
Modeling Millisecond Time Interval Estimation in Space Fortress Game 

Jungaa Moon (jungaam@andrew.cmu.edu) 
John R. Anderson (ja+@cmu.edu) 

Department of Psychology, Carnegie Mellon University 
Pittsburgh, PA 15213 USA 

 
 

Abstract 

We investigated sources of the asymmetric bias found in 
estimation of a time interval (250-400 ms) embedded in the 
Space Fortress task (Donchin, 1989). Two hypotheses to 
explain this bias were tested in a behavioral experiment: 1) 
contamination from a different time interval representation, 
and 2) pressure to complete the task in time. Participants 
alternated between producing the target interval and 
producing either a shorter or a longer interval while the total 
time allowed for the task was manipulated. The results 
showed that the target interval estimate was significantly 
influenced by both manipulations. The effects were captured 
by incorporating the timing model of Taatgen and Van Rijn 
(2011) into the ACT-R model for Space Fortress (Bothell, 
2010). Time estimation performed in a dynamic task requires 
understanding the influence of external temporal tasks as well 
as the procedural demands of performing multiple tasks under 
time pressure. 
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Introduction 
Time interval estimation underlies various skills such as 
motor control (Ivry, Spencer, Zelaznik, & Diedrichsen, 
2002), musical performance (Jones, 1990), and speech 
processing (Schirmer, 2004). Millisecond-to-second interval 
timing is critical in real-time dynamic tasks that require 
adaptive responses to the changing environment. For 
instance, when driving it is necessary to estimate how long 
one can attend to a navigator before switching back to 
attending to the road and driving control (Salvucci, Taatgen, 
& Kushleyeva, 2006). 

Time estimation can be studied under various paradigms 
(Zakay, 1990). Participants can be asked to retrospectively 
generate verbal estimation of an interval, to judge whether a 
presented interval is the same length as a target interval, or 
reproduce a target interval. Studies using the reproduction 
paradigm typically show response distributions that are 1) 
centered at the real-time criteria, 2) symmetrical, and 3) 
have a standard deviations that increase in proportion to the 
mean interval (e.g. Rakitin, Gibbon, Penney, Malapani, 
Hinton, & Meck, 1998). 

In most studies under those paradigms, time estimation is 
often an isolated task performed in a static environment. It is 
the primary task on which participants focus, even when a 
secondary task is given for various purposes (Fortin, 
Rousseau, Bourque, Kirouac, 1993; Rakitin, et al., 1998). 
However, one may wonder to what extent the time 
estimation performed in those paradigms reflects the time 
estimation that people usually perform in various 

multitasking situations. As in the driving example, time 
estimation is often an implicit secondary task that one 
performs to coordinate primary tasks. In addition, people 
sometimes need to estimate multiple time intervals 
concurrently (e.g., cooking breakfast). It seems plausible 
that time estimation in those circumstances will exhibit 
properties not seen when it is performed as an isolated task 
in a static environment. We investigated this question in the 
Space Fortress task (Donchin, 1989), a video game that 
simulates real-time complex tasks performed in dynamic 
environments (e.g., piloting an aircraft). 

Time Interval Estimation in Space Fortress Task 
The goal of the Space Fortress task (Figure 1) is to 
maximize the total scores by navigating a ship in a 
frictionless space, destroying a fortress multiple times and 
handling mines while protecting the ship from the fortress 
and mines. The participant navigates the ship by rotating left 
or right (A/D keys) or thrusting (W key) to make it fly 
within an area enclosed by two hexagons. A fortress 
stationed in the center rotates like a turret, tracking the 
ship’s trajectory and firing shells at it. The participant has to 
shoot the fortress with a missile (spacebar) at least ten times 
and then make a rapid double-shot to destroy it. 
 

 
Figure 1: Schematic representation of the Space Fortress 

task (left) and performance in the IFF tapping task (right). 
 
The mine task, which is the focus of the current study, 

consists of a series of activities in a specific order. At the 
beginning of the game, the participant is presented with a 
screen with three alphabetic letters (‘foe letters’) and asked 
to remember them. During the game, a mine appears at a 
random location on the screen 5 seconds after the 
destruction of the previous mine and starts pursuing the ship 
with the intent of crashing into the ship. When a mine 
appears, the participant has to check a letter that appears in 
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the IFF box in the bottom panel (see Figure 1). The mine is 
a foe if the letter matches one of the foe letters; otherwise, it 
is a friend. Mine identification is a version of the Sternberg 
memory-scanning task (Sternberg, 1966). If the mine is a 
foe, one has to perform an Identify Friend/Foe (IFF) tapping 
task, which involves tapping the J key twice with a 250-400 
ms interval (‘IFF interval’) between the two key presses. 
Once a correct interval has been generated, the mine can be 
destroyed by aiming the ship at the mine and firing a 
missile. A missile can be fired even after a wrong IFF 
interval, but the missile can destroy the mine only after a 
correct IFF interval. If the mine is a friend, then the IFF 
tapping task should not be performed and the mine can be 
destroyed by a missile shot. If all steps are completed 
successfully before the mine reaches the ship, then the mine 
is destroyed and points are earned. Otherwise, the mine 
eventually collides with the ship and points are lost. 

As a time interval estimation task, the IFF tapping task 
has three notable characteristics. First, it is a prospective 
time estimation task. Participants are initially told the target 
interval in written instructions, and then produce the interval 
whenever a foe mine appears during a game. Immediately 
after each attempt, the produced interval is displayed as 
feedback (e.g., “378”) in the INTRVL box in the bottom 
panel. Second, both the initiation and the termination of the 
interval are under the control of participants. Finally, and 
most importantly, it is performed not as an isolated task but 
as part of a real-time complex task. The game requires time-
sharing multiple tasks such as navigating the ship while 
dealing with the fortress and the mines. Even within the 
mine task, a series of activities precede (checking the letter 
and determining the mine’s identity) and follow (aiming the 
ship and firing a missile) the IFF tapping task, all of which 
need to be completed within a brief period of time, usually 
2-3 seconds. 

A study previously conducted in our laboratory revealed 
an interesting pattern of performance in the IFF tapping 
task. Figure 1 (right) displays the percentage of responses 
within each of three categories: correct (the produced 
interval was between 250-400 ms), too-early (<250 ms), and 
too-late (>400 ms) responses. The figure shows the average 
percentages from 100 participants over 300 attempts (30 
attempts per bin). Participants improved with practice, as 
indicated by the percentage of correct responses reaching 
almost 70% accuracy by the end. More notable is the error 
pattern, with participants making too-early responses more 
often than too-late responses.  

This too-early bias deviates from the roughly symmetrical 
responses observed in time interval estimation studies (e.g. 
Rakitin, et al., 1998). We suspected two factors might be 
responsible for the too-early bias. The first possibility is that 
estimating a shorter time interval contaminated performance 
in the target interval. In the Space Fortress task, the fortress 
task involves shooting a fast double-shot (<250 ms interval). 
Studies (Grondin, 2005; Jones & Wearden, 2004; Taatgen & 
Van Rijn, 2011) suggest that representations of different 
time intervals are not independent of each other. Participants 

in Taatgen & Van Rijn (2011) study alternated between 
producing a short interval and a long interval. When the 
feedback criterion for the long interval was shifted 
unbeknownst to the participants, not only did the estimate of 
the long interval change, but the estimate of the short 
interval also changed. Thus, estimating the shorter interval 
for the fortress task might have influenced estimating the 
target interval for the mine task. 

A second possibility is that participants might be more 
likely to commit too-early errors as less time is allowed for 
the mine task. Note that the mine task consists of multiple 
demanding activities that are in competition with each other 
for the limited length of time available for the mine task. 
One might hypothesize that participants adjust the IFF 
interval based on their estimation of time remaining to fire a 
missile before the mine crashes into the ship. 

The IFF Tapping Experiment 
We tested those two hypotheses in a within-subjects 

design by manipulating 1) the speed of tapping (fast/slow) 
alternated with the IFF (intermediate) tapping, and 2) the 
distance between ship and mine (short/long) at mine onset. 
We created three types of games: fast-tap, slow-tap, and 
intermediate-tap-only games. Those games were a 
simplified version of the original Pygame Space Fortress 
task (Destefano, 2010).  

 

 
 

Figure 2: Sample sequence of trials in the fast-tap game. 
 

Figure 2 shows a sample sequence of trials in the fast-tap 
game. The game had a static ship fixed at the bottom left of 
the screen always correctly aimed toward the mine that 
appeared from the other side. During the game, 8 red static 
and 8 green moving mines appeared in a strictly alternating 
order. For a red static mine, participants simply had to 
produce a fast (<250 ms) double-tap (spacebar). In the 
following trial, a green mine containing a letter appeared 
and approached the ship. For the green moving mine, 
participants had to 1) check the letter and determine its 
identity, 2) produce the IFF interval using an appropriate 
key (F key for friend and J key for foe), and 3) fire a missile 
(space bar). If all steps were successfully completed, the 
mine was destroyed. If any of the three steps were missed or 
performed incorrectly, the mine became invincible and 
eventually destroyed the ship. The slow-tap games were 
identical to the fast-tap games except that they had blue 
static mines (instead of red static mines) for which 
participants produced a slow (400-650 ms) double-tap. The 
distance manipulation was applied to the green moving 
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mines in the fast-tap and slow-tap games. The distance 
between ship and mine at the moment of mine onset was 
randomized to be either short (283 pixels, corresponding to 
1.86 s until mine collision) or long (566 pixels, 3.73 s). The 
intermediate-tap-only games were intended to test whether 
the too-early bias would still be present when participants 
produced the target interval without the demands of the 
mine task and without estimating different time intervals. In 
each trial, when a letter (either F or J) appeared in the center 
of the screen, participants simply produced the IFF interval 
using the corresponding key. Each intermediate-tap-only 
game had eight trials.  

Twenty participants (5 males, mean age: 19 yrs) from 
Carnegie Mellon University participated in the experiment. 
The experiment consisted of 12 blocks of games. Each 
block had one intermediate-tap-only game, one fast-tap 
game, and one slow-tap game in a randomized order.  

Behavioral Results 
Figure 3 (left) presents the IFF tapping performance in 
intermediate-tap-only games over 12 blocks. Participants 
overall performed very well (mean accuracy: 86%). 
Importantly, the too-early bias was not present confirming 
our prediction. Participants committed too-early and too-late 
errors with roughly equal frequencies in the first block, but 
they quickly reduced their too-early errors. Thus, there was 
a small too-late bias on later trials, which may reflect a floor 
effect on the shortest intervals participants could produce. 
Figure 3 (right) shows that the mean produced IFF interval 
fell within the targeted 250-400 ms range and did not 
fluctuate much over blocks. 
 

 
 

Figure 3: IFF tapping performance in intermediate-tap-only 
games: percentages of correct/too-early/too-late responses 

(left) and mean produced IFF intervals (right). 
 

The results from the fast-tap and slow-tap games 
confirmed both the contamination and the distance 
hypotheses. Figure 4 displays the performance in the IFF 
tapping task in the four conditions defined by crossing the 
tap speed (fast/slow) and the distance (short/long) 
manipulations: fast-short, fast-long, slow-short, and slow-
long. The percentage of correct responses increased over 
practice in all conditions. In all conditions the too-early 
responses dominated the first couple of blocks, but 
afterwards the bias stabilized at a lower level. The largest 
too-early bias was present in the fast-short condition, 

whereas the smallest too-early bias (and the largest too-late 
bias) was found in the slow-long condition. Note that the 
fast-short condition best reflects the original Space Fortress 
game in which participants handle both mines (IFF taps) 
and the fortress (fast-taps), and have only a short time for 
the mine task (short-distance). 

 

 
 

Figure 4: IFF tapping performance in fast/slow-tap games. 
 
A repeated measures analysis of variance was performed 

with tap speed (fast/slow), distance (short/long), and 
practice (early: block 1-6 vs. late: block 7-12) as within-
subjects factors and the mean produced IFF interval as the 
dependent measure. There were significant interactions 
between tap speed and distance (F(1,19) = 10.23, p < 0.01), 
tap speed and practice (F(1,19) = 5.13, p < .05), and 
distance and practice (F(1,19) = 11.62, p < 0.01). The 
interaction between tap speed and distance reflects the 
larger distance effect in the slow-tap condition compared 
with the fast-tap condition. The interactions between tap 
speed and practice, and distance and practice reflect that 
those effects were larger in earlier blocks than in later 
blocks. The three-way interaction was not significant.  

The ACT-R Model 
We developed a simulation model of our time estimation 
task, incorporating ideas from the Taatgen and Van Rijn 
(2011) timing model into a task model based on the ACT-R 
model for Space Fortress (Bothell, 2010). The model1 was 
implemented in the ACT-R architecture (Anderson, Bothell, 
Byrne, Douglass, Lebiere, & Qin, 2004), which allows us to 
simulate all aspects of the task, not just the timing 
component. In ACT-R, time estimation is achieved through 
the processing in the temporal module (Taatgen, Van Rijn, 

                                                
1 Model parameters: :rt 1.0, :lf 1.1, :ans 0.385, :mp 2.25, :time-

master-start-increment 0.011, :time-multi 1.1, :time-noise 0.0015. 
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& Anderson, 2007) and its interaction with the rest of the 
system. The temporal module, based on the internal clock 
model (Matell & Meck, 2000), assumes a pacemaker keeps 
accumulating pulses as time progresses. The production 
system can access the current pulse value through the 
temporal module’s buffer and compare it with a criterion 
(e.g., a value retrieved from memory) to determine if the 
target interval has elapsed.  

The model uses an instance-based approach to learn the 
required tapping times. When the model produces a time 
interval (e.g., 15 pulses) and observes its outcome (e.g., too-
early), the specific instance of that experience is stored in 
declarative memory as a chunk. This chunk can be retrieved 
later to serve as a basis for deciding how long to wait the 
next time the model has to produce the interval. As such 
chunks are added to memory, the speed of retrieval 
increases and the accuracy of the retrieved result improves 
(similar to Logan’s 1988 instance theory) 

Figure 5 displays the series of steps in which the model 
performs the IFF tapping task. When a mine appears, the 
model attends the letter and determines its identity by 
retrieving the letter from memory. The model then starts 
retrieving a criterion value for the IFF interval. The retrieval 
of the criterion value is based on the blending mechanism 
discussed in the next section. If blending is successful, the 
model uses the blended result as the criterion. If blending 
fails, the model uses a default value. Once the criterion is 
determined, the model issues the first tap and starts 
incrementing the pulse value in the temporal buffer. When 
the current pulse value exceeds the criterion, the model 
issues the second tap that terminates the interval. The model 
then taps the spacebar to fire a missile. After completing 
both IFF tapping and the missile firing, the model attends 
the feedback2, evaluates the outcome (too-early, correct, or 
too-late), and assigns a feedbackshift value (positive for too-
early, zero for correct, and negative for too-late) so that the 
criterion could be appropriately adjusted in the next trial.  

 

 
 

Figure 5: The ACT-R model of the IFF tapping task. 

                                                
2 According to our data, approximately 90% of the wrong IFF 

intervals were followed by a missile firing. We interpret this as 
indicating that participants tended to execute the entire sequence of 
key presses as a unit rather than interrupting the sequence after the 
IFF tapping to attend to feedback. 

Blending 
The ACT-R blending mechanism (Lebiere, Gonzalez, & 
Martin, 2007) was adopted to model the contamination from 
representations of different time intervals. In the standard 
retrieval mechanism of ACT-R, a retrieval request results in 
retrieval of a single chunk with the highest activation that 
exceeds the retrieval threshold. Blending is an alternative 
mechanism that allows retrieval of a weighted aggregation 
of all candidate chunks available in memory. Each candidate 
chunk is given a different weight based on how recently the 
chunk has been created and how closely it matches the 
retrieval request.  

Figure 6 illustrates how contamination occurs during the 
blending in the fast-tap game in which the model alternates 
between the intermediate-tap and the fast-tap. When the 
blending request is made for pulse value (the value that was 
previously used for the ‘intermediate-tap’ and its outcome 
was ‘correct’), blending is performed for candidate chunks 
that perfectly match the request (e.g., interval44 with 
‘intermediate-tap’ type and ‘correct’ outcome) and 
imperfectly matching chunks (e.g., interval45 with ‘fast-tap’ 
type and ‘too-late’ outcome), with the latter penalized 
according to their degree of mismatch with the blending 
request3. Due to the contribution of fast-tap chunks (e.g. 
interval45), the final pulse value (15.551) is smaller than it 
is supposed to be had only intermediate-tap chunks 
contribute to blending. The model performed blending 
separately for pulse value and feedbackshift value, then used 
the sum of those two (15.982=15.661+0.321) as the 
criterion. 

 

 
 

Figure 6: Blending for intermediate-tap. 

Modeling the Distance effect 
The model has a production rule that issues the second IFF 
tap when the current pulse value is greater than or equal to 
the criterion. We modeled the distance effect by adding an 
additional ‘emergency’ production for the second IFF tap. 

                                                
3 Partial matching was enabled for the tap type 
(fast/intermediate/slow) and outcome (too-early/correct/too-late). 
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During the trial, the model tracks the mine’s trajectory by 
updating the visual-location buffer with the mine’s current 
location. The emergency production specifies a threshold 
value in pixels that forces the model to issue the second tap 
such that it will have enough time remaining to fire a 
missile before it hits the ship. The model ignores the pulse 
value in the temporal buffer when this production fires. 

Model Results 
Contrary to human, we found that the model does not show 
the burst of too-early responses in early blocks. This is not 
surprising because the model starts out with a perfect 
representation of the task instructions, whereas participants 
have to work out any misunderstandings. Thus, participants 
show many more start up errors (e.g., no response). Since 
our goal is not to model this skill learning, we decided to 
focus on modeling the stable effects in the last 8 blocks, 
where participants and the model have both mastered the 
basic task requirements. Figure 7 offers comparisons of 
human and model performance in the last 8 blocks based on 
100 model runs. The model successfully captures not only 
the lack of a too-early bias in the intermediate-tap-only 
condition, but also the distance and contamination effects in 
the other conditions. The overall correlation between model 
and participants equals .992. 

 

 
 

Figure 7: The model fit. 

Discussion 
Two factors appear to be responsible for the too-early bias 
in time estimation that occurs in the context of a dynamic 
task. First, the representation of the shorter or longer 
interval shifted the representation of the intermediate 
interval, supporting the claim (Taatgen & Van Rijn, 2011) 
that more than a single experience determines the 
representation of the target interval. The blending 
mechanism of ACT-R offers quantitative descriptions of 
interference among time interval representations in 
declarative memory. Second, the time remaining until the 
end of the task influenced time interval production. It shows 

that time estimation can be sensitive to one’s knowledge of 
what is about to happen, consistent with animal literature 
(e.g., Church, Miller, Meek, and Gibbon, 1991). Our model 
captures this by having a procedural rule that overrides the 
outcome of the internal temporal estimate based on its 
perceptual processing of the environment.  

Regardless of the conditions, participants showed a strong 
too-early bias in the early blocks (see Figure 4). There are a 
number of possible explanations for this result. First, 
participants were likely learning how to speed up other 
aspects of the task besides the blending process across 
blocks. In early blocks, these other processes might have 
been so slow as to increase use of the emergency rule. 
Second, participants might not even have been trying to 
time the target interval in the early blocks; instead they may 
have just practiced the sequence of responses in the task and 
focused on time estimation only when they had become 
proficient at responding. The third possible explanation is 
arousal. Studies (e.g., Penton-Voak, Edwards, Percival, & 
Wearden, 1996), suggest that arousal can affect the 
subjective duration of intervals by speeding up the rate at 
which a temporal pacemaker produces pulses.  

The clear contrast between performance in the 
intermediate-tap-only condition and the other conditions 
demonstrates that time estimation performed in a dynamic 
task can exhibit properties different from when it is 
performed as an isolated task in static environments. 
External temporal or nontemporal tasks can influence 
production of the target time interval not only when those 
tasks are performed concurrently (Van Rijn & Taatgen, 
2008) but also when performed in the same context in an 
alternating order (Taatgen & Van Rijn, 2011). Those results 
emphasize the virtue of modeling time estimation in the 
integrated cognitive architecture of ACT-R. The critical 
aspect of our model is not just the module’s internal 
temporal processing, but also the contributions of the 
declarative and procedural components. This integrated 
approach of modeling time estimation in cognitive 
architecture can be especially useful in understanding time 
estimation in multitasking situations. 

One possible application of our results concerns the 
training of time estimation tasks. In skill acquisition 
literature, two instructional strategies, part-task training 
(e.g., Frederiksen & White, 1989) and integrated training 
(e.g., Gopher, Weil, & Bareket, 1994), have been compared. 
The contrast between the intermediate-tap-only condition 
and the other conditions in our study suggests that a greater 
training emphasis can be directed to integrating timing with 
other subtasks (whole-task approach) rather than drilling on 
timing alone (part-task approach). Good performance in the 
intermediate-tap-only condition did not transfer to good 
intermediate timing in the more complex games. 

Human factors researchers have studied timing 
performance and patterns of timing errors in dynamic 
multitasking situations (e.g., Rantanen & Xu, 2001). Similar 
to those studies, another potential application of our results 
regards to improving safety and reducing errors in time-
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critical multitasking situations (e.g., traffic environments). 
Identifying patterns of timing errors and investigating the 
underlying causes may suggest changes in work procedures. 
For instance, a timing-critical task can be separated from 
other tasks that involve less critical timing, putting it under 
lower time pressure.  

The time estimation mechanism in ACT-R has 
successfully captured time estimation performance in dual-
task conditions (Taatgen et al., 2007) as well as in dynamic 
multitasking situations (Salvucci, et al., 2006). We explored 
millisecond-level time estimation embedded in a complex 
real-time task that imposes especially high perceptual-motor 
demands. The model provided an integrated account of why 
time estimation performed in this context exhibited different 
properties than when it was performed in an isolated 
context. This study further supports the need to model time 
estimation in the broader context of cognition as we attempt 
to expand our understanding of human temporal cognition 
in the domain of complex skills. 
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