in a production system architecture

structureb
isa: function-call
function: (extract-first lis)
(find eleml)
form: (list cadr lis)

structure6
isa: function-call
function: (extract-second-tail lis)
(find lis3)
form: (list cddr lis)

eleml
isa: element
function: (first lis)
(first lis2)
(second lis1)
(value-of structureb)

elem?2
isa: element
function: (second lis)
(first lisl)
(value-of structure3)

lis3
isa: list
function: (second-tail lis)
(second-tail lis1)
(first-tail lis2)
(value-of structure6)
lis2
isa: list
function: (value-of structure4)
(first-tail lisl)
lis1
isa: list
function: (value-of structure2)

271

This is a fairly elaborate representation of this little piece of LISP
code, and we do not mean to imply that all LISP programmers always
have as rich a representation. However, we will see that success in
Problem solving can turn on the richness and correctness of such
structure representations.

Analogy

4.._.96 are number of distinct cases of analogy that need to be con-
sidered. The one that is most basic in our work is the filling in of a

AR LT

e

272 JOHN R. ANDERSON AND ROSS THOMPSON

missing form slot in a structure that has a filled-in function slot, F.
example, consider the structures below: e

structurex
isa: function—call

function: (extract-first (a b c))
form: ???

structurey
isa: function-call
m::aao.sn (extract-first (p q r s))
form (list car ’(p qrs))

M_“s:&:ﬁax mvo<o.=wm a functional specification that it gets the first
¢ MB@E of the list (a b a.v. but there is no form specification. This is
u=H< qM.M m”,v_.mmo:a a ,wmom_ in PUPS - a structure with a filled-in function
g torm. Structyrey is a structure with i
. a form
achieves an analogous goal. pled in tha

The analogy we solve to fill in the form slot is the following:
function(structurey) : form(structurey) :: function(structurex) : ???
or
(extract-first (pqrs)):(list car ‘(pqrs)):: (extract-first (a bc)): ???

The solution of course is to 1 ’ i

of put (list car ’(a b ¢)) in the form slot of
structurex. This is produced by creating the following mapping be-
tween elements of the form slot of the two structures:

list — list
car — car

; e
(pqrs) —(abc)

Three of these elements map onto themselves
correspondence established between the m::naw%.“w&oﬂ_ M:MH”MM MMMM
tures. The first element in the form slot (list, in this case) is always
special and maps onto itself. The symbols car and ’ are mapped onto
:ﬁamn_ﬁm and (p q r 5) is mapped onto (a b ¢). Momentarily, we will
oxv_m:.. how we decide which symbols can be mapped to ﬁrﬁamn_ém
and which must be mapped onto new symbols from the target domain.
The mappings are obtained from the function slots. For an analogy
to be nozm_an.aaa successful the first elements in the two function slots
(extract-first, in this case) must correspond. The remaining elements

are put into correspondence (just rs)and (a b ¢) in thi d
are available for the mapping in :A.\Mm.:w_om* a0 this case) an

Analogy in a production system architecture 273

It is worthwhile to identify the inductive inference that is contained
in this analogy. Going back to our implicational analysis of the rela-
tionship between function and form we can represent the content of

structurey as:

(list car (p q r 5)) = (extract-first (p q T 8))

What we have done in making the analogy is to make the
generalization:

(list car 'x) — (extract-first x),

thus, variabilizing the nonterminal (p ¢ r s). Given this, we can derive

the structurex as a special case. This inductive inference step we have
called the no-function-in-content principle. That is, the actual content

identities of nonterminal symbols like (p ¢ 7 s) are not critical to the
function achieved by the form in which they appear.

Note that the necessary and sufficient condition for an analogy is
that all the terms in the consequent of the above implication be varia-
bilized (except the first special terms). Then, by producing an instan-
tiation of the antecedent we can derive the consequent. Said another

" way, the necessary and sufficient condition is that mappings be found

for all terms in the function slot. It is all right if terms are left un-
mapped in the form slot as they are in this example (car and ’). They
are simply mapped onto themselves in the target domain. This de-

-termines which constants can be left and which must be mapped in

building up a new form.'

In the preceding example the mapping for (pq75) could be obtained
by simply comparing the function slots of the target and the goal.
However, this is not always possible. Consider the following example
of how someone encodes a call to the LISP function quotient by analogy
to the LISP function difference:

Example
isa: function-call
function: (perform subtraction 6 2)
form: (list funcl 6 2)

funcl
isa: LISP-function
function: (implement subtraction)
form: (text difference)

goal
isa: function-call
function: (perform division 9 3)
form: ??

274 JOHN R. ANDERSON AND ROSS THOMPSON

func2
isa: LISP-function
function: (implement division)
form: (text quotient)

This represents the knowledge state of someone who knows wha
both difference and quotient do but has seen only the syntax for difference
and is trying to figure out the syntax for quotient. In looking at the
function slot of this example to make the correspondences for the
analogy, we get the following:

subtraction — division

6 —9
2 — 3

However, this does not provide a specification about how to map the
term funcl that appears in the form slot of the example. But if PUPS
looks at the function slot, of funcl, it will find that it implements
subtraction. Knowing that subtraction corresponds to division, it
knows it wants the name of a function that implements division. Be-
cause it knows quotient is such a function, it writes (LIST quotient 9 3)
into the form slot of goal.

If we return to our implicational analysis we can see what assump-
tions are involved in making this step. The analysis of the example
would be

(list difference y z) — (perform subtraction y z)

We have replaced the constants 6 and 2 by y and z to reflect the no-
function-in-content principle. However, this will not match the func-
tion slot of goal because of the unmapped element subtraction. How-
ever, if we replace difference by its functional specification we get

(LIST (implement subtraction) 6 2) — (perform subtraction 6 2)

Applying the no-function-in-content principle to this example, we get
the following variabilized expression:

(list (implement x) y z) = (perform x y z)

Hrmm essentially says, if we create a list of the function name that
implements an operation and two arguments, we will apply that op-
eration to the arguments. In replacing difference by its functional
specification we are assuming that the critical thing about difference
was its functionality and not its identity. If there is another function
that implements subtraction (as there is), then it would work the same
way. This is another inductive principle, which we have called suffi-
ciency of functional specification. .

Analogy in a production system architecture 275

These two inductive principles, no function in content and sufficiency
of functional specification can in combination produce rather elaborate
problem solutions by analogy. To take one example, we were able to
get the mechanism to code the function summorial by (10 iterations
of) analogy to the function factorial, both of which are given below:

(defun factorial (n)
(cond ((zerop n) 1)
(¢t (times n (factorial (subl n))))))

(defun summorial (i)
(cond ((zerop i) 0)
(¢ (plus i (summorial (subl 7))))))

Factorial calculates the product of the integers to n whereas summorial
calculates the sum. Both are given recursive definitions.

Although we haven’t space to go through this whole analogy process
in detail, it is worth going through a few key steps. First, the following
gives some of the original encoding of the example and the problem:

fact.ex
isa: LISP.function
function: (calculate fact.algorithm)
form: (LIST defun fact.name fact.args fact.body)

fact.algorithm
isa: algorithm
function: (algorithm-for fact.ex)
form: (compute product (range zero fact-arg))

fact.arg
isa: variable
function: (parameter-for fact.algorithm)
form: (text n)

fact.name

isa: function.name

function: (name-of fact.algorithm)
form: (text factorial)

fact.args
isa: param.list
function: (enumerate-args fact.ex)
form: (list fact.arg)

fact.body
isa: LISP.code
function: (body-for fact.ex)
form: (LIST cond casel case 2)

sum.goal
isa: LISP.function

276 JOHN R. ANDERSON AND ROSS THOMPSON

function: (calculate sum.algorithm)
form: ???

sum.algorithm
isa: algorithm
function: (algorithm-for sum.goal)
form: (compute sum (range zero sum.arg))

sum.arg
isa: variable .
function: (parameter-for sum.algorithm)
form: (text i)

sum.name
isa: function.name
function: (name-of sum.algorithm)
form: (text summorial)

The first task that is solved by analogy is to determine the top level
of the summorial code. To follow the analogy process, it starts with a
representation of the implicational structure of fact.ex:

(list defun fact.name fact.args fact.body)
— (calculate fact.algorithm)

In this form it does not allow for any variabilization; however, by
replacing terms with their functional specification (applying the suf-
ficiency-of-functional-specification principle) we get:

(list defun (name-of fact.algorithm) fact.args fact.body)
— (calculate fact.algorithm)

This expression could be variabilized and mapped to the target.
Note fact.args and fact.body would not be variabilized and would be
directly copied to the target structure. This would represent a subject
who thought that it was sufficient to change the name of function
and it would change its behavior. Clearly, this is not acceptable. Thus,
we have a third principle, which we call maximal functional elaboration.
This principle is that, if there are unvariabilized terms in the form
(left-hand side), arguments in the function (right-hand side) of the
implication will be embellished with their functions as long as the
sufficiency-of-functional-specification principle can apply. In this case,
we embellish fact.algorithm with its functional specification (algorithm-
‘for fact.ex). This creates another element fact.ex on the right-hand side,
which will invoke elaboration of fact.args and fact.body and lead to 2
form that can have greater variabilization:

(list defun (name-of fact.algorithm) (enumerate-args fact.ex)
(body-for fact.ex))
— (calculate fact.algorithm = (algorithm-for fact.ex))

Analogy in a production system architecture 277

This can now be variabilized using the no-function-in-content prin-
cple to give:

(list defun (name-of x) (enumerate-args y) (body-for y))
— (calculate x = (algorithm-for y))

[nstantiating this with the summorial function we get

(list defun (name-of sum.algorithm) (enumerate-args sum.goal)
(body-for sum.goal))
— (calculate sum.algorithm = (algorithm-for sum.goal))

Thus we need to fill in the form slot of the summorial function with
a list consisting of defun, the name of summorial, the list of arguments,
and the body for the function. There is already a name for the sum-
morial function. In cases where a structure serving the function exists,
analogy will use the existing structure rather than creating a new one.
However, it has to create new PUPS structures, goal.args and goal.body,
to fill the last two slots. So the following structure is inserted into the
form slot of sum.goal:

(list defun sum.name goal.args goal.body),

and the following two data structures are created to describe goal.args
and goal.body.

goal.args
isa: param.list
function: (enumerate-args sum.goal)
form:???

goal.body
isa: LISP. code
function: (body-for sum.goal)
form: ???

These structures act as goals to invoke further problem solving. Thus
we have spawned two subgoals as the by-product of solving this anal-
ogy. In our simulation, these goals were themselves solved by analogy.
The goal.body structure spawned a rich set of goals corresponding to
all the levels of the recursive code for summorial.

There are a couple of interesting moments in the subsequent anal-
ogy problem solving, one of which occurred when it came time to
generate the code that would correspond to the recursive action: (plus
i (summorial (subl #))). The example and the goal at this point were:

fact.rec.value
isa: LISP.expression
function: (recursive-value fact.algorithm)
form: (list times fact.arg fact.recursive.call)

e

278 JOHN R. ANDERSON AND ROSS THOMPSON

times
isa: LISP.primitive
function: (compute product)
form: (text times)

fact.recursive.call
isa: recursive.call
function: (recurse-on fact.ex)
form: (list fact.name fact.rec.arg)

sum.rec.value
isa: LISP.expression
function: (recursive-value sum.algorithm)
form: ???

Again, the implicational structure of the example, fact.rec.value, is:

(list times fact.arg fact.recursive.call)
—> (recursive-value fact.algorithm)

The terms in this can be rewritten to become:

(list (compute product) (parameter-for fact.algorithm)
(recurse-on fact.ex))
— (recursive-value fact.algorithm = (algorithm-for fact.ex) &
(compute product (range zero (parameter-for fact.algorithm))))
What is noteworthy about this is that we have rewritten factorial by
its form slot as well as its function. This gives us the term product
that corresponds to sum in the specification of summorial.
Variabilized, the expression becomes:
(list (compute x) (parameter-for y) (recurse-on z))
— (recursive-value y = (algorithm-for z) &
(compute x (range zero (parameter-for y)))),

which, applied to the summorial case, causes us to create the form:
(list plus sum.arg goal.recursive.call)

Plus is recognized as the function that computes sum; sum.arg is rec-
ognized as the argument for summorial; and goal.recursive.call is a mo».
structure created to calculate the form of the recursive call.

Extending the analogy model

Analogical filling of function slots

So far we have discussed how analogy is used to map a form from an
example to a target using correspondences set up in mapping the
function. However, analogy can also be used to do the reverse; that
is, to map a function from an example using correspondences set Up
in mapping the form. In this we are dealing with a situation wher¢

Analogy in a production system architecture 279

Figure 9.1. Keypad on the toy tank used by Shrager (1985).

the form slot is filled but the function slot is not. In an experiment
by Shrager (1985), subjects were presented with a toy tank that :.m&
the keypad in Figure 9.1. They determined that the key labeled with
the up-arrow moved the tank forward, and they had to figure out
what the keys with the down-arrow and left-arrow did. Below we have
PUPS structures that purport to represent their states of knowledge.

example
isa: button
function: (move forward)
form: (labeled up-arrow)

up-arrow

isa: symbol

function: (points forward)
. form: (image thingl)

problem1
isa: button
function: ???
form: (labeled down-arrow)

down-arrow
isa: symbol
function: (points backward)
form: (image thing2)

problem2
isa: button
function: ???
form: (labeled left-arrow)

280 JOHN R. ANDERSON AND ROSS THOMPSON

left-arrow
isa: symbol
function: (points leftward)
form: (image thing3)

The example is encoded as an up-arrow with the further information
H._z: an up-arrow is a symbol that conventionally means forward. The
functions of the other two buttons are not represented, but we have
represented the conventional knowledge that down-arrows symbolize
backward and left-arrows left.

. We can represent the knowledge encoded by the nxm-:_o_m,g the
following variabilized expression:

(labeled (points x)) — (move x)

This implication represents the operation of the same heuristics as
we saw before. This can now be instantiated for one of the problems
as: _

(labeled (points backward)) — (move backward)

Hence, we can infer that the function of the probleml button is to
move backward. Similarly, we can infer that the function of the
problem2 button is to move left. As it turned out, only the first in-
ference was correct. The left-arrow button did not actually move the
tank in the left direction but only turned it in that direction. This is
an example of where the no-function-in-content assumption was vi-
olated. Some buttons moved the tank in the specified direction, and
some turned. One simply had to learn which did which. The actual
En::& of the direction determined the function of the button. This
just proves that analogy has the danger of any inductive inference.
The important observation is that human subjects also made this
misanalogy.

Refinement

Though each structure can have one form slot, it can serve multiple
functions. This leaves open a third and important kind of analogy
the filling in of a second function by analogy to a first.” This kind of
analogy is very important in problem solving because the key to find-
ing the form for solving a problem might be to represent correctly
the function of a structure. This process of producing a new f unctional
slot (or new views on the structure) is what we call refinement. lts
usefulness is illustrated in the following example, which comes quite
close to what subjects originally do when they initially reason about
how to call LISP functions.

Analogy in a production system architecture 281

Consider how someone might analogize from an example of car to
determining the value of (cdr ’(x y)). Suppose, they had an example
of (car (@ b)) = a. They might encode this:

example
isa: LISP.call
function: (show-value expl valuel)
form: (string expl = valuel)

expl
isa: LISP.expression
function: (calculate first argl)
form: (list car * argl)

car
isa: LISP.function
function: (calculate first)
form: (text car)

valuel
isa: sexpression
function: (first argl)
(value-of expl)
form: (text a)

argl
isa: list
function: (hold (a b c))
form: (list a b ¢)

The problem would be encoded:

problem
isa: LISP.call
function: (show-value exp2 goal2)
form: (string exp2 = goal2)

exp2
isa: LISP.expression
function: ???
form: (list cdr * arg2)

cdr
isa: LISP.function
function: (calculate rest)
form: (text cdr)

goal2
isa: sexpression
function: (value-of exp2)
form: ???

arg2
isa: list

282 JOHN R. ANDERSON AND ROSS THOMPSON

function:???
form: (list x y)

This represents an encoding where the subject has not yet figureq
out the function of arg2 or exp2 from the cdr example, and the gog|
is to figure out the form of goal2, which corresponds to figuring oy
the value of the cdr example. Using form-to-function analogy, the
function slot of arg2 is filled in as (hold (x y)), and the function m_m: of
exp2 is filled in (calculate rest arg2). However, the important task of
filling in the form slot of goal2 remains unsatisfied. We can form an
analogy between the two function slots of valuel and the one function
slot of goal2 to create a second functional description of goal2: (rest
arg2). This is an example of goal refinement; goal2 now has the form:

goal2
isa: sexpression
function: (valueof exp2)
(rest arg2)
form: ???

This cannot be solved by analogy to the car example, because it has
no illustration of the rest relationship. However, given this refinement
the system can look to its other, non-LISP knowledge for an analog.
So we might have the following encoding of a state when we were
sending out invitations to a list of people to attend a meeting:

new3
isa: list
function: (rest arg3)
(hold (Mary Tom))
form: (list Mary Tom)

arg3
1sa: list
function: (hold (John Mary Tom))
(invitees meetingl)
form: (list John Mary Tom)

By analogy to this example, we can fill in the form slot of goal2 by
(list b c).

This example illustrates the characteristic scenario of what might
be called creative problem solving. We start with a problem that We
cannot solve but refine its function so that it has a different descrip-
tion. Now we cani call on an extradomain analogy to solve the problem:
This is one example of many where multiple models can be combined
to solve a problem. The resulting solution is inherently more “novel”
than if a single model has been mapped.

Analogy in a production system architecture 283

Selecting examples for use in analogy: spreading activation

What we have discussed so far is a method by which a person in a
novel situation can solve a problem by analogy. There are three major
complications to this, which we will discuss in the next three major
sections of this chapter. This section will consider how examples are
selected for use as models in the analogy, the section “Knowledge
Compilation” will consider how knowledge compilation replaces anal-
ogy with learned productions, and the section “Discrimination Learn-
ing” will consider discrimination of overly general knowledge.

Our idea of how analogs are selected is no different than the pro-
posal put forth in Anderson (1983, chap. 5), that analogs are chosen
in the the process of matching productions. Basically, analogy is con-
trolled in the PUPS system by productions of the form:

-,

IF there is a target structure needing a form serving a
specified function
and there is a model structure containing a form that
serves that function

THEN try to map the model form to the target form

Thus analogy is an action that can be called on the right-hand side
of a production. This is a “bare-bones” selection production in that
the only criterion for selecting a model is that the model serve the
same function. It is possible to have more heuristic versions of this
production, which used domain-specific tests to look for likely analogs.
However, this complication does not really eliminate the problem of

choosing from multiple possible candidates. It means only that in

certain cases the set of possible candidates might be reduced.

The critical issue for selecting a model is how the second condition
of the above production is matched. The actual PUPS code repre-
senting this production is:

(p draw-analogy
=target: isa =object
function (=rel)
form nil
=model: isa =object
function (=rel)
form (group! <> nil)
—
analogy! = model = target form)

The terms =model and =rel are variables. This production looks
for any structure (which will be bound to =maodel) for which the first

284 JOHN R. ANDERSON AND ROSS THOMPSON

term in the function slot is the same as for the target goal (this teg
is enforced by the appearance of the same variable in the functiop
slots of the goal and the model). Of course, the arguments of the
function slot can be different and will be put into correspondence for
purpose of analogy. What is important is that the first, predicate,
terms are the same, indicating similar function. PUPS will calculate
all instantiations of this production and so find all the possible models.
The issue is how it selects among these instantiations. This is the issue
of conflict resolution.

Our view is that conflict resolution is determined by the same ac-
tivation-based pattern-matching mechanisms that solved this problem
in the ACT* model. Thus, basically, the most active model structure
will be the one selected. There are a lot of things that seem right
about this suggestion. Activation of a structure basically reflects the
strength of that structure and the number of network pathways con-
-verging on it from active elements. The first factor, strength, means
that the subject is likely to use recent and frequently studied examples.
The dominance of recency and frequency in example selection is
pretty apparent in our research on analogy in problem-solving do-
mains like LISP and geometry. Research such as Ross’s (1984, this
volume) points to the importance of feature overlap in analogy se-
lection. He found that the number of features an example shared
with the current problem determined the probability of selecting the
example, whether the features are relevant to the problem or not.
We have argued a similar point (Anderson, 1983) for the domain of
geometry but without the benefit of careful data like Ross’s. Thus, in
contrast to the analogy computation itself, which carefully examines
the functionality of the problem features, the criterion for selecting
among possible models is quite superficial.

Knowledge compilation

Knowledge compilation is motivated to deal with the computational
costs of problem solving by analogy. Analogy is expensive to compute
and requires having an example at hand and holding a representation
of the example in working memory. Knowledge compilation is the
process that inspects the trace of analogy and builds productions that
directly produce the effect of analogy without having to make ref-
erence to the example. Our view is that this knowledge compilation
process occurs simultaneously with the first successful analogy. Sub-
sequent occasions where the knowledge is required show the benefit
of the compiled production. This corresponds to the marked in-

Analogy in a production system architecture 285

provement in speed and accuracy from first trial to second in a typical
_:oc_n:.-mo_i:m situation. We typically see more than 50% improve-
ment and a concomitant marked decrease in any verbalization, indi-
cating that the analogy is being computed (Anderson, 1982, 1987b).
Thus analogy is something done only the first time the knowledge is
peeded (see also Holyoak & Thagard, this volume).

We have adapted the knowledge compilation process (Anderson,

' 1986) to operate in PUPS. It compiles productions from the trace of

the analogy process. Thus, after writing the summorial function by
analogy to factorial, PUPS compiled a set of productions that rep-
resented the transformations being computed by analogy. For in-
stance, it formed the following production:

IF the goal is to write a LISP function y
which calculates an algorithm x

THEN create the form (list defun name args body)
where name is the name of algorithm x
and args enumerate the arguments for function y
and body is the body for function y

This is basically an embodiment of the abstract implicational structure
that we extracted in doing the analogy:

(list defun (name-of x) (enumerate-args y) (body-for y))
— (calculate x = (algorithm-for y))

Thus, knowledge compilation stores away the implication that we had
to induce to perform the analogy. The availability of that implication
saves us from having to calculate it a second time.

The other thing that knowledge compilation will do is to collapse
anumber of steps of problem solution into a production that produces
the same effect in a single step. To consider an example, suppose we
start with the goal to code the second element of a list:

goal
isa: function-call
function: (extract-second lis)
form: ???

Suppose this has its function slot refined by analogy or an existing
production to have the additional specification (extract-first lis]) where
lis] is the tail of the list. The structure lis] is specified as:
lis1
isa: list
function: (extract-tail lis)
form: ???

286 JOHN R. ANDERSON AND ROSS THOMPSON

The form slots for goal and lisI can then be solved by analogy or
existing productions. The form slot for goal becomes (list car lis]) and
for lis1 becomes (list cdr lis). In all, three steps were involved, refining
the function slot of goal and filling in the two structure slots:

A production can be composed to summarize this computation:

IF the goal is to code a function call x
which calculates the second of lis y
THEN create a form (list car struct)
“.i_n..o struct is a function call that calculates the tail of
is
m:m has form (list cdr y)

This is just the composition of the implication structures of the two
PUPS structures goal and lis1. This is an interesting observation: Com-
pilation of productions can be defined on the PUPS structures in-
volved without actually Emmana:m the productions that fired. That s,
we do not need a procedural trace to define compilation as in the
ACT* theory. It can be extracted directly from the PUPS structures.
It is more realistic to propose that the learning mechanism simply
inspects declarative traces and not procedural traces. Declarative
PUPS structures are already there and are by definition inspectable.
Procedural traces were an invention in earlier theory just for the
purposes of learning.

Another advantage of this is that we do not have to require that
the productions to be composed fire contiguously in time or that they
be invoked by a single ACT* goal. They only have to produce 2
contiguous fragment of the problem solution. In this way we have
modified composition to deal with the problem of noncontiguous
compositions first noted by Lewis (1981).

Discrimination learning

In the terminology of ACT*, analogy is a mechanism for generali-
zation. It is a way of going beyond a particular single experience t0
rules of broader generality. The production rules produced as com-
pilations of the analogy process are, in fact, basically the mo:mqm_muna
rules produced by the older ACT generalization mechanisms. There
are some advantages to the current PUPS formulation. The formu-
lation of the mechanism is more uniform. Developed from the sé-
mantics of PUPS structures, the mechanism also has a well-worked-
out rationalization and is not a purely syntactic process. By changing
the PUPS encodings, one can change the direction of generalization,
and so we do not have the same inflexible mechanism that existed 11

Analogy in a production system architecture 287

ACT where the same generalization would emerge independent of
context. Also, by anchoring analogy in declarative structures, we en-
able the subject to have conscious access to the basis for these gen-
eralizations — again, something subjects seem to have access to. .

It was necessary to have a countervailing discrimination process in
the ACT* theory. Generalizations can miss critical features about why
examples work and so produce overgeneralizations. A process was
required to look back and try to discover critical features to restrict
a generalized rule that was overapplying. .

The same dilemma exists in the PUPS theory although its character
is a little different. Overgeneralizations arise because the original ex-
amples are not adequately encoded in PUPS. There may be precon-
ditions to the successful operation of a rule that were missed in the
encoding. For instance, suppose a subject has the following encoding
of the LISP call in FranzLISP (mapcar ’subl lis), which subtracts 1 from
a list of numbers:

Example:
isa: function-call
function: (apply neg-op lis)
form: (list mapcar ’ subl lis)
context: FranzLISP

subl
isa: LISP.function
function: (implement neg-op)
form: (text subl)

Now suppose the person wants to add 1 to each number in a list
but is working in INTERLISP. Below is the PUPS encoding of the
hew goal:

goal
isa: function-call
function: (apply pos-op lis2)
form: ???
context: INTERLISP

addl
isa: LISP.function
function: (implement pos-op)
form: (text addl)
The analogy process would calculate the following implication from
the example:

(list mapcar '(implement x) y) — (apply x y),

288 JOHN R. ANDERSON AND ROSS THOMPSON

which leads to the inference that (mapcar *addl lis2) will do the ¢

C:?.:::»S_? the correct argument order is (mapcar lis2 .a&w ek
we will suppose the student determines by experimenting and ~v P
the opposite order after the first attempt fails. Now we rm<on%=..w
cumstance where the student must try to make a Ewnasmzm:oh We
assume H_z:. the student does this by the same correspondence ro e
.:z: underlies making analogies. The student tries to put the n_w.”_x o
in the example and the problem into correspondence, lookin nm .
some feature that cannot be mapped. There are features such wmm :_oq
the first example involved subl and the current example m=<o_<nm“
addl, but H.rawm are already in the implication that led to the analo

.A.rn..:o& _Bﬂn&wﬁ feature that does not map is the context s—_w_.
1s FranzLISP in the former example and INTERLISP in the mcz,n_z
example. Therefore, the hypothesis is made that this is the critical
feature, and we add as a precondition to example that the context be
FranzLISP and to the current goal that the context be INTERLISP
The implication for the example now becomes: .

context (FranzLISP) & (list mapcar *(implement x) y) — (apply x y)

O_<n.= that INTERLISP cannot be mapped onto FranzLISP, the anal-
ogy is now blocked from going through in the future. On the other
r»:a.. the .—Zﬂ.mat—mw example (with (list mapcar lis2 ’addl) as a form
slot) is available for future analogy, and that analogy can be compiled
into an INTERLISP-specific rule.

) > ?B:n:.ﬂ context for performing discriminations is to add heu-
ristic constraints to overgeneral rules. Consider the example in Figure
9.2 of a geometry problem that a student faced with the geometry
tutor. Students when they encounter this problem know only the side-
side-side postulate and the side-angle-side postulate. One student, not
atypical, was observed to think about using first the side-side-side
vomaz_»n.o and then the side-angle-side postulate but not to be able to
apply either directly. Then the student tried to apply some of the
E_.nm he knew would work. He applied the definition of congruence
to infer that the measure of segment AD is congruent to the measure
of the segment CD. Then he applied the reflexive rule to infer that
AD was congruent to itself. These last two gave him legal inferences
that led nowhere. His final step in this floundering was to apply the
reflexive to infer BD was congruent with itself. With this in place the
mEQQ.: was finally able to apply the side-side-side rule to infer that
the triangles were congruent.

The student had created two examples for himself of the use of
the reflexive rule — one involving AD, which had been unsuccessful

Analogy in a production system architecture 289

m .
- ——
A D Cc
Given: AB = BC
AD = DC
Prove: AABD& ACBD

Figure 9.2. A geometry problem that invokes discrimination of the appro-
priate situation in which to employ the reflexive rule of congruence.

and one involving BD, which had been successful. Let us consider
how the student represented these two inferences and formed a dis-
crimination between the two of them:

inferencel
isa: geometry-inference
function: (help-prove goal)
form: (rule diagram reflexive statement])

goal
isa: geometry-statement
function: (to-be-proven probleml)
form: (statement triangleABD congruent triangleCBD)

statementl
isa: geometry-statement
function: (conclusion-of inferencel)
form: (statement segmentAD congruent segmentAD)

segmentAD
isa: segment
function: (part-of triangleABD)
form: (segment A D)

inference2
isa: geometry-inference

290 JOHN R. ANDERSON AND ROSS THOMPSON

function: (help-prove goal)
form: (rule diagram reflexive statement2)

statement2
isa: geometry statement
function: (conclusion-of inference2)
form: (statement segmentBD congruent segmentBD)

segmentBD
isa: segment
function: (shared-part triangleABD triangleCBD)
form: (segment B D)

In comparing the successful inference2 with the unsuccessful
inferencel the student would add the precondition that segment BD
is shared by two triangles. This would then lead to a rule that would
have the student infer that shared segments of triangles are con-
gruent, and the application of this rule would not depend on the
context in which the rule was evoked — side-side-side, side-angle-side,
angle-angle-side, hypotenuse-leg, and so forth. This is in fact the
behavior we observe of our students; their use of this rule is not
restricted to proving triangles congruent by side-side-side as in this
example.

The astute reader will note another feature of this rule, which is
that it does not require (but should) the shared sides to be parts of
to-be-proven congruent triangles. About half of the students we have
observed appear to have induced the rule in the above form and will
inappropriately apply the reflexive rule in one of the later problems
that involved triangles with shared sides where the triangles are not
to be proven congruent. From this, subjects learn an additional pre-
condition by the same discrimination mechanism.

The interesting question concerns the other half of the students,
who appear to learn this “part of to-be-proven congruent triangles”
precondition from the first example, which does not seem to create
the opportunity for learning it. That is, the successful and unsuc-
cessful examples are not discriminated by this feature. We can only
speculate, but it seems plausible to us that a good student might try
to create an example that satisfies the precondition (shared parts of
triangles) but does not serve the function (help to prove the problem).
Such examples are easy to come by, and these self-generated examples
would serve to force the desired discrimination.

It should be noted that even the constraint of shared segments of
to-be-proven congruent triangles is not logically sufficient to guar-
antee that the rule is a necessary part of the proof. However, therc
are no proof problems that occur in high school geometry texts that

Analogy ina production system architecture 291

create situations that bring this out. So we have not been able to
observe what high school students do. However, informally passing
such problems among ourselves we have found a.rwg.in have an ir-
resistible urge at least covertly to make the Rmo.x.s.n _1?..2_8. This
seems to indicate that the acquisition of ?.nno.:.::ozu is not gmam. on
a formal analysis of logical necessity or mcmmn_.u:n.v... Rather, as it is
m.sv_nBo:Sa in the PUPS system, it is based on empirical comparisons

 of cases where an example does or does not work.

A major feature of this discrimination anrwim_: is that the pre-
conditions are stored as declarative nB.x.w:_m_.m:o.:a along .2:: the
example. This means that a student can in principle examine them
for their adequacy and reject or embellish v._,nnozn_:ozm that are
inadequate. This potential for conscious filtering om proposed pre-
conditions makes the PUPS discrimination Bnnr.ws_m-: much more
satisfactory than the ACT discrimination mechanisii or other mech-
anisms, which are automatic comparison procedures whose mnmc_am
cannot be inspected because they immediately become embodied as
productions.

‘Comparison to related work

It may be instructive to look at how our theory compares with m:_:wn
work on analogy and related topics. There are several similar projects.

Mitchell’s generalization

Mitchell (Mitchell, Keller, & Kedar-Cabelli, 1986) forms descriptions of
a concept based on a single example, and without a problem-solving
context. The system is given a high-level description of the target con-
cept (the goal concept), a single positive instance of the concept (the train-
ing example), a description of what an acceptable concept definition
would be (the operationality criterion), and a list of facts about the ac::::.
Included in these facts are abstract rules of inference about the domain.
An EBG (explanation-based generalization) algorithm tries to find a
proof that the training example satisfies the goal concept. To do this it
simply expands the termsina high-level description until all the terms
in the description meet the operationality criterion. If disjunctsare ever
found in a term’s expansion, the disjunct corresponding to the training
example is used (for example, if graspable means either has-handle or
small-digmeter, and the training example is has-handle, then the expan-
sion of graspable will be has-handle). After a proof is mn.:nzzaa that the
training example satisfies the goal concept, the proof is generalized to

292 JOHN R. ANDERSON AND ROSS THOMPSON
: Analogy in a production system architecture 293
form a rule that is capable of matching any instance of the goal cop
that meets this same low-level description. Note that this masnazsm_x
is E general more restrictive than the goal concept, reflectin %.._n
choices made at any disjuncts encountered during the mxvmsmmosm I
cess. Since the entire tree of expansions is saved during this vaonnﬂ?
side effect is that the system can explain why the training example js M_g
instance of the goal concept: It can point to specific features of the e”
ample that fulfill the various criteria specified in the high-level conce
description (Mitchell et al., 1986). M
The expansions done by the EBG method are not unlike the elab-
orations done by the PUPS system. The essential difference is tha
whereas the EBG system blindly expands until it reaches a dead end
or the (apparently ad hoc) operationality criterion is met, the PUPS
system has an implicit operationality criterion, which is that the ex.
pansion is sufficiently elaborate for the no-function-in-content prin-
ciple to apply. A second difference is that PUPS need not be given
abstract rules of inference for the domain. It tries to infer these di-
rectly from its encoding of examples. Thus EBG starts out with a
strong domain theory and essentially composes new rules; whereas
.wcm.m discovers the rules hidden in its examples. A third difference
is that the EBG method simply characterizes the way in which a single
object instantiates a concept, whereas PUPS draws analogies in order
to further problem-solving efforts.

orate further, whereas PUPS simply elaborates as far as is necessary
for the no-function-in-content principle to apply. |

Winston’s analogy

winston’s ANALOGY system (Winston, Binford, Katz, & Lowry,
1983) is very similar to the work of Mitchell and Kedar-Cabelli. The
major difference is that the rules of inference are stored with the
examples and not maoqo.a separately, and thus the example serves the
additional function of providing rules of inference. The system starts
off with a description of the target concept and a description of a
single positive instance. The system elaborates the description of the
example, making inferences about physical properties that are not
explicitly represented in the input description of the example. Once
the elaboration is complete (i.e., no more elaboration can take place),
the system attempts to show that the elaborated description of the
example meets the description of the target concept. ANALOGY does
this using “precedents” in order to provide functional descriptions of
various features of the example. For example, if the target example
has a flat bottom and the system knows that bricks are stable because
they have flat bottoms, then the system concludes that the example
is stable as well and that the purpose of its flat bottom is stability.
Assuming that this proof attempt is successful, a generalization, de-
scribing the way in which the current example fulfills the description
of the concept, is built in the form of a rule that could apply in a
situation similar to the current one.

One of the big differences between ANALOGY and PUPS is that
ANALOGY seems capable only of filling in function slots. That is,
ANALOGY would not be able to generate an example that served a
specific function. Indeed, this observation could be made of all the
research we have looked at, except for Carbonell’s work (which is
Capable only of finding form that fills a particular function and not
the reverse). PUPS is the only system we know of that can draw
analogies in either direction.

Kedar-Cabelli’s purpose-directed analogy

Kedar-Cabelli (1985) developed an analogy system based on EBG.
Her system is typically given an object description and the task of
answering a question such as “Does this object serve function x?” In
order to answer the question, the system searches its knowledge base
for model objects that serve function x and tries to “prove” that the
model object serves the function. Then it tries to use this proof 10
prove that the target object serves the specified function. If the proof
is successful, a generalization is formed that could essentially answer
this question directly, without the analogy process.

Kedar-Cabelli’s system is like ours with the differences already
noted with respect to Mitchell’s system. It is basically the obvious
application of EBG to analogy. The major difference in the way it
treats analogy is that whereas she asks questions of the form “Is it
true that A serves function x?” we ask questions of the form “What
function does A serve?” Another difference is the extent of the elab-
oration; Kedar-Cabelli elaborates her examples until she cannot elab”

Rumelhart and Norman’s analogy

Rumelhart and Norman (1981) discuss a method for drawing anal-
ogies that consists of generating a description of the differences be-
tween the model and the goal and writing new form that observes
those differences. Their algorithm would compare functional descrip-
tions of the model and the goal and notice that the goal is “just like

294 JOHN R. ANDERSON AND ROSS THOMPSON

the target, except that you use x for y.” Using this information, the
algorithm would then copy the structure of the model exactly, ox.nn t
for making the appropriate substitution of y wherever an x mvvamgﬂ
in the model.

What is specified in this model is very like our own work, but there
are a number of things in PUPS that correspond to nothing in Ry.
melhart and Norman’s model. There is no discussion of the problems
of model selection, and they make no mention of any kind of gen.
eralization process. They also do not discuss elaboration in detail, so
it is difficult to know exactly what the termination condition of the
elaboration process is.

Geniner’s structure-mapping

Gentner’s (1983, this volume) theory distinguishes among various
types of features of the model. In particular, there are attributes, which
are predicates taking one argument, and relations, which are predicates
of two or more arguments. In an analogy, one is concerned only with
mapping relations. From this assumption, she distinguishes in a nat-
ural way those features that should map when comparing the solar
system to an atom. For instance, the relationship between electrons
and the nucleus should be mapped, but the features specific to the
sun (e.g., hot, yellow) do not. An analogy that maps a large number
of attributes is called a literal similarity. An analogy in which the model
is an abstract description rather than a physical object is called an
abstraction. The method for selection of what features will map to the
target domain involves a causal analysis of the domains. The system-
aticity principle says that those relations that are central to the functional
description of the domain are much more likely to be mapped than
those that are not. So, for instance, the fact that the sun is more massive
than a planet in some way causes the planet to orbit the sun. Thus this
relation is more likely to be mapped to the domain of atoms than the
assertion that the sun is hotter than the planets (which doesn’t caus¢
anything). This causal analysis is similar to Winston’s (1979) model-
The central idea is that, if you cannot show a reason for a relation (0
be mapped, then you should not map it.

Carbonell’s derivational analogy

O.mn_uczn__.m (1985) work is different in kind than the systems SO far
discussed. His basic strategy is to take a worked-out solution for
problem and convert it to the current task. The problem solution may

Analogy in a production system architecture 295

pe represented at any level of abstraction (corresponding to various
points along the problem-solving continuum) as a list of operators
along with an elaborate description of the dependencies among the
operators and the parts of the problem domain. These dependencies
are then evaluated with respect to the current problem, and various
editing operations are performed to convert the solution to one ap-
propriate for the current problem. The editing operations include
changing the order of the operators, inserting new operators, or de-
leting old ones. When enough related instances of a problem solution
exist at one level, they are combined by a learning/generalization
process into a more general solution.

A major difference between Carbonell’s work and our own is that
he represents problem solutions as a whole and requires that the entire
solution be transported (modulo certain possible transformations) into
a solution to the current problem. In our work, each operator appli-
cation is done by a separate step (which may be either a learned rule
or an analogy), and our solutions may therefore potentially borrow
from many different examples. Also, since the generalizations we
learn describe an individual step in a problem solution rather than
the entire solution, these generalizations are more widely applicable
(our theory predicts more transfer to novel problems). We think this
more piecemeal approach is closer to the human use of analogy.

Conclusion

A general framework for analogy might have the following steps of
processing:

Obtain a goal problem.

Find an example similar to the problem.

Elaborate the goal.

Generate a mapping between the goal and the example.
Use the mapping to fill in the goal pattern.

Check the validity of the solution.

Generalize and form a summarization rule.

N OR N =

It .mm apparent that the systems we have discussed by and large fit with
this framework. The differences between the systems lie in how they
accomplish the steps and in the order in which the steps are done.
m,A.v_. instance, in PUPS the elaboration of the goal is done in parallel
With an elaboration of the example. The consequence of this is that
the mapping is a by-product of the elaboration and thus trivial to
fing, By contrast, Winston’s (Winston et. al., 1983) system does the

296 JOHN R. ANDERSON AND ROSS THOMPSON

elaboration before it searches for the example and must generate the
mapping explicitly.

Another way in which we can contrast the systems is by looking a
the kind of questions the systems attempt to answer. There are Systems
(such as Winston’s and Mitchell’s) in which the object is to take ap
example form and determine whether or not it serves a particulay
function. Carbonell’s system is given a functional description (in terms
of a goal that needs to be accomplished) and provides a structure that
serves that function (in terms of a problem solution). PUPS, by con-
trast, can do both of these tasks.

NOTES

This research is supported by Contract MDA903—-85-K—0343 from the Army
Research Institute and the Air Force Human Resources Laboratory. We

would like to thank anzrmmw Niki for his comments on various drafts of the
manuscript. ,

1 This discussion differs slightly from the implementation.
2 The logical justification for this derives from the fact that the relationship

among multiple functions is assumed to be biconditional — if one function
is satisfied, then all are.

REFERENCES !

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89,
369-406.

Anderson, J. R.. (1983). The architecture of cognition. Cambridge, MA: Harvard
University Press.

Anderson, J. R. (1986). Knowledge compilation: The general learning mech-
anism. In R. 8. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Ma-
chine Learning: An artificial intelligence approach (Vol. 2, pp. 289-310). Los
Altos, CA: Kaufmann.

Anderson, J. R. (1987a). Methodologies for studying human knowledge. Be-
havioral and Brain Sciences, 10, 467-505.

Anderson,]J. R. (1987b). Production systems, learning, and tutoring. In D.
Klahr, P. Langley, & R. Neches (Eds.), Self-modifying production systems:
Models of learning and development. Cambridge, MA: MIT Press (Bradford
Books).)

Anderson, J. R., Farrell, R., & Sauers, R. (1984). Learning to program In
LISP. Cognitive Science, 8, 87-129.

Anderson, J. R,, Pirolli, P., & Farrell, R. (1988) Learning recursive program-
ming. In M. Chi, M. Farr, & R. Glaser (Eds.), The nature of expertise (pp-
153-183). Hillsdale, NJ: Erlbaum.)

Carbonell, J. G. (1985, March). Derivational analogy: A theory of reconstructive

Analogy in a production system architecture 297

lving and expertise acquisition (Tech. Rep. CMU-CS-85-115). Pitts-
b qw_ﬁ .N»BME?Z%W.: University, Computer Science Department.
S.Mwm_u. (1983). Structure-mapping: A theoretical framework for analogy.
Gen Cognitive Science, 7, 155-170. . .
edar-Cabelli, S. (1985, August). Purpose-directed analogy. Proceedings of
K Seventh Annual Conference of the Cognitive Science Society (pp- 150-159),
i ’ O>- .. .
—hi%?ﬁ_“..—m_cm_v. Skill in algebra. In J. R. Anderson (Ed.), Cognitive skills and
their acquisition (pp. 85—110). Hillsdale, N]J: Erlbaum.

?%

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-

A el . . —80.
d generalization: A unifying view. Machine Learning, 1, 47
33___%%. —mn.wmn Anderson, J. R. (1985). The role of _mw..:.sm ?.o:. examples
in the acquisition of recursive programming skill. Canadian Journal of
logy, 39, 240-272.) N .
womhua_w.&“.e_ .emwwmé. Remindings and their effects in learning a cogpnitive skill.
" Cognitive Psychology, 16, 371-416.)] .
Rumelhart, D. E., & Norman, D. A. (1981). >=w_o.m_nw_ processes in learning.
In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp- 335-339).
Hillsdale, NJ: Erlbaum. . . .
Shrager, J. C. (1985). Instructionless learning: Discovery of the mental device of a
complex model. Unpublished doctoral dissertation, Department of Psy-
chology, Carnegie-Mellon University, Pitsburgh. o
Van Lehn, K. (1983). Felicity conditions for human skill acquisition: Validating an
Al-based theory (Tech. Rep. CIS-21). Palo Alto, CA: Xerox Parc.
Winston, P. H. (1979, April). Learning by understanding analogies (Tech. Rep.
AIM 520). Cambridge, MA: MIT Artificial Intelligence Laboratory.
Winston, P. H., Binford, T. O., Katz, B., & Lowry, Z (1983, August). Learn-
ing physical descriptions from functional definitions, examples, and prec-
edents. Proceedings of the American Association of Artificial Intelligence,
Washington, DC.

