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Abstract

A rational analysis tries to predict the behavior
of a cognitive system from the assumption it is
optimized to the environment. An iterative
categorization algorithm has been developed
which attempts to get optimal Bayesian estimates
of the probabilities that objects will display
various features. A prior probability is estimated
that an object comes from a category and
combined with conditional probabilities of
displaying features if the object comes from the
category.  Separate Bayesian treatments are
offered for the cases of discrete and continuous
dimensions. The resulting algorithm is efficient,
works well in the case of large data bases, and
replicates the full range of empirical literature in
human categorization.

A rational analysis (Anderson, 1990) is an attempt to
specify a theory of some cognitive domain by
specifying the goal of the domain, the statistical
structure of the environment in which that goal is
being achieved, and whatever computational
constraints the system is operating under. The
predictions about the behavior of the system can be
derived assuming that the system will maximize the
goals it expects to achieve while minimizing
expected costs where expectation is defined with
respect to the statistical structure of the environment.
This approach is different from most approaches in
cognitive psychology because it tries to derive a
theory from assumptions about the structure of the
environment rather than assumptions about the
structure of the mind.

We have applied this approach to human
categorization and have developed a rather effective
algorithm for categorization. The analysis assumes
that the goal of categorization is to maximize the
accuracy of predictions about features of new objects.
For instance, one might want to predict whether an
object is dangerous or not. This approach to
categorization sees nothing special about category
labels. The fact an object might be called a tiger is
just another feature one might want to predict about
the object.

Michael Matessa
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

The Structure of the Environment

It is an interesting question what kind of structure we
can assume of the environment in order to drive
prediction. The theory developed rested on the
structure of biological categories produced by the
phenomenon of species. Species form a nearly
disjoint partitioning of the natural objects because of
the inability to interbreed. Within a species there is a
common genetic pool which means that individual
members of the species will display particular feature
values with probabilities that reflect the proportion of
that phenotype in the population. Another useful
feature of species structure is that the display of
features within a freely-interbreeding species is
largely independent. Thus, there is little relationship
between size and eye color in species where those
two dimensions vary. Thus, the critical aspects of
speciation is the disjoint partitioning of the object set
and the independent probabilistic display of features
within a species.

An interesting question is whether other types of
objects display these same properties. Another
common type of object is the artifact. Artifacts
approximate a disjoint partitioning but there are
occasional exceptions--for instance, mobile homes
which are both homes and vehicles. Other types of
objects (stones, geological formations, heavenly
bodies, etc) seem to approximate a disjoint
partitioning but here it is hard to know whether this is
just a matter of our perceptions or whether there is
any objective sense in which they do. One can use
the understanding of speciation for natural kinds and
understanding of the intended function in
manufacture for artifacts to objectively assess the
hypothesis of a disjoint partitioning.

We have taken this disjoint, probabilistic model of
categories and used it as the understanding of the
structure of the environment for doing prediction
about object features. To maximize the prediction of
features of objects we need to induce a disjoint
partitioning of the object set into categories and
determine what the probability of features will be for
each category. The ideal prediction function would
be described by the following formula:

Pred;; = Y P(xIF,)Prob,(jlx)
P
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where Predij is the probability an object will display a
value j on a dimension i which is not observed for
that object, the summation is across all possible
partitionings of the n objects seen into disjoint sets,
P(xIF,) is the probability of partitioning x given the
objects display observed feature structure F,, and
Prob, (jlx) is the probability the object in question
would display value j on dimension i if x were the
partition. The problem with this approach is that the
number of partitions of n objects grows exponentially
as the Bell exponential number (Berge, 1971).
Assuming that humans cannot consider an
exponentially exploding number of hypothesis we
were motivated to explore iterative algorithms such
as those developed by Fisher (1987) and Lebowitz
(1987).

The following is a formal specification of the
iterative algorithm:

1. Before seeing any objects, the category
partitioning of the objects is initialized
to be the empty set of no categories.

2. Given a partitioning for the first m
objects, calculate for each category k
the probability P, that the m+1st object
comes from category k. Let P be the
probability that the object comes from a
completely new category.

3. Create a partitioning of the m+1 objects
with the m+1st object assigned to the
category with maximum probability.

4. To estimate the probability of value j on
dimension i for the n+lst object
calculate

Pred; = Y P, P(ijik)
k

where P, is the probability the n+Ist object comes
from category k£ and P(ij/k) is the probability of
displaying value j on dimension i.

Equation 1

The basic algorithm is one in which the category
structure is grown by assigning each incoming object
to the category it is most likely to come from. Thus,
a specific partitioning of the objects is produced.
Note, however, that the prediction for the new n+1st
object is not calculated by determining its most likely
category and the probability of j given that category.
This calculation is performed over all categories.
This gives a much more accurate approximation to
the ideal Predij because it handles situations where
the new object is ambiguous between multiple
categories. It will weight approximately equally
these competing categories.

The algorithm is not guaranteed to produce the
maximally probable partitioning of the object set
since it only considers partitionings that can be
incrementally grown. It also does not weight

multiple possible partitionings as the ideal algorithm
would. In cases of strong category structure, there
will be only one probable partitioning and the
iterative algorithm will uncover it. In cases of weak
category structure, it will often fail to obtain the ideal
partitioning, but still the predictions obtained by
Equation 1 closely approximate the ideal quantity
because of the weighting of multiple categories. We
observe correlations about .95 between the
predictions of our algorithm and the ideal quantities
in cases of small data sets.

It remains to come up with a formula for
calculating P, and P(ij/k). Since P(ij/k) proves to be
involved in the definition of Py, we will focus on P,.
In Bayesian terminology P, is a posterior probability
P(k{F) that the object belongs to category k given that
it has feature structure F. Bayes formula can be used
to express this in terms of a prior probability P(k) of
coming from category k before the feature structure is
inspected and a conditional probability P(F/k) of
displaying the feature structure F given that it comes
from category k.

P(k)P(Flk)

Y, PMPFI)
k Equation 2

where the summation in the denominator is over all
categories k currently in the partitioning including the
potential new one. This then focuses our analysis on
the derivation of a prior probability P(k) and a
conditional probability P(F/k).

Prior Probability

With respect to prior probabilities the critical
assumption is that there is a fixed probability ¢ that
any two objects come from the same category and
this probability does not depend on the number of
objects seen so far. This is called the coupling
probability. If one takes this assumption about the
coupling probability between two objects being
independent of the other objects and generalizes it,
one can derive a simple form for P(k) (See Anderson,

P, = P(F) =

1990, for the derivation):

cny
(I-¢) + cn

where c is the coupling probability, n, is the number
of objects assigned to category k so far, and » is the
total number of objects seen so far. Note for large n
this closely approximates n,/n which means that we
have a strong base rate effect in these calculations
with a bias to put new objects into large categories.
Presumably the rational basis for this is apparent.

We also need a formula for P(0) which is the
probability that the new object comes from an

Pk) = Equation 3



entirely new category. This is
(1-c)

P = (I-c) + ¢n

Equation 4

For large n this closely approximates (I-c)/cn
which is again a reasonable form--i.e., the probability
of a brand new category depends on the coupling
probability and number of objects seen. The greater
the coupling probability and the more objects, the
less likely it is that the new object comes from an
entirely new category.

Conditional Probability

We can consider the probability of displaying
features on various dimensions given category
membership to be independent of the probabilities on
other dimensions. Then we can write

P(F) = [T PGtk Equation 5

Where P(ijlk) is the probability of displaying value
Jj on dimension i given that one comes from category
k.

This independence assumption does not prevent us
from recognizing categories with correlated features.
Thus, we may know that being black and retrieving
sticks are features found together in labradors. This
would be represented by high probabilities of the
stick-retrieving and the black features in the labrador
category. =~ What the independence assumption
prevents us from doing is representing categories
where values on two dimensions are either both one
way or both the opposite. Thus, it would prevent us
from recognizing a single category of animals which
were either large and fierce or small and gentle, for
instance. However, this turns out not to be a very
serious limitation. What our algorithm does in this
case is to spawn a different category to capture each
two-feature combination--it would create a category
of large and fierce creatures and another category of
small and gentle creatures.

The effect of Equation (5) is to focus us down on
an analysis of the individual P(ij/k). Derivation of
this quantity is itself an exercise in Bayesian analysis.
We will treat separately discrete and continuous
dimensions.

Discrete Dimensions

The basic Bayesian strategy for doing inference along
a dimension is to assume a prior distribution of
values along the dimension, determine the
conditional probability of the data under various
possible values of the priors, and then calculate a
posterior distribution of possible values. The
common practice is to start with a rather weak

distribution of possible priors and as more and more
data accumulates come up with a tighter and tighter
posterior distribution.

In the case of a discrete dimension, the typical
Bayesian analysis (Berger, 1985) is to assume that
the prior distribution is a Dirichlet density. For a
dimension with m values a Dirichlet distribution is

characterized by m parameters o;. We can define

a0=zj ;. The mean probability of the jth value is p,
= oo, The value o reflects the strength of belie
in these priors probabilities, p; The data after n
observations will consist of a set of C; counts of
observations of value j on dimension i. 'ﬂw posterior
distribution of probabilities is also a Dirichlet
distribution but with parameters o.+C.. This implies
that the mean expected value of displaying value j in
dimension i is (04 +C;)/2, (e¢+C)). This is P(ijik) for
Equation 5:
C + o

PGiflk) = —
et %
where n, is the number of objects in category k which
have a value on dimension i and C; is the number of
objects in category k with the same value as the
object to be classified. For large n, this approximates
C/nk which one frequently sees promoted as the
rational probability. However, it has to have this
more complicated form to deal with problems of
small samples. For instance, if one has just seen one
object in a category and it has had the color red, one
would not want to guess that all objects are red. If
we assume there are seven colors and all the o, were
1, the above formula would give 1/4 as the posterior
probability of red and 1/8 for the other six colors
unseen as yet.

Equation 6

Continuous Dimensions

Application of Bayesian inference schemes to
continuous dimensions is more problematic but there
is one approach that appears most tractable (Lee,
1989). The natural assumption is that the variable is
distributed normally and the induction problem is to
infer the mean and variance of that distribution. In
standard Bayesian inference methodology we must
begin with some prior assumptions about what the
mean and variance of this distribution is. It is
unreasonable to suppose we can know in advance
what the precisely what either the mean and variance
will be. Our prior knowledge must take the form of
probability densities over possible means and
variances. This is basically the same idea as in the
discrete case where we had a Dirichlet distribution
giving priors about probabilities of various values.
The major complication is the need to state separately
prior distributions for mean and variance.



The tractable suggestion for the prior distributions
is that the inverse of the variance XZ is distributed
according to a chi-square distribution and the mean
has a nomal distribution. Given these priors, the
posterior distribution of values x on a continuous
dimension i for category k, after n observations has
the following t distribution:

fiodk) ~ ¢, (n,0,NT+1/A)  Equation 7
The parameters a, W, O, and A, are defined as
follows:

A = Ag+n Equation 8
a;, = ay+n Equation 9
Aolto + X .

B, = —W Equation 10

Agn

, O+ (n=D)s? + A5 n(F — o)
Gl =

ao +n
Equation 11

where X is the mean of the n observations and s? is
their variance. These equations basically provide us
with a formula for merging the prior mean and
variance, |1, and 6,2, with the empirical mean and

variance, xand sZ, in a manner that is weighted by our
confidences in these priors, A, and a,,.

Equation 7 for the continuous case describes a
probability density which serves the same role as
Equation 6 for the discrete case which describes a
probability. The product of conditional probabilities
in Equation 5 will then be a product of probabilities
and density values. Basically, Equations (5), (6), and
(7) give us a basis for judging how similar an object
is to the category’s central tendency.

Conclusion

This completes our specification of the theory of
categorization. Before looking at its application to
various empirical phenomena a word of caution is in
order. The claim is not that the human mind
performs any of the Bayesian mathematics that fills
the preceding pages. Rather the claim of the rational
analysis is that, whatever the mind does, its output
must be optimal. The mathematical analyses of the
preceding pages serve the function of allowing us, as
theorists, to determine what is optimal.

A second comment is in order conceming the
output of the rational analysis. It delivers a
probability that an object will display a particular
feature. There remains the issue of how this relates
to behavior. Our basic assumption will only be that
there is a monotonic relationship between these
probabilities and behavioral measures such as
response  probability, response latency, and
confidence of response. The exact mapping will
depend on such things as the subject’s utilities for
various possible outcomes, the degree to which
individual subjects share the same priors and
experiences, and the computational costs of achieving
various possible mappings from rational probability
to behavior. These are all issues for future
exploration. What is remarkable is how well we can
fit the data simply assuming a monotonic
relationship.

Application of the Algorithm

We have applied the algorithm to a number of
examples to illustrate its properties. The algorithm is
quite efficient. @A Franz LISP implementation
categorized the 290 items from Michalski and
Chilausky’s data set on Soybean disease (each with
36 values) in 1 CPU minute on a Vax 780 or a MAC
II. This is without any special effort to optimize the
code. It also diagnosed the test set of 340 soybean
instances with as much accuracy as apparently did
the original system of Michalski and Chilausky.

The algorithm has been applied to the full range of
psychological ~ experiments in  categorization.
Detailed discussions can be found in Anderson (in
press) and Anderson & Matessa (in preparation).
However, we will review here in varying detail the
applications of the algorithm to 10 empirical
phenomena. All these simulations were done with a
constant setting of the parameters: ¢ from Equation 3
and 4 at .3, o from Equation 6 at 1, A, from Equation
8 at 1, a, from Equation 9 at 1, p, from Equation 10

at the mean of the stimuli, and 6,2 from Equation 11
at the square of 1/4 the stimulus range. All of these
are plausible settings and often correspond to
conventions for setting Bayesian non-informative
priors. The following are among the empirical
phenomena we have successfully simulated:

1. Extraction of Central Tendencies, Continuous
Dimensions The Bayesian model for continuous
dimensions implies that categorization should vary
with distance from central tendency. This enables the
model to simulate the data of Posner & Keele (1968)
on categorization of dot patterns and Reed (1972) on
categorization of faces. Let us consider the
experiment of Reed in a little detail:

Reed (1972) had subjects learn to categorize the 10



faces which are illustrated in Figure 1. The first row
of faces are in one category and the second row of
faces are in another category. The two sets of faces
are deviations from underlying prototypes. After
studying these faces subjects went to a test condition
where they had to try to classify these and other
faces. The critical data concerns the probability with
which subjects assigned faces to conditions. As a
general characterization, their categorization varied
with distance of the face from the prototype.

Figure 1
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In our attempt to simulate these data we treated
these faces as five-dimensional stimuli where the
dimensions are height of the forehead which ranged
from 54 to 88 mm, distance separation of the eyes
which ranged from 20 to 55 mm, length of the nose
which ranged from 32 to 64 mm, height of the mouth
which ranged from 28 to 60 mm, and category label
which was a binary-valued discrete dimension. Our
rational model identified two or more internal
categories, depending on presentation order, that
corresponded to the experimenter’s categories. That
is, sometimes it subdivided the experimenter’s
categories into subcategories but it almost never
merged items from the two experimenter categories
into an internal category. Reed’s subjects were asked
to classify 25 test stimuli and the major test of our
model was its classification of these test stimuli.
Overall its confidence of category membership
(calc?lated by Equation 1) correlated .90 with Reed’s
data.

2. Extraction of Central Tendencies, Discrete
Dimensions The model implies that stimuli should be
better categorized if they display the majority value
for a dimension. This enabled the model to simulate
the data of Hayes-Roth & Hayes-Roth (1977), for
instance.

3. Effect of Individual Instances If an instance is

!We would like to thank Stephen Reed for making his data
available.
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sufficiently different than the central tendency for its
assigned category, the model will form a distinct
category for it. This enables the model to account for
the data of Medin & Schaffer (1978) on discrete
dimensions and Nosofsky (1988) on continuous
dimensions. Let us consider the experiment of
Nosofsky:

Figure 2
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Nosofsky trained his subjects on 12 stimuli that
varied in brightness and saturation. The colors varied
in brightness on the Munsell scale from 3 to 7 and in
saturation from 4 to 12. In the base condition
subjects had four trials on each item and were then
tested. In the first experiment there was a condition
E2 in which subjects saw stimulus 2 approximately 5
times as frequently and a condition E7 in which they
saw stimulus 7 approximately 5 times as frequently.
Part (a) of Figure 2 illustrated probability of
classification in Category 2. As can be seen subjects
are sensitive to the frequency manipulation. Part (b)
of Figure 2 shows the probability our model assigned
to a Category 2 response given the same experience.
The overall correlation between data and theory is
.98.

4, Linearly Separable versus Non-Linearly
Separable Categories Unlike some categorization
models this model is able to learn categories that
cannot be separated by a plane in a n-dimensional




hyperspace. This is because it can form multiple
internal categories to correspond to an experimenter’s
category. This enables the model to account for the
data of Medin & Schwanenflugel (1981) on discrete
dimensions and Nosofsky, Clark, & Shin (1989) on
continuous dimensions. Let us consider the
experiment of Medin & Schwanenflugel. They
performed an experiment where linearly non-
separable catégories were learned better than linearly
separable categories.

Table 1 illustrates the material used by Medin &
Schwanenflugel (1981). In the case of the linearly
separable categories our model formed separate
categories for each stimulus. In the case of linearly
non-separable, it merged the first 2 in category A into
an internal category, the second 2 in category A, and
the first, second, and fourth in category B. Thus, only
stimulus 3 in category B was in a singleton category
and this was the stimulus that produced the highest
error rate in the non-separable condition.

Table 1
LINEARLY CEPARAGLE CATEGORIES
CATEGORY A CAIEGORY 8
DIMENSION QIMENSION
EXEMPLAR D, 0, Dy Dy EXEMPLAR D) 0 O304
A 0 8, 101 0
A, o 1 8, o1+ 0
Ay 0 By 0 001
' o 1 8, 1100
AT RI T _LINEARLY ARA|
TEGORY 4 CATEGORY A
DIMENSION . DIMENSION
EXEMPLAR 0, D, Dy Oy EXEMPLAR D, D, DyD,
A, 1000 8, 000 |
A, 10+ 0 Bz o1+ 00
Ay [ N | B8y 10
A, 0 11 8, 0000

5. Basic-Level Categories The internal categories
that the model extracts corresponds to what Rosch
(1976) meant by basic-level categories.2 Thus, it can
simulate the data of Murphy & Smith (1982) and
Hoffman & Ziessler (1983). We will describe the
application to Murphy and Smith.

Murphy and Smith presented to their subjects 16

ZRosch’s idea of a basic level is that there is a level in the
generalization hierarchy to which we first assign objects. For
instance, she argues we would first see an object as a bird not a
sparrow or an animal.

objects identified as examples of fictitious tools. The
structure of the material, as encoded by Gluck and
Corter (1985), is illustrated in Table 2. There were
two superordinate categories which divided into 4
intermediate categories, which divided into 8
subordinate categories. Table 2 gives the attribute
description of each category. Subjects were fastest to
classify the material at the intermediate level which
Murphy and Smith intended to be the basic level.
Objects at this level had two attributes plus two labels
in common. Only one additional feature and label
was gained at the subordinate level, and all features
were lost at the superordinate level except for their
feature of being a pounder or a cutter.

Table 2

Gluck and Corter's Analysis of the Feature Structure of the Material from
Murphy & Smith (1982)

Categories Attributes
Super- Inter- Sub-

Item # ordinate mediate ordinate Handle Shaft Head Size
1. Pounder Hammer Hammer! 2 2 0 0
2. 2 2 0 1
3. Hammer 2 2 2 1 0
4. 2 2 1 0
S. Brick Brickl 0 3 4 ]
6. 0 3 4 i
7. Brick 2 1 3 4 0
8. 1 3 4 1
9. Cutter Knife Knifel 3 4 2 0

10. 3 4 2 1

1. Knife2 3 4 3 0

12 3 4 3 1

13. Pizza C. P.C.1 4 0 H 0

14. 4 ] 5 1

15. P.C2 4 1 s 0

4 1 5 1

We modeled this material by encoding the stimuli
as 7-dimensional objects with dimensions for the
superordinate label (2 values), the intermediate label
(4 values), the subordinate label (8 values), handle (5
values), shaft (5 values), head (6 values), and size (2
values). What category structure was obtained
depended upon the value of the coupling probability.
For ¢ > .96 all were merged into one category; for .95
> ¢ > .8 the two superordinate categories emerged;
for .8 > ¢ > .4 the model fluctuated between the
superordinate and intermediate categories depending
on presentation order; for .4 > ¢ > .2 it extracted just
the intermediate categories; for 2 > ¢ > .05 it
basically extracted the intermediate categories with
an occasional singleton category or subordinate
category; for ¢ < .05 it extracted only singleton
categories. In summary, the subordinate categories
never emerged and only a very high levels of ¢ did
superordinate categories dominate. At the value of ¢
used in the simulations of this paper (c = .3) only the
basic level categories emerged. Thus, it seems fair to
conclude that the analysis agrees with the subjects as
to what the basic level is.

6.  Probability Matching Faced with truly
probabilistic categories and large samples of
instances the model will estimate probability of




featurés that correspond exactly to the empirical
proportion. Thus, it predicts the data of Gluck &
Bower (1988) on probability matching.

7. Base-Rate Effect Because of Equation 3 this
model predicts that usually there will be a greater
tendency to assign items to categories of large size.
Thus, it handles the data of Homa & Cultice (1984).
It also reproduces the more subtle interactions of
Medin & Edelson (1988).

8. Correlated Features As noted earlier the model
can handle categories with correlated features by
breaking out separate internal categories for each
feature combination. Thus, it handles the data of
Medin, Altom, Edelson, & Freko (1982). They had
subjects study the 9 cases in Table 3 which were all
supposed to represent instances from one disease
category, burlosis. This was simulated by presenting
these 9 cases to the model with a sixth dimension, a
disease label which was always burlosis. This was
arbitrarily treated this as a binary dimension. Note
that each of the five symptoms show a majority of
ones associated with the disease.

Table 3
SYMPTOMS OF BURLOSIS
from Medin et al. (1982)

Case Blood Skin Muscle Condition Weight
Study Pressure Condition Condition of Eves Condition
I.RL. 0 1 [ 1 1
2.LF. 1 1 0 1 1
3.1 0 0 1 1 1

4. RM. 1 0 1 1 1

5. AM. 1 1 1 1 1
6.1.S. 1 1 1 1 1
7.8.T. 1 0 ] 0 0

8. S.E. 0 1 1 [ 0
9. EM. 1 1 1 0 )

Note: Zero denotes absence of the symptom and 1 denotes presence.

The critical feature of these materials from the
perspective of correlated features concemns the fourth
dimension of conditions of eyes and the fifth
dimension of weight. Values are either both 1 or
both 0. The first six items in Table 3.5 have two 1’s;
the last three have two 0’s. Subjects are sensitive to
this correlation. When these stimuli were fed into the
algorithm with ¢=.3, it typically extracted 3
categories--one to represent the first six items, one
for the seventh, and one for the last two. Thus, the
way it dealt with correlated features was to break out
separate categories for the different possible values of
the correlation.

9. Effects of Feedback If the category structure of
the stimuli is strong enough the model can extract the
categories without any feedback as to category
identity. In the face of weak category structure, it is
necessary to provide category labels to get leaming.
Thus, this model reproduces the data of Homa &

Cultice (1984).

Figure 3 illustrates the stimulus material of Homa
and Cultice. They are derived from the random 9-dot
patterns introduced by Posner & Keele (1968) but
Homa has introduced the feature of drawing lines to
connect the dots. This makes it relatively cheap to
write a computer program that will determine how to
map the points of one into another in a way as to
achieve maximal fit. Given such a mapping, we can
describe each stimulus according to 18 ordered
dimensions which are the x and y coordinates of each
point. Then we can apply our categorization
algorithm to these materials.

Figure 3
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There are three categories in Figure 3--one
category represented by 9 items, one by 6, and one by
3. In one condition of their experiment, subjects
were given category labels and trained to sort the
stimuli into three categories. in another condition
they were free to sort the stimuli into whatever
categories they wanted. Homa & Cultice were
interested in determining how well subjects did at
recovering the category structure without feedback.
In the case of feedback, Homa & Cultice just
measured accuracy of assignment in a final criteria
test. In the case of no feedback, they tried to discover
some way of assigning labels to the categories in the
subjects’ sort that made their categorization look
optimal. It is hard to know how comparable the two
measures are.
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In our case, when there was feedback, we
measured the probability of a category label
according to Equation 1. When there was no
feedback, we assigned labels to intemnal categories in
such a way as to maximize probability of a correct
label assignment when Equation 1 was used. Again



it is unclear how comparable our two measures were.
In our case we corrected our measures for guessing.
We ran a control condition where, rather than letting
the algorithm decide which items go together, we
randomly assigned items to internal categories and
then proceeded to get performance scores in the same
way as when the algorithm did the assignment. Thus,
we got two measures--P, a mean probability of the
correct category label when our algorithm did the
clustering and G, a mean probability of category
labeling in the control condition when we did the
clustering randomly. Our final measure was (P - G) /
(1 - G) which is a standard correction-for-guessing
formula.

Figure 4
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Homa and Cultice used a number of different
training sets including a low distortion training set
where the points were perturbated 1.1 units (the
examples in Figure 3 are 1.1 distortions) and a high
distortion set where they were perturbated 4.8 units.
Figure 4 compares the performance of the subjects
and the simulation for high and low distortion
training stimuli in the presence of label feedback or
not. In the case of Homa & Cultice, we used a
correction for guessing measure to but set the
guessing rate to be .33 since there were 3 categories.
Both subjects and simulations show approximately
additive effects of the two dimensions. Both the
subjects and the simulation are nearly at chance in the
presence of high distortion stimuli with no label
feedback. However, our model does show greater
sensitivity to feedback.

10. Effects of Input Order In the presence of
weak-category structure, the categories the model

forms is sensitive to presentation order. In this way
we are able to simulate the data of Anderson (1990)
and Elio & Anderson (1984).

Comparisons to Cheeseman, Kelly,
Self, Stutz, Taylor, & Freeman (1988)

The Bayesian character of this classification model
raises the issue of its relationship to the Autoclass
model of Cheeseman et al. While it is hard to know
how significant the differences are, there are a
number of points of contrast:

Algorithm Rather than an algorithm that iteratively
incorporates instances into an existing category
structure, Cheeseman et al. use a parameter searching
program that looks for the best fitting set of
parameters. Not enough information is provided to
compare the two algorithms with respect to efficiency
or probability of identifying the optimal structure.
Presumably, Autoclass is independent of the order of
the examples.

Number of Classes Autoclass has a bias in favor of
fewer classes whereas this bias is setable in the
rational model according to the parameter c.
Autoclass does not calculate a prior corresponding to
the probabilities of various partitionings.

Conditional Probabilities It appears Autoclass uses -
the same Bayesian model as we do for discrete
dimensions. The treatment of continuous dimensions
is somewhat different although we cannot discern its
exact mathematical basis. The posterior distribution
is a normal distribution which will only be slightly
different than the t-distribution we use. Both
Autoclass and the rational model assume the various
distributions are independent.

Qualitatively, the most striking difference is that
AUTOCLASS derives a probability of an object
belonging to a class whereas the rational model
assigns the object to a specific class. However,
Cheeseman et al. report that in the case of strong
category structure the probability is very high that the
object comes from a single category.
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