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Abstract 

Declarative memory is a central resource for reasoning 
processes. In line with the ACT-R theory, we assume that 
declarative memory is the basis for causal learning. Based on 
this assumption we conducted an experiment, showing that 
subjects’ confidence in causal predictions decreased if their 
causal knowledge is discredited. Moreover, confidence 
decreased not only for the causal knowledge that was 
discredited, but also for knowledge that was not at all 
manipulated. Additional to the experimental results, we 
present an ACT-R model that perfectly fits the data and 
provides an explanation for the empirical findings. 
Contextual change turns out to sufficiently explain the 
empirical data and the principle of our ACT-R model. 

Keywords: Contextual change, activation, causal 
knowledge, inference. 

Introduction 
The central role of memory has been investigated in a 
widespread range of tasks. There is much evidence 
showing that especially declarative memory accounts for 
human performance usually seen as smart or intelligent 
behavior (e.g. Anderson, 2007). We assume that causal 
learning and causal reasoning is largely based on 
declarative memory as well. This assumption is in line with 
recent research on reasoning  (Mehlhorn, Taatgen, Lebiere 
& Krems, 2011) and the application of heuristics (e.g. 
Schooler & Hertwig, 2005). This research was and still is 
based on the ACT-R theory (Anderson,Bothell, Byrne, 
Douglass, Lebiere & Qin, 2004). In ACT-R human 
declarative memory is responsible for the storage of factual 
information. This information is stored in chunks. These 
chunks become available for retrieval, based on their 
activation. The higher the activation, the higher is the 
probability of retrieval and the faster is the retrieval of a 
chunk. This is the central functional principle of 
declarative memory in ACT-R. The activation of a chunk 
reflects both, the history of its usage as well as its 
relevance for the current context. Both aspects of activation 
are relevant for the explanation of human performance.  
Decision-making under uncertainty is an example where 
human performance relies on declarative memory (Tversky 
& Kahnemann, 1974; Hertwig, Herzog, Schooler & 
Reimer, 2008, Gigerenzer & Gaismeier, 2011). Human 
behavior in such situations can be explained by retrieving 
instances of memory. However, peoples’ performance 
cannot be explained by the mere retrieval. Instead in 
literature principles are proposed, which are related to the 
retrieval. First, in the availability heuristic (Tversky & 

Kahnemann, 1973) subjects evaluate how available or how 
accessible (Kahnemann, 2003) a memory chunk is. Second, 
Schooler and Hertwig (2005) propose that people evaluate 
the difference in retrieval times for alternatives. This 
research assumes those peoples’ confidences ratings in 
decision-making under uncertainty dates back on these by-
products of the retrieval process. Also for causal learning, 
Drewitz and Thüring (2009) showed that peoples empirical 
data can be explained based on the interpretation of 
retrieval times. As ACT-R frames retrieval times as 
dependent on activation it can be concluded that 
confidence of ratings are directly related to the activation 
of memory elements. But this claim holds only for 
performances and experiences solely based on memory 
retrieval. To conclude, from the ACT-R point of view these 
performance and confidence ratings are explained by 
activation.  The model results presented in this paper give 
evidence to this position. 

Sufficiency and Necessity in Causality 
It has been proposed, that human causal learning relies on 
cues to causality (Einhorn & Hogard, 1986). One of these 
cues is the co-variation between events, which people can 
obtain from contingency data. Theoretical approaches that 
emphasize the role of covariation assume that in causal 
learning and reasoning persons rely on frequencies of (co-) 
occurrence and (co-)absence of event. Figure 1 shows how 
this contingency information can be depicted for two 
events. The four cells represent the four possible pairings 
of two events (C and E). With respect to these two events, 
every observation can be assigned to one pairing and as 
such, to one cell of the contingency table. Moreover, every 
observation gives either positive or negative evidence to 
one of two aspects of causality: sufficiency and necessity. 
People are willing to attribute a causal relation between 
two events if both aspects are met. John Stuart Mill (1869) 
first made this claim.  
According to him, people don't acquire causal knowledge 
from the repeated observation that one event follows the 
other. Instead they take into consideration what happens if 
a putative cause does not occur. From this perspective, 
causes can be characterized in terms of sufficiency and 
necessity and both of these aspects have to be satisfied. 
And they are satisfied to the full extent, if a number of 
observations fall into cell a and d as well, but not in cells c 
or b. In other words, every observation that belongs to the 
event pairing of cell a gives positive evidence to the 
sufficiency of the putative cause C for E, the effect of 
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interest. Just as all observations that belong to the pairing 
of cell d give evidence to the necessity of C for E.  

 
Figure 1. 2x2 contingency table ('+' indicates presence,     

'-' indicates absence). 
 
Moreover, sufficiency and necessity are statistically 
independent of each other. Whereas the sufficiency of C for 
E depends on the frequencies in cells a and b, the necessity 
is determined by the frequencies in cells c and d (see 
Fig.1). Two different conditional probabilities capture 
these facts (see Fig. 1): the probability of the presence of E 
given the presence of C, P(E+/C+), and the probability of 
the presence of E given the absence of C, P(E+/C-). 
Positive evidence for one aspect (observations that fall 
either into cell a or d) can be understood as strengthening 
an aspect. Comparably, negative evidence (observations 
that fall either into cell b or c) weakens one of both aspects.  
Theories that emphasize the role of co-variation as cue to 
causality (for review see Perales and Shanks, 2007), 
describe how people integrate their knowledge about both 
aspects. That seems to be important especially when 
participants in a causal learning / reasoning task are 
requested to rate the strength of a causal relation. Of 
course, people do integrative judgments like that also in 
real-world tasks. But very often they for example make 
predictions based on data. In turn, as soon as people can 
rely on e.g. C+, their prediction should be related only to 
sufficiency of  C for E (cells a and b). In such a case, there 
is no need to integrate the information about the opposite 
i.e. C-, which is captured by the frequencies in cells c and 
d. This is also true the other way around. To sum up, for 
the predictions based on given data, there is no need to 
integrate information that would hold for the absence of 
that data. Consequently, given the independence of both 
aspects, neither positive nor negative evidence related to 
one of the aspects should affect inferences related to the 
complementary aspect. Standard theories (see Perales and 
Shanks, 2007) do not propose such an effect.  In contrast, 
we claim that such an effect is there. The underlying 
assumption is, that people do not render sufficiency and 
necessity as independent as they are from a mathematical 
point of view. Moreover, we assume, that they treat them 
as belonging together. And in fact, as complementary parts 
they belong together in terms of the concept of causality. 
With respect to observations people make in the world, 
both parts are summing up to a bigger whole – our 
knowledge of causal relations. But if people treat them as 

parts, which shape together as a whole, it can be assumed 
that if one part fails, people do not longer trust in the other 
part.  In turn our hypothesis states that the impact of 
negative evidence for one aspect of causality is twofold. 
First of all it weakens the aspect that was discredited by 
negative evidence. As a result peoples confidence for 
predictions related to that aspect would drop down. 
Thüring, Drewitz & Urbas (2006) showed this effect. 
Second, the complementary aspect, i.e. the aspect that is 
not discredited will be devaluated. That means peoples 
confidence for predictions to that aspect will decrease as 
well. This would be in contrast to the fact that sufficiency 
and necessity are independent of each other. We tested this 
hypothesis in our Experiment. 

Basic Causal Models 
With respect to the concept of causality building upon 
sufficiency and necessity Thüring & Jungermann (1992) 
proposed that people's representation of causal knowledge 
could be described in terms of causal models. There are 
different basic causal models, which can be used to 
represent basic or if combined, more complex causal 
relations.   
The building blocks of all these models are conditional 
rules. For every causal relation the aspect of sufficiency as 
well as the aspect of necessity is captured by one or more 
of these rules. In Table 1 the sets of rules for two basic 
causal models are shown. These are the models that are 
addressed in our experiment: the model of unique causation 
and the model of compound causation.  
 

Table 1. Basic causal models. 
 

model of unique causation model of compound causation 

R1: C+  E+ R3:   C+ and X+  E+ 
R2: C-   E- R2:                 C-  E- 

 R4:                 X-  E- 

Experiment 
In our study, participants had to acquire causal knowledge 
about a simulated technical system based on inductive 
learning. Over the course of the experiment, positive as 
well as negative evidence was presented to investigate the 
consequences of discrediting and devaluation. 

Method 
Participants. Fifteen graduate and undergraduate students 
at the Berlin Institute of Technology were recruited for the 
experiment. All of them were paid for their participation. 
Material. Figure 2 shows the schematic screen layout of 
the simulated system that was presented to the participants. 
It was introduced as an electrical system of a power plant. 
The system was built up from four subsystems that were 
responsible for two output systems. Information about the 
state of these subsystems was displayed on four dials (for 
top boxes in Fig.2). Each dial represented the state of one 
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subsystem, which was either DOWN (C+) or UP (C-) or 
UNKNOWN because its dial was switched off. In the first 
of two blocks only one subsystem was causally relevant 
and its state served as cause (C) for the outcome (either E+ 
or E-) of the relevant output system (E). In the second 
block the same subsystems (C) together with another 
subsystem (X) was causally relevant. During the first block 
X was always set to UNKNOWN.  The other two 
subsystems were irrelevant for the task. In both blocks they 
were used in some trials as distracters to give the system a 
more diversified appearance. 
In the lower half of the screen, the displays for the output 
systems were shown. In some of the trials participants had 
to predict the outcome of only one of them and in the 
remaining trials they had to predict the outcome of both. If 
only the outcome of one system had to be predicted the 
display of the other output system wasn't shown. Whereas 
one output system (E) was relevant for the experiment the 
other was used to make the task more realistic. Below the 
display of each output system two buttons were shown for 
the prediction of the outcome (depicted as '+' and '-' in Fig. 
2.) One button served the prediction of MALFUNCTION 
(E+) and the other one the prediction of OK (E-). Clicking 
on one of them was necessary to make the prediction. 
Finally, below these buttons a slider was presented (see 
Fig. 2) that could be adjusted to rate the confidence of the 
predictions. The lowest confidence (0%) was set in the 
middle of the slider, between the two maxima (100%), 
each related to one of the two possible outcomes. 
 

 
 

Figure 2. Screen layout (schematic) as used in the 
experiment for prediction and presentation of feedback. 

 
Procedure. The participants’ task was to predict the 
outcomes (E+ or E-) of the output system(s). To solve this 
task, they had to understand the underlying causal relation 
between the subsystems and the output systems.  

In each trial, they were shown the layout of the device as 
presented in Figure 2. First, subjects had to check the 
operation of the subsystems. Based on this information, 
they were requested to predict the state of the output 
system(s) by clicking on the respective buttons (OK or 
MALFUNCTION ). Finally, they rated their confidence for 

each prediction by adjusting the respective slider(s). After 
participants finished their prediction and confidence rating, 
they had to click on a 'send' button and subsequently 
received feedback that showed the actual outcome(s). 

The experiment consisted of two blocks, each of them 
with a learning phase and a test phase as shown in Figure 
3. The blocks differed in the complexity of the underlying 
causal relations and the number of trials in the learning 
phase. During the learning phase positive evidence for one 
type of causal relation was provided. In the learning phase 
of the first block participants received information that 
enabled them to acquire a model of unique causation with 
the two rules R1 and R2 (see Tab. 1). In the learning phase 
of the second block subjects received information, which 
supported the acquisition of the two new rules R3 and R4 
(see Tab.1). Thus subjects could learn a new model, the 
model of compound causation (see Tab.1).  

Additionally, we presented distracter trials with 
information about the irrelevant subsystems and trials were 
participants had to predict the outcome of the second 
output system that was irrelevant for the test of the 
hypothesis. Relevant for the test of the hypothesis were the 
pre-measure and the post measure in each block. For both 
blocks, the last trial of the learning phase served as pre-
measure (see Fig. 3). In the respective trial in block one, 
people had to make a prediction based on C- and received 
as feedback E-. In the respective trial for block two we 
presented C+ and X+ and gave people after they made their 
prediction the feedback E+. These pre-measure trials 
served ass positive evidence too. That's why for both 
blocks in Figure 3, the number of one cell increases from 
the learning to the test phase. 

Subsequently to the learning phase, the test phase started. 
In four of these trials, we presented negative evidence (see 
Fig. 3) for one aspect of causality. The negative evidence 
was given with respect to the causal relations that were 
supported before. You can see the number of presentations 
of negative evidence in the black boxes in Figure 3.  In 
block one, we showed four times C+, E- and in block two 
we presented two times C-, E+ and two times X-, E+ 
(together four times negative evidence).   Again, distracter 
trials and trials focusing on the irrelevant output system 
were presented. In the last trial of the test phase, the post-
measure was recorded (see Fig.3). To accomplish this, the 
same data were given as in the pre-measure trial. For block 
one that was C- and for block two C+ and X+. 
 
Independent and dependent variables. To investigate the 
strengthening of rules, the amount of positive evidence 
ranged from one to sixteen trials (see Fig. 3, positive 
evidence) for the respective rules (R1, R2, R3 and R4). To 
test the impact of discrediting, the amount of negative 
evidence ranged from one trial to four trials (see Fig.3, 
negative evidence) for the respective rules (R1, R2 & R4).  

The factor measurement with the factor levels pre and 
post served the investigation of devaluation as described in 
the procedure (see Fig.3). Throughout the experiment, 
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confidence ratings of inferences predicting the states of the 
relevant output system were used as dependent variable. 
 

 
 

Figure 3. Experimental procedure (schematic). 
Contingency tables for both blocks display frequencies of 

positive evidence (grey) for the learning phase and 
negative evidence (black) for the discrediting phase. The 

last presentation of positive evidence served as pre-
measure. The contingency tables on the right display 

summed frequencies for positive and negative evidence. 

Results 
For statistical analysis, we computed three ANOVAs with 
repeated measures, one for each effect. Additional to the 
significance of effects we report the effect size f after 
Cohen (1988). However, strengthening greatly affected 
subjects confidence ratings over the course of the learning 
phases, F(7,98)=11.47, p<0.01, f=0.91. Therefore, 
subjects’ confidence in their prediction of the state of the 
output system strongly increased over time. Additionally, 
we obtained an effect for rule, F(3,42)=7.46, p<0.01, 
f=0.73. Hence, it was easier for subjects to acquire basic 
rules (R1 & R2) compared to the more complex rules (R3 
& R4). 

For discrediting, we found a significant large main effect 
of negative evidence over time, F(1,14)=4.21, p=0.05, 
f=0.54. Hence, subjects showed lower confidence in their 
ratings about rules that were discredited. 

To investigate the effect of devaluating a rule, it seems 
necessary to highlight how we achieved the data for this 
computation. For all subjects R1 and R2 (in the first block) 
and R3 and R4 (in the second block) were strengthened. 
The last trial of R2 in the learning phase of block 1 and R3 
in the learnigg phase of block 2 served as pre-measure for 
the devaluation. However, only R1 was discredited in the 
first block and R2/R4 were discredited in the second block. 

If subjects’ confidence for the prediction of R2 in the first 
block (post-measure) and R3 in the second block (post-
measure) was lower after discrediting the other rules, 
devaluation took place. The ANOVA revealed a medium 
main effect of rule (F(1,28)=5.42, p=0.03, f=0.43) and a 
large main effect of measurement, F(1,28)=19.40, p<0.01, 
f=0.83). Therefore subjects’ confidence was lower for R2 
compared to R3. Additionally, devaluation lead to 
significantly lower confidence for participants’ confidence 
for both rules (R1 & R3) after R1, R2 and R4 were 
discredited. 

Model Description 
In order to examine, whether the empirical observed effect 
of devaluation could be explained based on declarative 
memory and the concept of activation, we set up a simple 
ACT-R model. Two central assumptions were made to 
specify the model. At fist, we assumed that the task could 
be processed solely based on instance retrieval.  
The second assumption we made was in contrast to the 
theoretical considerations, which guided the formation of 
the hypothesis of the devaluation effect. To model the 
effect found in the empirical data, we assumed that 
negative evidence, which per definition contradicts 
observations made beforehand, would be considered as a 
contextual change (see Block and Reed, 1978). 
Accordingly, people are aware of changes in the context 
internally (cognitive context) as well as externally (external 
context). Assuming that observations, which people make, 
and certain knowledge that they acquire accordingly, is 
related to a certain context would result in a change of 
availability of that knowledge if the context changes.  
Consequently, the behavior of the model can be explained 
based on contextual changes and instance retrieval, i.e. the 
standard ACT-R 6 activation equations: 
 

                        (activation equation) 

Accordingly, the Activation (Ai) of a chunk i is defined by 
its base-level activation (Bi), the amount of activation that 
spreads out from a source (representation of the stimuli and 
the current context) and the partial matching component. 
Wj reflects the attentional weigthing allocated to every 
element j on the source of activation. Sji is the strength of 
the associative connections between these elements and the 
chunk i. P is the mismatch penalty and Mli is the similarity 
between the elements l specified for a request of retrieval 
from declarative memory and the respective elements of 
chunk i. The base-level Bi itself is defined as 

                           (base-level learning equation) 
 
where n is the number of presentations, t is the time that 
passed sine the jth presentation and d is the rate of decay. 
Last but not least the associative strength is defined as 

(associative strength equation) 

€ 

S ji = S − ln( fan j )
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where S is the maximum associative strength  and fanj the 
number of chunks in memory, the chunk j as an element on 
the source of activation is associated with, plus one for 
association with itself.  
Model Settings. Based on these equations the activation of 
that chunks was calculated, which would match the 
retrieval request in the trials of the relevant measures. 
Therefore we calculated the number of presentations (see 
base-level learning equation), assuming that there was one 
encoding of screen information as well as one declarative 
retrieval per trial. For simplicity reasons, the respective 
times (tj) were calculated based on the assumptions that all 
trials were processed in the same time. To determine the 
associative strength between the current context and the 
different memory chunks (representing different trials) we 
counted the number of distinct stimuli used in the 
experiment. The respective number of associative 
connections was assigned to each context and so the fan for 
each context was set.  
Since there is no default, one a single parameter, the 
mismatch penalty, was set to 0.5. Except this, all other 
parameters used (see equations), were set to their defaults 
prescribed by the ACT-R theory (cf. http://act-
r.psy.cmu.edu/).  
Subsequently, we transformed the resulting activation 
values (Ai) into values representing confidence 
(confidencei) using the following equation:  

  confidencei = ln(Ai) x SF     (transformation equation) 

The parameter SF is a scaling factor and was set to 100. 
The results produced by the model are shown together with 
the empirical data in Figure 4. Without adjusting any 
parameter the model produces an excellent fit to the 
empirical data (R2=1). The qualitative match between the 
model results and the human data is perfect. Quantitatively 
there is a clear deviation. But this deviation is of  same  for 
all conditions. 
 

 
 

Figure 4. Empirical data and model results. Error bars 
represent standard error. 

Discussion 
The present paper investigated two effects that influence 

causal learning, memory and contextual change. In 
particular, we looked at persons’ confidence ratings with 
respect to their predictions of certain outcomes after their 
causal knowledge was (a) strengthened and (b) discredited.  

In line with previous research (Thüring et al., 2006), we 
found that the presentation of positive evidence leads to 
higher confidence in subjects’ predictions of the state of 
the output system. Additionally, we replicated the effect of 
discrediting. Hence participants’ confidence in their 
prediction of the state of the output system decreased, 
when the rules they had learned were discredited. In 
contrast to these well-established effects, we demonstrated 
the effect of devaluation. Therefore, participants’ over-all 
confidence in their predictions of the system state 
decreased also when the rules they could use for prediction 
on given date were not discredited. This effect opposes the 
assumption that people treat sufficiency and necessity as 
independent as they are from a mathematical perspective. 
At least for the case of negative evidence the data support 
this position.  

Excluding the striking effect of devaluation, memory 
effects (strengthening and discrediting) on confidence in 
causal learning were proposed and modeled in ACT-R 
before (e.g. Drewitz & Thüring, 2009). Extending this 
research, the present ACT-R model accounts for the effect 
of devaluation as well. For both causal relations (unique 
and compound causation), model data perfectly fitted to 
subjects’ behavior in the experiment. It is important to note 
that this simple ACT-R model mimics empirical data about 
subjective confidences without any additional parameters. 
Hence the present data (and model) strongly support the 
theoretical claim we made at the beginning of this paper. 
There, we proposed that peoples’ confidences of ratings 
under uncertainty are directly related to the activation of 
memory elements. The results presented in this research 
undermine this claim at least for performances and 
experiences, which are solely based on memory retrieval. 

However, the presented ACT-R model does not only 
mimic the empirical data. Its working principle also 
provides an elegant theoretical way to explain the data. We 
used the concept of contextual change (Block, 1978) as 
basis for the ACT-R model. Contextual change means that 
with respect to their model or rule like causal knowledge 
people consider certain contexts. In our experiment (and 
model), subjects learned causal relations in each block. 
After a couple of trials, their rule-based knowledge about 
the functioning of the technical operating system was 
almost perfect. This phase of strengthening contained only 
positive evidence. Therefore subjects’ causal knowledge 
about the inner workings of the technical system was 
enhanced. In the ACT-R model we encoded this 
strengthening phase as the context in which subjects 
acquired and used their causal knowledge. However, each 
time this initial strengthening phase was followed by a 
short phase with negative evidence (discrediting phase). In 
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this phase participants questioned their causal knowledge 
and the confidence in their predictions decreased. Thus, in 
the experiment we changed the experimental stimuli from 
strengthening causal relations to discrediting the very 
same. Psychologically, this change might have appeared as 
a contextual change. Suddenly the working principle of the 
technical system changed. This change was not visible to 
the participants, except that their learned causal relations 
did not lead to successful prediction of the state of the 
output system. Again, psychologically participants might 
have represented this change as a step from one working 
principle to another and so considered a new context. 

For theories of causal learning the presented model raises 
some questions. From their perspectives peoples judgments 
and confidence ratings are seen as the result of reasoning or 
data integration processes. Since our simple memory model 
modeled the decrease in participants’ confidence ratings 
perfectly, these more complex standard views of seem 
questionable. As introduced in the beginning, standard 
theories assume much more than memory retrieval. There 
are much less approaches that assume, as we do that lower 
ratings in causal reasoning might reflect a reduced 
availability i.e. accessibility of memory information due to 
less activation. In our model this goes back to less 
relevance of memory information as soon as new contexts 
are considered. Thus 'deliberate' causal behavior can be 
explained simply based on memory activation. 

Of course, further experiments should replicate the 
present work. Additionally, it should first be tested whether 
our contextual change (ACT-R) model holds in other 
situations of causal learning as well. Second, it has to be 
proven for more cases that confidence ratings can be drawn 
from activation. The non-linear transformation function 
that was used has to be tested. It assumes that the higher 
the activation the less are changes of that activation 
reflected in confidence ratings drawn from it, even if the 
base-level learning that generates these activations already 
shows this kind of non-linearity. 

 Our next step is to elaborate more on the devaluation 
effect and the role of memory in causal learning and 
reasoning. For example if this effect occurs also for more 
complex causal knowledge or if similar effects can be 
found in reaction time data too. The presented ACT-R 
model will have to prove his validity for those data as well.  
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