842

SPECIAL SECTION

THE AUTOMATED TUTORING OF
INTRODUCTORY COMPUTER

PROGRAMMING

The methodologies of artificial intelligence and the knowledge of cognitive
psychology can be used to automatically generate fine-grain tutorial
interactions, rather than having to program them manually.

JOHN R. ANDERSON and EDWARD SKWARECKI

Intelligent computer-assisted instruction (ICAI) or
intelligent tutoring [14] has long been viewed as
impractical and as something that only exists in

the research laboratory. It was common to require

a million-dollar machine to interact with one stu-
dent. and often the response time was slow. The rate
of development of intelligent educational software
was typically much slower than the industry stan-
dard for conventional computer-assisted instruction
(CAI). However, owing to dropping machine costs
and increasing knowledge in the area of cognitive
science that unites artificial intelligence and cogni-
tive psychology. these obstacles are now being over-
come. At Carnegie-Mellon University (CMU), we
have built systems that are teaching introductory
programming economically.

With the growing number of high-school and col-
lege students currently taking introductory com-
puter programming courses, sizable amounts of
faculty time are spent on course development and
instruction. Not only does this put a strain on the
already limited supply of computer science instruc-
tors. but as a result of the large lecture classes neces-
sitated by limited teaching resources, students are
not likely to get individualized attention and may
learn the material poorly. Even in ideal circum-
stances, most of the student’s learning occurs
through hands-on programming experience outside

R —
We would like to acknowledge the support of Contract N00014-84-K-0064
from the Office of Naval Research. and Contract MDA903-85-K-0343 from the
Army Research Institute. Edward Skwarecki is supported by an NSF graduate
fellowship.

'© 1986 ACM 0001-0782,86,'0900-0842 75¢

Communications of the ACM

of class and not during lectures. There is consider-
able evidence [6] that human tutors greatly improve
learning of such problem-solving skills. Significant
potential for improving the quality of programming
education and for reducing instructor work load lies
in computer-based tutoring systems that can coach
students in solving introductory programming prob-
lems.

The conventional CAI approach to this formidable
task is to first determine how a good teacher would
respond to each possible student action and then
build a branching program with each response ex-
plicitly programmed. Conventional CAI systems,
however, tend to be rather restrictive and to interact
with the student only at a course-grain size in highly
complex problem-solving domains such as computer
programming. It is not possible by conventional
means to build up to the fine-grained interactions
desired in reasonable development time. (An in-
dustry standard has been set of spending between
100 and 1000 hours to program 1 hour's worth of
computer-based instruction.) To economically
construct more effective tutors, more powerful tools
are necessary.

Our main premise is that. to construct systems
capable of automatically generating effective tutorial
dialogues. we need to incorporate precise and realis-
tic models both of how students should program and
how they actually program. The Lisp tutor [3, 11]
reflects the most extensively developed demonstra-
tion of this approach. Prior to and during develap-
ment of the Lisp tutor, we studied how students
learn to program in Lisp [1. 2, 5]. Based on this

September 1986 Volume 29 Number 9

empirical research, we constructed a number of pre-
scriptive and descriptive simulation models of sty-
dent programming in introductory Lisp courses.
With these models, we were able to simulate the
desired behavior (when prescriptive) and the stu-
dents’ actual behavior (when descriptive) to the
point of generating the symbols that constitute

the Lisp code in the order the students write these
symbols. Developed as production systems in a
production-system dialect called GRAPES [12], these
productions involve planning operations such as
those represented by the following production:’

IF the goal is to code the body of
a function involving an integer
argument

try integer recursion and set
subgoals to plan a terminating
case and a recursive case

THEN

as well as coding productions such as

IF the goal is to code a test to
see if a value is equal to zero
write down a call to the func-
tion ZEROP and set a subgoal to
code the value to be given as an
argument to the functiqn

THEN

The first production initiates a plan for coding a
recursive function, and the second codes a test to
determine whether a value (a variable or the result
of a computation) is equal to zero. These productions
set subgoals, which can in turn set other subgoals,
and so on. Executing in sequence, productions such
as these can write an entire Lisp program.

We use these cognitive theories to simulate the
different ways students write programs and to model
what students are thinking while writing them. At
any point in the problem solving, production sys-
tems can generate a wide range of simulated next
steps. The on-line tutor tries to match this full set of
simulated next steps with the observed next coding
actions of the student. The sequence of production
firings that generates the student’s actions is as-
sumed to represent what the student is thinking,
Using this assumption, the tutor can choose instruc-
tion appropriately. This process of following the stu-
dent’s behavior is called model tracing. Its goal is to
use a rich interpretation of the student’s cognitive
processes to direct the tutoring interaction.

To illustrate how this model-tracing methodology
can be applied to the tutoring of introductory pro-
gramming, we will describe the implementation of

1

These productions are given in the text with what we have called an
“Englishified" representation. The actual productions coded in GRAPES are
more precise and harder to read.

September 1986 Volume 29 Number 9

Special Section

the Lisp tutor and discuss plans for making that im-
plementation even more effective.

THE LISP TUTOR
The sidebar (on the following pages) contains a
student-tutor dialogue for coding a recursive func-
tion to calculate factorial.? These listings present
“snapshots” of the interaction; we listed the stu-
dent’s input and the tutor’s response (numbered for
convenience). The total code is shown as it appears
on the screen. The student added only what is dif-
ferent from the previous code (shown in boldface
type).?

The student started out by typing “(defun” on
the first line. The template for defining a function
then appeared:

(defun <NAME>~<PARAMETERS>-<BODY>)

The terms in angle brackets denote pieces of code
the student must supply to define the function. The
student should fill in the <NAME> slot with the
name of the function, the <PARAMETERS> slot with
the parameters of the function, and the <BODY> slot

- with the actual code. At this point in the simulation

model, there is just one production that could fire.

IF the goal is to code a Lisp
function

write DEFUN and set subgoals to
code the name of the function,
its parameters, and its body

THEN

The tutor assumes that this production represents
the student’s intentions and the student’s subgoals
are the tutor’s subgoals. Thus, the < > slot holders
in the code represent the subgoals of the simulation
model.

On Line 2, the student filled in the function name
and the parameters, and has begun specifying the
body of the function. Note that all parentheses are
automatically balanced by the tutor, and syntax is
checked.

The code for the body of the function factorial
consists of a conditional structure with two clauses.
The first clause tests for the terminating case (when
the parameter is zero) and will return 1. The second
clause is an else clause and will call the function
recursively. Although the student had some diffi-
culty with the syntax of the conditional tests in
Lines 2 and 3, the terminating case for the factorial
function was coded correctly. Typically, students

J——
?This does not present the tutor as it really appears. Instead. it shows a
“teletype” version of the tutor where the interaction is linearized. In the
actual tutor. the interaction involves updates to various windows. In the
teletvpe version. the tutor's output is given in normal type. and the student's
input is shown in bold characters.

*For instance. in Line 3 the student has added “zero” as an extension of
“(defun fact (n) (cond ((.”

Communications of the ACM

Special Section

A Student-Tutor Dialogue for Coding a Recursive Function to Calculate Factorial

Define the function fact. It takes a
number argument n angd computes the
factorial of n, which is the result of
multiplying n X n — 1 x n-—-2x:.:. X1,
For instance, (fact 3) =3X2X1=6. By
definition, the factorial of 0 is 1.

1. (defun <NAME> <PARAMETERS> <BODY>)

2. (defun fact (n)
(cond ((equal) <ACTION>)
<RECURSIVE-CASE>))

I assume that you are trying to test if
the number argument is equal to the number
zero. There is a special function for
testing equivalence to zZero. Try to use
that function instead of EQUAL.

What code can you write to test if the
condition for terminating case is true? Try
writing a predicate.

3. (defun fact (n)
(cond ((zero <ACTION>)
<RECURSIVE«CASE>))

Did you mean Zerop (y or n)? y

4. (defun fact (n)
(cond ((zerop n) 1)
<RECURSIVE~CASE>))

Is the value of fact in the recursive cases
calculated by:

PRESS: IF YOU WANT TO:
1 Calling fact recursively with n.
2 Multiplying n by fact of n minus 1.
3 Getting 1 2 ... pn and then
multiplying the results.
4 Have the tutor choose.

Menu choice: 3

have little difficulty with terminating cases, but
have great difficulty with recursive cases, The dia-
logue after Line 4 illustrates how the tutor guides
the student through a design of the recursive func-
tion. The tutor helps the student construct examples
of the relationship between fact (n) and fact
(n = 1) and then identify the general relationship.
Figure 1, page 846, shows the screen image at a criti-
cal point in the design of this function.

The dialogue after this point shows two errors stu-
dents commonly make in defining recursive func-
tions. The first error, in Line 5. is to call the function
directly without combining the recursive call with
other elements. The second error, in Line 6, is to call
the function recursively with the same argument
rather than a simpler one.

After coding the function, the student goes to the
Lisp window to experiment. The student s required

Communications of the ACM

That is a reasonable way to think of
doing factorials, but it is not a plan for
a recursive function. Since you seem to be
having trouble with the recursive cases,
let us work through some examples and
figure out the conditions and actions for
each of these cases.

The recursive relationship is the
relationship between fact called with n and
fact called with:

PRESS: IF YOU WANT TO:
1 n minus 1.
2 n equal to 0.
3 n plus 1.
4 Have the tutor choose.

Menu choice: 1

We will consider sSome concrete examples.
We will characterize the recursive
relationship between fact called with 1 ang
fact called with 0.

What is the value of (fact 1)?
Answer: 1

What is the value of (fact 0)?
Answer: 1

EXAMPLES
fact (n - 1)
(fact 0) =1

fact (n)
A. (fact 1) =1

We will consider some more concrete
examples. We will characterize the
recursive relationship between fact called
with 3 and fact called with 2.

What is the value of (fact 3)»>
Answer: 6

to trace the function, as the recursive calls embed
and then unravel. Figure 2, page 846, shows the
screen image at this point with the code on top and
the trace below it

Features of the Model-Tracing Methodology
The example in Figure 2 illustrates a number of
features of the model-tracing methodology:

* The tutor constantly monitors the student’s prob-
lem solving and provides direction whenever the
student wanders off the path.

* The tutor provides help with the overt parts of the
problem solution and the planning. However, to
address the planning, a mechanism was intro-
duced in the interface (in this case, menus) to
allow the student to communicate the planning
steps.

September 1986 Volume 29 Number 9

What is the value of (fact 2)?
Answer: 2

EXAMPLES
fact (n) fact (n—-1)
A. (fact 1) =1 (fact 0) = 1
B. (fact 3) =6 (fact 2) =2

Since there is only one recursive case
characterized by the examples, you have
Just worked out the condition in this case
can be just coded as T. We will just focus
on characterizing the action in this case.

In examples A and B, what do you have to do
to get the result of fact called with n?

PRESS: IF YOU WANT TO:
1 Multiply n by one less than n.
2 Multiply n by fact of one less
than n.
3 Add n to the result of fact called
with one less than n.
4 Have the tutor choose.

Menu choice: 2

We have now worked through a series of
examples that illustrate the recursive
relation. We will now return to the goal of
trying to produce Lisp code that specifies
the recursive relation.

5. (defun fact (n)
(cond ((zerop n) 1)
(t (fact)))

You will have to use fact at some point,
but right now you want to multiply.

¢ The interface handles details such as syntax
checking, which are irrelevant to the problem-
solving skill at hand.

¢ The interface is highly reactive in that it responds
to every symbol the student enters.

Mechanics of Model Tracing

Within the tutor is a production system consisting of
hundreds of ideal and buggy rules. We have already
seen examples of ideal rules. Below is an example of
the buggy production rule that generates the feed-
back that follows the code in Line 2.

IF the goal is to test if a value
is equal to zero
THEN use the function EQUAL and set
as subgoals to code the value
and zero

September 1986 Volume 29 Number 9

Special Section

6. (defun fact (n)
(cond ((zerop n) 1)
(t (times n (fact n)))))

You cannot just code n at this point.
What you want to do is subtract one from n.

7. (defun fact (n)
(cond ((zerop n) 1)
(t (times n (fact
(difference)))))

Difference would work in this case, but
it is more appropriate to use the function
SUB1 when you are subtracting one from a
number.

8. (defun fact (n)
(cond ((zerop n) 1)
(t (times n (fact
(subl n))))))

--- YOU ARE DONE. TYPE NEXT TO GO ON .- -
--- AFTER TESTING THE FUNCTIONS YOU .- -
--- HAVE DEFINED ---

THE LISP WINDOW

=> (trace fact)
(fact)

=> (fact 3)

1 <Enter> fact (3)

|2 <Enter> fact (2)

| 3 <Enter> fact (1)
| |4 <Enter> fact (0)
| |4 <EXIT> fact 1.
| 3 <EXIT> fact 1
|2 <EXIT> fact 2

1 <EXIT> fact 6

6

Associated with the error in Line 5 is the following
buggy production:

IF the goal is to perform an opera-
tion on a recursive call to a
function

THEN use that function and set as
subgoals to write the arguments
to that function

Both of these buggy productions are attached to
natural-language templates that are instantiated to
provide the feedback that follows the error.
Altogether the tutor has over 1200 productions
(correct and buggy) to model student performance in
our lessons, which cover all the basic syntax of Lisp,
design of iteration and recursive functions, use of
data structures, and means-ends planning of code.

Communications of the ACM 845

In examples A and B, what do you have to
do to get the result of fact called with

n?
PRESS: IF YOU WANT TO:
1. Multiply n by one less than n.
2. Multiply n by fact of one less
than n.
3. Add n to the result of fact
called with one less than n.
4. Have the tutor choose.

Menu Choice: 2

CODE FOR fact

(defun fact (n)
(cond ((zerop n) 1)
<RECURSIVE-CASE>))

EXAMPLES
fact (n) fact (n — 1)
A. (fact 1) =1 (fact 0) = 1
B. (fact 3) = 6 (fact 2) = 2

FIGURE 1. The Screen Configuration before Line 5 in the Sidebar

--- YOU ARE DONE. TYPE NEXT TO GO ON ---
--- AFTER TESTING THE FUNCTIONS YOU ---
--- HAVE DEFINED R

(defun fact (n)
(cond ((zerop n) 1)
(t (times n (fact (subl n))))))

THE LISP WINDOW

=> (trace fact)
(fact)

=> (fact 3)

1 <Enter> fact (3)

|2 <Enter> fact (2)

| 3 <Enter> fact (1)
| |4 <Enter> fact (0)
| |4 <EXIT> fact 1
| 3 <EXIT> fact 1
|2 <EXIT> fact 2

1 <EXIT> fact 6

6

FIGURE 2. The Screen Configuration at the End
of the Dialogue in the Sidebar

ISSUES RAISED BY THE LISP TUTOR

We think the Lisp tutor project was very successful.
We produced a viable piece of software that teaches
a one-semester course at CMU and is now available
as a commercial product. Comparisons with other

Communications of the ACM

teaching modes have shown that students do better
with the Lisp tutor than they do in courses where
they simply write programs in ordinary Lisp envi-
ronments. although they do not do as well as they
would if they had a private human tutor. Typical
results show students scored one letter grade higher
on final written tests when they worked with the
tutor. Having established a functioning tutoring par-
adigm. the issue now is how to embellish the tutor
so that it can match or surpass the effectiveness of a
human tutor. Although the current system, running
on DEC MicroVaxes. is cost-effective in an environ-
ment such as CMU, we would like to work toward a
more efficient and affordable system. Below we dis-
cuss a number of dimensions for improvement.

Interaction

The interaction style with the Lisp tutor is quite
restrictive. First. coding must be top-down. It is not
possible to generate a piece of code “inside-out” and
insert it in a slot. Second. the program is generated
in a strictly left-to-right manner. Students cannot
code the body of a loop before the initialization. for
instance. Third. the tutor reacts to each symbol as
the student types it. A student cannot create and .
edit a sequence of symbols before getting feedback
from the tutor on any of the symbols.

Each of these features in the tutor has pedagogical
motivations. There are reasons to believe that, on
average, top-down and left-to-right programming is
in fact the correct style. Immediate feedback on de-
cisions is usually best. There are technical motiva-
tions as well: Such a tutor can be implemented more
efficiently than a more flexible tutor. However. the
pedagogical considerations are only approximate—
there are situations where the correct problem-
solving strategy would be inside-out and where it
would be wiser to delay feedback.

For example, one of the problems of immediate
feedback in programming is that the student might
not have established enough context in the program
to explain why a particular piece of code is wrong.
One of the advantages of the Proust system [10] is
that it waits until the program is complete to give
feedback. However. delaved feedback proves diffi-
cult in terms of pedagogical effectiveness. What is
needed is a system that can choose more strategi-
cally when to give feedback.

Another less-than-perfect aspect of the Lisp tutor
is that it is limited to entering into rather restrictive
dialogues. Improving the dialogue capability would
improve instruction. To produce high-quality dia-
logue, however, considerable amounts of computa-
tion are required: and this conflicts with the need
for rapid response.

September 1986 Volume 29 Number 9

Efficiency

We must distinguish between the interpretive Lisp
tutor and the compiled Lisp tutor in discussing the
tutor’s efficiency. In the interpretive tutor, the pro-
duction svstem simulates the student at instruction
time. In contrast, the compiled tutor’s production
system generates all possible simulated behaviors in
advance and records them in a data structure for use
during tutoring. The original interpretive Lisp tutor
is still used to develop new instructional material.
The compiled tutor is used to deliver actual instruc-
tion. For a similar idea, see Sleeman [13].

Since student modeling is a significant source of
computation, both a 50 percent time and space sav-
ings are achieved with the compiled tutor. It may
seem odd that there is a space savings associated
with compiling these problem solutions because all
problem solutions must be explicitly represented
rather than only having them implicitly in the tutor.
However, representing 1200 productions and their
partial instantiations is also space-expensive in the
GRAPES production system, which has a pattern-
matching algorithm modeled after the RETE algo-
rithm, which explicitly trades space for time [8].

We do not believe that the strategy of advance
compiling of the intelligence that goes into instruc-
tion has been exploited to its full potential in the
current tutor.

Software Engineering
The Lisp tutor compares favorably with standards
for developing educational software. We built an
intelligent computer-assisted system for an entire
introductory programming course with the time
investment typically associated with development of
conventional CAI. The system delivers 30-40 hours
worth of instruction with the investment of about
three person-vears (i.e., 6000 hours). Moreover, we
are currently producing remedial material at the
rate of 1 hour's worth of remediation for each
week’s work (40 hours) from nonspecialists (i.e., un-
dergraduates without artificial intelligence training).
Nonetheless, the design of the tutor has unneces-
sarily slowed down development and frustrated our
efforts to produce optimizations of the code. Compo-
nents of the code are unnecessarily intertwined cre-
ating the need for a great deal of coordination. We
would like to improve the modularity of the tutor to
speed the development cycle.

THE PUPS TUTORING ARCHITECTURE

We are currently working on what we have dubbed
the PUPS Tutoring Architecture (PTA). which is an
attempt to address the issues raised by the Lisp tu-

September 1986 Volume 29 Number 9

Special Section

tor. We have two major goals. First, we want to base
it on the PUPS production system [4]. which is cur-
rently our best approximation to the architecture of
human problem solving and which has a great deal
more flexibility in its flow of control than the
GRAPES system used in the Lisp tutor. Using PUPS,
the tutor can follow a student who chooses to pro-
gram in a non-left-to-right manner. Unlike the strict
left-to-right coding order in the Lisp tutor. at any
given time in the PUPS tutor the student can choose
to expand any nonterminal symbol in the partially
completed program. Second, we would like to gener-
alize our experience with the Lisp tutor to tutor an
introduction to any programming language. The lan-
guages targeted for demonstration are Lisp, Prolog,
and Ada. Rather than creating a series of indepen-
dent tutors, we have begun to devise a prototypical
system architecture that can be instantiated to pro-
duce efficient tutors for different languages.

Overview

The PTA differs from the Lisp tutor in several ways.
The PUPS architecture strives for maximum modu-
larity to increase maintainability and to cleanly par-
tition the features specific to each language being
taught from the general-purpose tutoring apparatus.
In addition, the compile-and-tutor strategy is more
fully exploited to produce a faster interactive sys-
tem. Finally, the PTA contains a more flexible inter-
nal knowledge representation to facilitate interface
improvements such as delayed-feedback interaction
style.

Experimental versions of almost all of the compo-
nents of the PTA have been implemented, although
we have not integrated them or developed a curricu-
lum that can be used in an actual instructional set-
ting. Figure 3, page 848, illustrates the organization
of the PTA. The PTA contains two major compo-
nents: a tutoring engine and a problem solver. The
tutoring engine interactively assists the students
step-by-step as they write programs. To determine
the correctness of a student’s actions and to decide
which feedback messages to provide, the tutoring
engine refers to a data structure called the solution
trace, constructed in advance by the problem solver.
The problem solver generates the solution trace for
each programming exercise by running a PUPS sim-
ulation of the ideal and buggy student behavior in-
volved in completing that exercise and bv attaching
the appropriate tutorial actions to that trace.

Key Features

It may seem that we are striving for contradictory
goals in designing the PTA—more generality, intelli-
gence. and flexibility on the one hand and greater

Communications of the ACM

847

Special Section

Initial problem » PUPS production Ideal and buggy

specification system . student model

| |

l A !)

| |

Tutoring Search I I
rules module)

Problem solver

’

Solution trace
| |

Tut . Student's Tutoring I Individual |

utoring engine partial control student

solution module model

User's <o Tutoring

terminal | ——— yser interface = strategy

o o 0 0C <. e o o o s 0 0 e s e e . o' modu‘e
e 0 0 0

= Data flow
ceenree = Control flow
FIGURE 3. The Overall Structure of the PUPS Tutoring Architecture

efficiency and economy on the other. However, the
key insight is that we do not have to achieve these
two goals simultaneously. The partition in Figure 3
between the problem solver and the tutoring engine
allows us to achieve the two separately. It no longer
matters if the system spends minutes calculating ex-
actly how to respond to a particular error because
this is done off-line during the construction of the
solution trace where real-time computation is not an
issue. Also, using an expensive machine to generate
the solution trace is not a drawback because only
one such machine is needed. Once constructed, the
solution trace can be copied and distributed for use
by students on very economical computers.

The principal concept in the implementation of
the PUPS tutor is the solution trace. It is an econom-
ical representation of possible code a student might
type, with buggy code tagged with precomputed tu-
torial interactions as well as an abstract specification
of the set of possible correct solutions a student
might generate to solve a problem. The solution
trace is abstract in the following senses:

Communications of the ACM

o If there are multiple ways to achieve coding goals

1 and 2 and these ways are independent, it does
not represent all combinations of the two sets of
code.

e It does not explicitly represent the order of logi-

cally unordered portions of code.

It does not represent the order in which the stu-
dent actually enters the code.

The size of the solution trace is not trivial. but its
size is small relative to the number of possible stu-
dent interactions. To represent a given program used
in the Lisp tutor, we often have to store upwards of a
hundred abstract programming options that can be
combined to generate thousands of concrete pro-
grams that can be programmed in literally millions
of orders. For instance, the very simple factorial pro-
gram (sidebar, pp. 844-845) has 8 abstract programs
reflecting decisions such as whether to count up or
down and whether to code the function recursively
or iteratively. These 8 abstract programs map into 64
actual programs, ignoring things such as different

September 1986 Volume 29 Number 9

choices for variable names. There are thousands of
ways, aside from the basic left-to-right coding, the
student could write each of these programs.

The solution trace is a code-centered representation
because it is built around the actual code that the
student might write. The code-centered solution
trace offers a compromise between standard CAI and
standard ICAI. As with standard CAI, the tutorial
interactions are already represented before the tu-
toring interaction, and they do not have to be dy-
namically computed. This yields computational effi-
ciency and economy. However, as with ICAI we do
not have to go through the laborious effort of con-
structing the tutorial interactions by hand. This
speeds software development. The system’s intelli-
gence lies primarily in its ability to automatically
generate tutorial interactions. Another advantage
over standard CALl is the abstractness of the code-
centered representation, which eliminates the need
to specify all possible interactions. Thus, it is possi-
ble to follow the student in detail down many possi-
ble paths and to be highly flexible about what the
student is allowed to do—these have always been
goals of ICAL

The code-centered representation can be thought
of as an annotated answer sheet. The tutoring pro-
cess involves uncovering portions of this sheet in
response to the student’s actions. Each time the stu-
dent performs a legal step, the corresponding portion
of the solution is displayed. When the student makes
an error, the tutor prints a suitable message stored at
the location in the program where the error was
anticipated. Since each piece of code is associated
with the name of the production rule that produced
it during the student simulation, the tutor can inter-
pret each uncovering operation as a coding action.
The student’s partial solution thus forms an overlay
of the code-centered solution trace. Since editing ac-
tions reported by the user interface map directly
onto commands to uncover specific portions of the
solution trace, the interactive stage of student inter-
Pretation handled by the tutoring engine becomes
simpler.

Current Implementation Efforts

We have recently begun to implement the PUPS ar-
chitecture and have developed a rudimentary tutor
for small subsets of Ada, Lisp, and Prolog. We plan to
implement our tutoring engine using an existing
structure editor from the MacGnome programming
environment (7] recently constructed at CMU for
the Apple Maclntosh. Using an efficient conditional
display mechanism [9] to implement our answer-
uncovering scheme, we hope to construct a highly
modular and affordable MacIntosh tutoring engine
that can be made available to students.

September 1986 * Volume 29 Number 9

Special Section

CONCLUSION

This article has focused mainly on the technical
progress that has been made while implementing in-
telligent tutors for computer programming. However,
it should be stressed that studying students working
with these tutors is leading to a better understanding
of the programming process itself. Essentially, intel-
ligent tutors serve as tools for collecting data about
programming behavior and for producing experi-
mental manipulations. Given that the effectiveness
of these tutors is predicated on our understanding
the cognitive processes involved in programming, we
expect our research with them to lead to improved
tutoring based on a deeper understanding of pro-
gramming.

REFERENCES

1. Anderson, J.R.. and Jeffries. R. Novice LISP errors: Undetected losses
of information from working memory. Hum.-Comput. Interaction 1, 2
(1985). 107-131.

2. Anderson. J.R.. and Kessler. C.M. A model of novice debugging in
LISP. In Empirical Studies of Programmers, E. Soloway and S.S. Iyen-
gar. Eds. Ablex, Norwood, N.J., 1986.

3. Anderson, J.R., and Reiser. B.]. The LISP tutor. Byte 10, 4 (Apr. 1985),
159-175.

4. Anderson,].R., and Thompson, R. Use of analogy in a production
system architecture, 1986. Unpublished manuscript.

5. Anderson. |.R.. Farrell, R., and Sauers, R. Learning to program in
LISP. Cognitive Sci. 8, 2 (Apr.-June 1984), 87-129.

6. Bloom. B.S. The 2 Sigma Problem: The search for methods of group
instruction as effective as one-to-one tutoring. Educ. Res. 13 (1984),
3-16.

7. Chandhok, R.. Garlan, D.. Goldenson, D., Tucker. M., and Miller, P.
Programming environments based on structure editing: The
GNOME approach. In Proceedings of the 1985 National Computer Con-
ference (July). IFIPS Press, 1985.

8. Forgy, C.L. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artif. Intell. 19, 1 (1982), 17-37.

9. Garlan, D. Flexible unparsing in a structure editing environment.
Tech. Rep. CMU-CS-85-129, Computer Science Dept., Carnegie-
Mellon Univ., Pittsburgh, Pa., Apr. 1985.

10. Johnson, M.L.. and Soloway, E. PROUST: An automatic debugger for
Pascal programs. Byte 10, 4 (Apr. 1985), 179-190.

11. Reiser. B.J.. Anderson, J.R.. and Farrell, R.G. Dynamic student
modelling in an intelligent tutor for LISP programming. In Proceed-
ings of IJCAI-85 (Los Angeles, Calif.). IJCAL 1985, pp. 8-14.

12. Sauers, R.. and Farrell. R. GRAPES user’s manual. Tech. Rep.,
Psychology Dept.. Carnegie-Mellon Univ., Pittsburgh, Pa., 1982.

13. Sleeman. D. Inferring student models for intelligent computer-aided
instruction. In Machine Learning, R.S. Michalski,].G. Carbonnel. and
T.M. Mitchell. Eds. Tioga, Palo Alto. Calif., 1983.

14. Sleeman, D.. and Brown. |.S.. Eds. Intelligent Tutoring Systems. Aca-
demic Press, New York. 1982.

CR Categories and Subject Descriptors: H.1.2 [Models and Systems):
User/Machine Systems—human factors, human information processing:
1.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms
and Methods—representations (procedural and rule based); .4 [Social and
Behavioral Sciences]—psychology: K.3.1 [Computers and Education]:
Computer Uses in Education—computer-assisted instruction (CAI); K.3.2
[Computers and Education]: Computer and Information Science Educa-
tion—computer science education

General Terms: Design. Human Factors

Additional Key Words and Phrases: cognitive modeling. cognitive
science. intelligent computer-assisted instruction, intelligent tutoring
systems

Authors’ Present Address: John R. Anderson and Edward Skwarecki.
Carnegie-Mellon University, Pittsburgh. PA 15213.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage. the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

Communications of the ACM

849

