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Abstract

Category learning is often modeled as either an exemplar-based or a rule-based

process.  This paper shows that both strategies can be combined in a cognitive

architecture that was developed to model other task domains.  Variations on the EBRW

exemplar model of Nosofsky and Palmeri (1997) and the RULEX rule-based model of

Nososfky, Palmeri, and McKinley (1994) were implemented in the ACT-R cognitive

architecture.  The architecture allows the two strategies to be mixed to produce

classification behavior.  The combined system reproduces latency, learning, and

generalization data from three category learning experiments—Nosofsky and Palmeri

(1997), Nosofsky, Palmeri, and McKinley (1994), and Erickson and Krushke (1998).  It

is concluded that EBRW and ACT-R have different but equivalent means of

incorporating similarity and practice.  In addition, ACT-R brings a theory of strategy

selection that enabled the exemplar and rule-based strategies to be mixed.
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Introduction

Research on human category learning has a history that extends back at least to

Hull's (1920) study of learning to categorize Chinese symbols and his conclusions in

favor of an associative learning proposal.  It was an important domain early in the

cognitive revolution where theorists argued for various hypothesis-testing theories (e.g.

Bower & Trabasso, 1964, Levine, 1975).  The hypothesis-testing theories were based on

research with stimuli that had a very simple, often one-dimensional categorical structure.

The 1970's saw a renewed interest in more complex, fuzzy categories and proposals for

prototype theories (Reed, 1972; Rosch, 1975) and exemplar theories (e.g., Medin &

Schaffer, 1978).  The rise of connectionist models resulted in the proposal of associative

theories (e.g., Gluck & Bower, 1988) not that different than the original Hull proposal.

While the original research focused on accuracy data, there has been a new emphasis on

latency data to help choose among theories (e.g., Lamberts, 1998; Nosofsky & Palmeri,

1997b).  Recently, neuro-imaging and other cognitive neuroscience data have been

recruited to try to decide among alternative theories (e.g., Ashby, Alfonso-Reese, Turken

& Waldron, 1998; Smith, Patalano & Jonides, 1998).  There has been an impressive

growth in the characterizations of the phenomena in category learning.  However, the

field does not seem any closer to coming to consensus as to what "the" mechanism of

category learning is.

This paper is based on the assumption that this contest between alternative

theories has been cast too narrowly in two different senses.  One way that this contest has

been too narrow is that categorization learning may not be the outcome of a single

mechanism. There is a new emerging view that categorization behavior might be some
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mix of different methods of categorization (e.g., Ashby, Alfonso-Reese, Turken, &

Waldron, 1998; Erickson & Krushke, 1998; Smith, Murray, & Minda, 1997; Smith,

Patalano, & Jonides, 1998). Erickson and Krushke (1998) propose that the output of an

exemplar and a rule module are mixed to produce a final result.  Ashby et al. (1998) and

Smith et al (1997) propose an alternative possibility which is that on a trial-by-trial basis

participants choose either to use an implicit system or a verbal rule system.  Both the

Erickson and Krushke model and the Ashby et al. models are basically connectionist

systems.

The second way this contest has been narrow is that it has tended to focus only on

categorization data.  There is little reason to believe that categorization learning is an

isolated cognitive process.  The same mechanisms that are involved in categorization

should be involved in other cognitive processes and the same mechanisms that are

responsible for category learning should be involved in learning other knowledge.  Most

researchers in the field seem to accept this, at least implicitly.  For instance, Nosofsky

and Palmeri (1997) justify aspects of their model by results on perceptual identification.

The cognitive neuroscience literature that Ashby et al cite often involves non-

categorization tasks.  While there may be informal agreement on this, up to now there has

been no effort to integrate formally categorization into a general set of mechanisms that

apply in multiple domains.  Constraining models of categorization to be consistent with

cognition more generally eliminates many degrees of freedom in the formulation of the

theories.  For instance, the processes of memory failure and the timing of cognitive steps

should be the same in a model of cognition as in models of other cognitive tasks.

Moreover, if we are going to mix different methods of categorization in a hybrid model
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and we do not want our degrees of freedom to multiply, the parameters that govern one

method should be the same as the parameters that govern another method.

This paper will present a model of categorization that implements two strategies

for categorization in a same system, ACT-R (Anderson & Lebiere, 1998).  ACT-R is a

cognitive architecture whose basic mechanisms and processes have been determined by

the development of models in domains such as verbal learning, strategy choice, cognitive

arithmetic, analogy, and scientific reasoning.  However, until this paper it has not been

applied to the domain of categorization learning.  Besides constraining the model of

categorization to operate in a way consistent with models of other phenomena, ACT-R

provides a theory of how participants choose among multiple strategies for

categorization.

The model in this paper will combine a rule-based submodel and an exemplar

submodel.   Our submodels will be based on two relatively successful models proposed

by the same authors—Nosofsky, Palmeri, and McKinley's (1994) rule-plus-exception

(RULEX) model and Nosofsky and Palmeri's (1997) exemplar-based random walk

model. There were two motivations for trying to use existing models rather that creating

models from scratch.  One is that it reduces the possibility that the success of this effort

could be produced by clever tricks we put into our made-up models.  The other is that it

will avoid unnecessarily complicating the field with more models that differ from each

others in ways whose importance is unclear.  Rather, by showing how these models can

be implemented in ACT-R we will contribute to convergence in the field by showing how

the mechanisms in these models relate to the mechanisms in ACT-R.
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It is not by any means a foregone conclusion that we will be able to implement

either of these models in ACT-R and we regard it as a contribution to show that we can.

As we will argue in the conclusion, many architectures including past versions of ACT

(e.g., Anderson, 1983) would not be capable of this.  Moreover, there are models of

categorization that could not be implemented in ACT-R -- particularly, many of the

connectionist models. To the extent that RULEX and EBRW are successful models,

implementing them in ACT-R extends credit to ACT-R by showing that it is compatible

with the data on categorization.  To the extent ACT-R has provided successful models of

other domains it extends credit to these models by showing that they are generally

compatible with what is known about cognition.

There is a second contribution in this effort that goes beyond showing a general

compatibility between ACT-R and these categorization models.   This is that ACT-R has

an explanation for how people choose between two bases, such as rules and exemplars,

for categorizing stimuli.  According to the ACT-R theory of choice (Lovett, 1998)

participants track how well each basis is working on the stimulus set and select each

method in rough proportion to its past history of success (see also Reder, 1987, 1988).

This is a learning mechanism that ACT-R brings to the table which has not been part of

existing theories of categorization.

It is worth noting from the outset that this paper is sidestepping the traditional

contest of models.  We will not be claiming that there is some new datum that uniquely

prefers the hybrid ACT-R model over other models in the arena.  We will be content to

show that it does as well as other models.  The search for the decisive data set has

brought a lot of enlightenment to category learning but it has not succeeded in identifying
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the correct model.  We think it is an equally important contribution is to show that a

model is more generally compatible with what is known about human cognition.

The Exemplar-Based Random Walk (EBRW) Model

The EBRW model combines major properties of Nosofsky’s (1988) Generalized

Context Model of Classification (GCM) and Logan’s (1988) instance-based model of

automaticity.  According to the GCM model  participants store the individual exemplars

of the categories as they study them.  Participants tend to classify a stimulus into the

category of the instances to which it is most similar.  Logan’s model describes how

people learn to perform skilled actions.  Performance of skilled actions initially depends

on using some algorithm.  Each time the action is successfully completed, an instance is

stored in memory.  Later, these stored instances can be recalled and used to perform the

task.  Skilled performance, then, is a race between executing the algorithm for the task

and recalling prior instances.  Experience with a skilled action leads to storage of many

instances, and eventually these instances are used more than the initial algorithm.  This

model accounts for power-law decreases in reaction time observed with training.2

The EBRW model combines the GCM concept of category learning as

comparison to stored exemplars with Logan’s concept of a race among stored instances.

Unlike Logan’s model, all stored instances race to be retrieved, instead of just those that

are identical to the presented stimulus.  The speed at which an exemplar is recalled is

proportional to its similarity to the presented stimulus.  The exemplar with the fastest

retrieval time is used to assign a category to the stimulus.  In this way, the exemplars that

have been used more frequently and are more similar to the presented stimulus are more

likely to affect its categorization decision.
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After an exemplar is retrieved, an internal counter is updated based on the

category of the retrieved exemplar.  For example, consider the situation of choosing

between two categories.  The internal counter would begin at 0.  Retrieved exemplars

from one category would cause positive increments, while exemplars from the other

category would cause negative increments.  When the counter exceeds a threshold

absolute value, the model categorizes the stimulus into either the positive or negative

category.

The two factors that determine classification time are the number of steps in the

random walk and the speed of each step.  The EBRW model predicts that stimuli that are

very similar to instances in one category and very dissimilar to instances in other

categories should have rapid classification times.  Such stimuli would most often provoke

recalls from exemplars in only one category, so the random walk would move

consistently in one direction.  Also, stimuli that are similar to stored exemplars from

different categories should show slower response times, because such stimuli would

provoke recalls of exemplars in different categories, and therefore the random walk

would vacillate.  The EBRW model also predicts that increased experience with stimuli

will decrease reaction time.  As more exemplars are stored in memory, the retrieval time

that wins the race in each step of the random walk will be faster; so the total time for the

random walk to complete will also be faster.

The Rule-Plus-Exception (RULEX) Model

The RULEX model paints a very different picture of categorization.  This model

searches through the space of possible rules to classify stimuli.  Rules are tested one by
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one, until a rule is found that meets a performance criterion.  Exceptions to rules can be

stored to account for stimuli that are incorrectly classified by the chosen rule.

Search begins with rules that classify stimuli according to a single

dimension—for example, that an item is in a category if it is red.  Initially, RULEX tries

to find perfect rules that can classify all stimuli without exceptions.  A perfect rule is

discarded when feedback indicates that it has produced an incorrect category judgement.

If a perfect rule lasts through an entire block of trials, it is kept permanently and there is

no need for further search.  If all perfect rules are eliminated, search continues with

single-dimension, imperfect rules that are not required to classify all the instances.  Each

single-dimension imperfect rule is tested for a number of trials, usually one block.  If the

rule satisfies a lax criterion of accuracy over this test window, it is tested according to a

stricter criterion for some number of trials, usually another block of trials.  If the rule

passes this stricter criterion of accuracy, it is kept permanently.  At this point, the system

begins learning exceptions to counter the mistakes of the imperfect rule.  If the rule does

not pass the stricter criterion, it is discarded and another rule is selected.  If no single-

dimension imperfect rule satisfies the stricter criterion, search continues with imperfect,

conjunctive rules.  These rules are tested in a manner similar to single-dimension

imperfect rules.  If no rule passes the stricter criterion, then only a set of exceptions are

stored.  However, it never gets this far in the experiments that we will consider.

Exceptions are formed when a permanent rule makes a misclassification of a

stimulus.  A stored exception is an association between an incomplete pattern and a

category label.  For example, with four-dimension binary stimuli, if the permanent rule is

“The value 2 on dimension 3 indicates category B,” (denoted **2* ⇒  B) a possible
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exception would be *12* ⇒  A.  In forming exceptions, any dimensions used in the

permanent rule are used, and all remaining dimensions are sampled with a fixed

probability.  If an exception leads to making an incorrect category decision, it is

eliminated.

When the model needs to make a category decision about a presented stimulus, it

first checks for any applicable exceptions.  If there are multiple exceptions that apply, the

exception that specifies values for the most dimensions is used.  If no exceptions apply, a

judgement is made according to the current rule.

A primary prediction of the RULEX model concerns the transfer pattern of

responses made to novel stimuli.  According to RULEX, through random choices,

different participants will come to different rules that lead to different transfer patterns.

However, some rules are much more likely given the way RULEX searches its rule

space.  The transfer patterns due to these rules will occur most frequently.
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ACT-R

Before describing the ACT-R model for categorization we need to describe some

features of the ACT-R architecture.  According to ACT-R, cognition emerges from the

interaction of two types of knowledge—declarative knowledge that encodes explicit facts

that the system knows and procedural knowledge that encodes rules for processing

declarative knowledge.  In ACT-R, information processing is under the control of a

current goal.  In response to that goal, a production rule is chosen from procedural

memory to apply.  Typically, a production rule will call for the retrieval of some piece of

information, called a chunk, from declarative memory, which will result in a

transformation of the goal.  Then the cycle of production selection and information

retrieval will apply to this new goal state.  Two aspects of ACT-R that are important for

current purposes are the process by which production rules are selected to apply to the

goal and the process by which chunks are selected to be retrieved.

Selection of Production Rules

Conflict resolution is the term used to refer to selection among production rules.

A good illustration of conflict resolution occurs in Lebiere’s (1998) model of the

development of arithmetic knowledge, which bears a good number of similarities to

Logan’s model of skill acquisition.  In Lebiere’s model (as in many models of cognitive

arithmetic—e.g., Ashcraft, 1995; Campbell, 1997; Reder & Ritter, 1992; Siegler, 1988),

when a child is faced with the goal of adding two numbers like 4 and 3, there are two

strategies that can apply.  In Lebiere’s model these two strategies are implemented as

production rules.  One rule calls for a retrieval of the information:

IF the goal is to find a + b
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   and c can be retrieved as the sum of a and b

THEN the answer is c

The other rule sets a subgoal to try back-up computation:

IF the goal is to find a + b

THEN set a subgoal to count b units past a

after which a series of productions will compute the answer.  The first production rule has

the advantage that it can produce the answer faster because it does not call on a counting

subprocedure.  However, the model may fail to retrieve anything and it will have to go

onto the back-up computation.  Also, the model may retrieve the wrong answer.  ACT-

R’s selection among such production rules is determined by their expected utility, which

ACT-R calculates as PG – C, where P is the expected probability that the goal will

succeed, G is the value of the goal, and C is the expected cost of the that rule.   In this

paper we will use the ACT-R defaults of 20 for G and of measuring C as the time in

seconds for the goal to be achieved.

These utilities are noisy, real-valued quantities in ACT-R.  Because of noise, a

normally lower-valued utility will become sometimes larger than a normally higher-

valued utility.  The production chosen on a particular trial will be the production among

those matching the goal that has the highest utility on that trial.  The probability of that

happening will be a function of the mean utility, E
i 
, of that production, the mean utilities

of competing productions, and the noise in utility.  The formula describing this is:
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where the summation in the denominator is over the various productions j that might apply.

This is a “soft max” rule which tends to select the production with maximum

utility but not always because the utilities are noisy and can reverse on a particular trial.

The parameter t
E
 in the above distribution is related to the standard deviation, σ

E
, of the

noise by the formula   This equation is the same as the Boltzmann Equation used in

Boltzmann machines (Ackley, Hinton, & Sejnowsky, 1985; Hinton & Sejnowsky, 1986).

In this Botlzmann machine context, t
E
 is called the temperature.  Throughout the models in

the paper, our estimate of t
E
 will be 2.2.

This process of selecting productions will be key in our ACT-R model for

categorization.  Production rules will embody three competing ways of classifying a

stimulus.  One is by implementing the EBRW strategy.  The second is by implementing

the RULEX strategy.  The third, which will be the only one applicable at the beginning,

is by guessing.3  On any trial ACT-R will choose to pursue one of these strategies. With

experience one of these strategies will tend to have the most success and therefore will be

chosen most often.  The characteristics of various domains may force ACT-R to

configure itself to behave exclusively according to one of the strategies.  The system is

designed to initially have a high utility for using rules.  This is because it takes some time

to discover successful rules and so it needs to have this bias to make it persevere until a

successful rule can be found.  This setting of the model to prefer rules can be interpreted
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as reflecting a bias that categories are rule-based and this corresponds to a naïve classical

view of category structure (Smith, 1989).  The bias means ACT-R will transition from

guessing to rule-based classification if it can form rules.  If it cannot form rules or if they

prove unsuccessful it will have to resort to exemplar-based classification.  As we will

also see, sometimes even though it finds an adequate set of rules it may switch to

exemplar-based classification after extensive practice because this proves faster.

Retrieval of Declarative Chunks

Declarative knowledge in ACT-R is represented in units called chunks.  In our

model the relevant chunks are ones that encode exemplars and categorization rules.

Thus, ACT-R can both have a chunk encoding the example “the large red triangle was in

category A” and the rule “Red objects are in category A”.  Retrieval of declarative

chunks from memory is probabilistic like conflict resolution.  This probabilistic retrieval

can be illustrated in the arithmetic domain where chunks will encode facts like 3 + 4 = 7.

When faced with the problem 3+4 the child will tend to retrieve the correct 3 + 4 = 7

chunk but other chunks might be retrieved.  The child may fail to retrieve anything or

retrieve the similar chunks like 3+5=8 or 3*4=12 and produce the wrong answer.  Or, as

Siegler (1988) has argued, the child may have once solved 3+4 with the answer 6 and

now the 3+4=6 fact is a weak chunk in the database which can intrude.

According to ACT-R, the selection among different chunks is determined by their

levels of activation.  For our purposes, two factors are relevant in determining a chunk’s

level of activation.  One is the amount of past practice that the chunk has had.  ACT-R

assumes that activation increases as a logarithmic function of amount of practice.

Secondly, activation will reflect the degree of match between the chunk and the retrieval
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specifications.  For example, the chunk encoding 3*4=12 will mismatch a 3+4 retrieval

probe with respect to the plus operator and so will not be as active as the 3 + 4 = 7 chunk.

In general, ACT-R calculates a mismatch by summing the differences between all

elements (3, +, and 4 in the example) in the retrieval probe and the values in the

declarative chunk.  This partial matching process will become particularly important in

applying ACT-R to categorization tasks with continuously varying dimensions since it is

possible that no memory chunk exactly matches the stimulus to be categorized.  The

formula giving the activation, Ai, of chunk i is:

Ai = ln Ni - Mi Activation Equation 2

where Ni is the number of trials of practice and Mi is the degree of mismatch of chunk i to

the production.4  Note that the effect of practice is implemented differently in ACT-R

than in EBRW or Logan’s model. In the EBRW model and Logan’s model, each

repetition of an example causes another instance to be stored.  In ACT-R, when an

example is repeated, the base-level activation for the single chunk encoding the example

is higher.  Nonetheless, as others have noted (e.g., Nosofsky & Alfonso-Reese, 1999;

Wixted, Ghadisha, & Vera, 1997), models that assume strengthening of a single trace can

be equivalent in their predictions to models that assume repetitions create new encodings.

Just as with utilities, activations are noisy, real-valued quantities.  ACT-R will

retrieve the most active chunk if it is above a minimum threshold of activation but this

can vary from retrieval to retrieval.  The actual predictions of the model are obtained by

Monte-Carlo simulations but two equations have been shown (Anderson & Lebiere,

1998) to give good approximate characterizations of the model’s behavior.  The

probability of retrieving a chunk i is given by the formula:



ANDERSON & BETZ HYBRID KNOWLEDGE OF CATEGORIZATION
August 9, 2002

- 16 -

e

e

A t

A t

j

i A

i A

/

/∑           Probability of retrieving i = Chunk Choice Equation 3

where the summation is over all possible chunks j.  This is basically the same soft-max

equation as in production choice and t
A

 reflects the noise in the activation values.5  ACT-

R will only retrieve a chunk if it is above an activation threshold.  The probability that a

chunk will fall above a threshold of activation is given by:

Probability = Retrieval Probability

Equation 4

where τ is the threshold and s
A

 is also related to the standard deviation, σ
A

, of the

activation noise and to t
A

 by the formula s
A

 =  σ/π =  t
A

 .  The value of the

activation noise s
A

 was kept constant in these simulations at .55 (and so t
A

 was constant

at .78).  This is comparable to values used in other simulations (e.g., Anderson, Bothell,

Lebiere, & Matessa, 1998).  Finally, the time to retrieve a chunk is described by ACT-R’s

retrieval time equation:

Time = Fe
-Ai

Retrieval Time Equation 5

In the simulations we set the latency scale factor F to 1.0 sec., which is a typical (and

default) value.

Within the general ACT-R architecture just sketched, a system was created that

implemented both the EBRW model and the RULEX model.  Basically, this involved

having production rules direct the selection and execution of categorization strategies

1

1+
− −

e
Ai s

A
( )/τ
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while declarative information encoded the examples and rules that provided the category

information.

The ACT-R Hybrid Model

As we noted earlier, ACT-R has three ways of classifying a stimulus -- guessing,

using a rule module based on RULEX, and using an exemplar module based on EBRW.

The actual simulation resides at the Published Models link at the ACT-R home page:

http://act.psy.cmu.edu/ where one can inspect the code and try various parameter

combinations for the data sets described later.  However, here we will try to explain the

basic principles by which these three modules operate.  Table 1 gives snippets of

production rule firings that illustrate each of the methods classifying a stimulus.  Each of

these snippets presents the cycle number denoting the sequence of that production firing

in a larger run and the time in seconds of that production firing.  While no method is

always correct, for comparability the snippets chosen show the methods correctly

classifying a stimulus.  The first snippet, illustrating guessing, is the simplest.  The first

production issues a guess and the second processes the feedback that the guess was

correct.  Then follows a sequence of three rules that fire after every successful

classification event.  The first encodes the association of the 4 features of the stimulus

with the category.  This will provide an exemplar for later use by the exemplar module.

The remaining two terminate this study and note that the overall trial was successful.  The

choice of guessing in this example occurred only because there were no rules or

exemplars available at the early point in the run from which this snippet comes.  The

guess option is rated so low that it is never chosen when an exemplar or a rule can apply

and it never achieves enough success to make it preferable.  In the subsections to follow
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we will describe in more detail the implementation of the rule and exemplar modules in

ACT-R.

Implementing EBRW in ACT-R

The EBRW subsystem of the ACT-R hybrid model differed slightly from the

original EBRW model due to differences in similarity evaluation and the structure of

declarative memory.  In Nosofsky’s original formulation of the EBRW model, the

similarity between two exemplars i and j, is calculated as the weighted Euclidean distance

between the two:

where the summation is over the dimensions and wm represents the attention weight on

dimension m.  Attention weights are restricted so that all must be greater than 0 and the

sum of all attention weights is 1.  xim is the value of exemplar i on dimension m.  This

value can be found through multi-dimensional scaling studies or derived from the

physical values used to generate the stimuli.  In ACT-R similarity is calculated through a

city-block distance metric.  Here, the difference between chunk i and pattern j is:

While the equation above does not explicitly represent the weightings wm from the

EBRW equation they are implicit in the scaling of the xim.  In both systems, the similarity

between a presented stimulus and a stored exemplar affects the probability of recalling a

stored exemplar and the time to recall that exemplar.  With the exception of this

difference in metric, the combination of ACT-R Equations 2, 3 and 6 is essentially

d w x xij m im jm
m

= −∑ 2

Mismatch Equation 6M x xim jm
m

= −∑



ANDERSON & BETZ HYBRID KNOWLEDGE OF CATEGORIZATION
August 9, 2002

- 19 -

identical to EBRW.  Note the ACT-R equations were not at all fashioned to fit the

categorization literature.  Thus, the equivalence of ACT-R and EBRW reflects a

significant convergence of theories developed to fit very different data sets.

The structure of declarative memory in ACT-R is also different than the EBRW

model.  In the EBRW model, multiple instances of an exemplar can be stored and can

race against each other to be retrieved.  In ACT-R, identical chunks are merged, so there

can only be one copy of a stored exemplar.  However, the strength of the merged chunk

grows according to Equation 3 since each merge contributes to the count Ni.
6

Part (2) of Table 1 illustrates the sequence of production rule firings in a

successful classification by an exemplar.  The first production chooses the exemplar

method and then the next 6 productions implement the random walk.  The threshold for

the random walk in this example is 4 and 6 examples are retrieved to exceed this

threshold—5 voting in one direction and 1 in the opposite direction.  Then a production

terminates the search and another production processes the feedback.  Finally, the snippet

ends with the same final 3 productions as in Part (1) (except that in this case it is only a

two-dimensional stimulus) to encode the current example.

Implementing RULEX in ACT-R

In the ACT-R implementation of the RULEX model, it is important to understand

that classification rules are represented as chunks in declarative memory.  That is to say,

a rule used for classification is not a production rule.  The procedural/declarative

distinction in ACT-R is made according to whether knowledge is explicit or implicit;

declarative knowledge is explicit, while procedural knowledge is implicit.  Therefore, it
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makes sense to represent rules for categorization as chunks in declarative memory

because RULEX implies that such rules can be explicitly reasoned about by participants.

In the ACT-R implementation of the RULEX model, production rules implement

both the search through alternative categorization rules and the assessment of the

accuracy of particular rules. When the system attempts to find a new rule, a production

fires to select the kind of classification rule to look for.  Imperfect rules are selected only

if all perfect rules have been exhausted.  The process of forming exceptions to rules

according to the RULEX specification is quite complex to implement in ACT-R because

of all the special cases (although it is by no means impossible and we did successfully

implement it as an exercise).  In light of its complexity, we decided to replace it by a

simpler system in which exceptions are specified on all dimensions unlike the partial

specifications in RULEX.

Limitations on memory capacity are realized differently in the original RULEX

and its ACT-R implementation.  In RULEX, a parameter affects the rate at which new

exceptions can be added to memory.  In ACT-R, the subsymbolic mechanisms of

declarative memory achieve similar effects. Consider the situation where a permanent

rule has been formed and many exceptions are already stored in memory, but the system

attempts to form a new exception.  In RULEX, the limit on memory could prevent this

new exception from being stored successfully.  In ACT-R, the exception is guaranteed to

be stored, but there is no guarantee that it will be available in a later recall.  If the

activation of the newly formed exception falls below the threshold for retrieval, it cannot

be used.  Therefore, the ACT-R implementation of RULEX maintains the assumption

that memory is limited, but does not enforce that assumption in the same way.
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Part (3a) and (3b) of Table 1 give traces of the production system firing when it

successfully classifies stimuli by the rule module.  The difference between the two

subparts is that in 3a it applies the general rule and in 3b it applies an exception.  The first

production to fire, Choose-To-Classify-By-Rule, retrieves the currently operative rule

from declarative memory and chooses to apply it.  If no exception can be retrieved (part

3a), General-Rule-Match will start the process of comparing features. The model goes

through the 4 dimensions comparing them against the rule.  The rule in this case is a one-

dimensional rule where only dimension 3 is operative. In all the data sets we will be

modeling in this paper, the actual rules are one-dimensional.  When the feedback is

received that the rule is right, Increment-Correct-Count updates the count required by

RULEX for selecting judging the viability of the rule and Imperfect-Rule-Satisfies-

Stricter-Criterion notes that the rule still satisfies the stricter criterion.  In both Part (3a)

and (3b) the model goes through the same final encoding of the example as in Parts (1)

and (2).

Summary of the ACT-R Implementation of the EBRW and RULEX Models

As Table 1 illustrates, ACT-R implements its choice among the three methods

essentially by a “big switch” that chooses one of the methods in the first production that

fires in each snippet.  Provided there are exemplars or rules that can be retrieved, the

model will not choose the Guess method as in Part 1 of the table.  The rule and exemplar

methods will compete according to their relative success.

The mapping of the ERBW and RULEX models into ACT-R was fairly direct.

However, it is not the case that the processes of ACT-R exactly correspond to the

processes of EBRW or RULEX.  To highlight some of the differences:
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1. ACT-R strengthens merged traces whereas EBRW forms multiple traces

that race against each other.

2. ACT-R uses a city block similarity metric whereas the EBRW model

typically uses an Euclidean metric.  However, it should be noted that EBRW

is not constrained to use an Euclidean metric.

3.  ACT-R implements memory failures by retrieval limitations whereas

RULEX implements memory failures by storage limitations.

In each of these cases ACT-R had a prior architectural commitment that forced us to take

a somewhat different path.  However, we did not think that these differences were critical

and they were not.

In addition to these differences there is another category of issues involved in

implementing the two models in the same ACT-R architecture.  Generally, there is the

question of whether the parameters that work for one model will work for another model.

More specifically there is the issue of whether the system of declarative memory that

selects among traces in EBRW is consistent with the system that enforces memory

limitations in RULEX.  Also, there is the question of whether ACT-R would select

among these two strategies to deliver the right mixture for a particular experiment.

Therefore, this implementation effort is non-trivial test both of the architectural

compatibility of EBRW and RULEX and of the ACT-R architecture itself.

The key claim is that ACT-R has the facility to implement the essence of the two

models and can predict when one model will be deployed versus the other.  To put this

claim to test, the hybrid ACT-R model was tested against three data sets.  The first two

data sets (Nosofsky & Palmeri, 1997; Nosofsky, Palmeri, & McKinley, 1994) come from
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the papers that proposed the models that form the subsystems in the hybrid model.  The

third data set (Erickson & Krushke, 1998) came from a study that showed the interaction

of rule-based and exemplar-based systems.  In describing the simulations of the

individual data sets we will try to focus on the most significant aspects of the models.

The actual simulations are available for inspection from the Published Models link at the

ACT-R home page: http://act.psy.cmu.edu/.

Data Set 1: Nosofsky and Palmeri, 1997, Experiment 1

Nosofsky and Palmeri (1997) report a study to test their EBRW model.  Three

participants were presented with a set of 12 color squares.  The stimuli had a constant

hue, but varied on the dimensions of brightness and saturation.  The category structure of

the stimuli is shown in Figure 1. Participants made judgements on these stimuli over 150

blocks.  In each block all 12 stimuli were presented for classification.  The results showed

power-law speed-up in classification for each participant and faster response times on

stimuli that were further from the category boundary, as predicted by the EBRW model.

An important feature of these stimuli for the purposes of the ACT-R simulation is that the

dimensions are integral (Garner, 1974) and so participants cannot articulate the separate

dimensions.  As a consequence when the RULEX submodel of ACT-R tries to formulate

rules for classifying these stimuli it will always experience failure.  Thus, it will quickly

switch to an exemplar approach.

Insert Figure 1 About Here

A major component in modeling these data in ACT-R was setting the similarity

values between differing levels of brightness and saturation appropriately.  The original

EBRW experiment included a post-test portion in which participants made similarity
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judgements about each possible pairing of stimuli.  Nosofsky and Palmeri used these

judgements to derive a multi-dimensional scaling (MDS) solution for each participant.

We used these solutions to set the subjective similarities for ACT-R among the various

brightnesses and saturations.  The MDS solution tells us the relative differences between

the values but it does not tell us the absolute differences. Nosofsky and Palmeri estimated

scaling parameters to convert these relative differences into absolute differences and we

did the same.

We estimated for each participant a retrieval time for each item retrieved, an

“intercept” time corresponding to the time to encode the stimulus and respond, and a

retrieval threshold for the activation of a chunk in order for it to be retrieved.  There was

also a counter threshold in the random walk for classifying a stimulus but we held this

constant at 4 across participants, in contrast to Nosofsky and Palmeri who estimated

different parameters for different participants (4 was their median value).  These are

given in Table 2 which gives the parameters for all the data sets.  In addition, note that

two parameters, the utility noise tE = 2.2 and the activation noise tA = .78, were set once

for all simulations.

The fits that Nosofsky and Palmeri report for their model come from searching for

the best-fitting set of six parameters.  We informally tried to find parameters that would

give “close” values in a Monte Carlo simulation.  In doing this we adjusted the retrieval

time, the intercept, and the retrieval threshold.  Thus, ours might be viewed as a 3 or 4

(depending on how one views the constant counter threshold) parameter model but not

one that is optimized to give best fit.7  Our goal is not to produce a better model but just

to establish that ACT-R can yield predictions that are similar to EBRW.
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The learning data from this experiment are presented in Figure 2.  These data

show an approximate power-law decrease in response time over the training period.

Table 2 also gives the correlations between predicted and observed data with the

Nosofsky and Palmeri predictions in parentheses.  While the ACT-R fits are good and

nearly identical to Nosofsky and Palmeri, it is worth noting that the learning in the early

part of the curve is more complex in ACT-R because the model is sometimes trying to

form rules and failing (because the dimensions are not analyzable) and because the model

is sometimes failing to retrieve exemplars and guessing.  Both of these failed paths tend

to lead to long reaction times.  However, these events decrease in frequency with practice

in a way that approximates power-law learning.  Both Delaney, Reder, Staszewski, and

Ritter (1998) and Rickard (1997) have shown that mixtures of strategies can yield

approximate power-law learning.

Insert Figure 2 About Here

Figure 3 shows the data from the last 120 blocks in terms of the time to classify

the 12 stimuli in Figure 1.  By this time all responses are based on the counting process

and the EBRW and ACT-R model basically correspond in terms of mean number of steps

to classify each stimulus.  Table 2 also shows the mean generalization correlations for

ACT-R and the Nososfsky and Palmeri model.  While the ACT-R fits are not quite as

good as the Nosofsky and Palmeri fits, they are clearly quite similar and the ACT-R

predictions have not gone through the same optimization process.  The high correlation

between EBRW and the ACT-R model illustrates our earlier observation about the

essential convergence between the two theories.

Insert Figure 3 About Here
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There are two features of the ACT-R architecture that are critical to the model’s

ability to implement essential aspects of the EBRW algorithm.  First, the trace

strengthening processes (Activation Equation 2) and the latency function (Retrieval Time

Equation 5) are primarily responsible for the power-function speed up (Figure 2). ACT-

R’s strengthening component has been noted to be equivalent to Logan’s race among

instances (e.g., Anderson, Fincham & Douglass, 1999).  Second, the partial matching

process (Activation Equation 2) and the stochastic noise in activations (Chunk Choice

Equation 3) combine to produce the  different speed in classifying different stimuli

(Figure 3). The current endeavor indicates that ACT-R partial matching is nearly

equivalent to GCM’s similarity-based retrieval.  These two components and the random

walk algorithm are the critical pieces to the EBRW account of the data.  We just

implemented the random walk and this is not a test of ACT-R (except as noted below).

However, the success of this effort supports the learning and partial matching processes

of ACT-R.  Moreover, since these components have participated in accounts of many

other cognitive tasks (Anderson & Lebiere, 1998), the success of this effort indicates that

the EBRW model is consistent with some general aspects of cognition.

With respect to the random walk algorithm, it is not a trivial matter that the timing

parameters worked out since ACT-R places definite limits on the range of times.  Every

production cycle takes at least 50 msec. but retrievals from declarative memory can make

the cycle take longer.  On the other hand, we have argued (Anderson, Bothell, Lebiere, &

Matessa, 1998) that every production cycle cannot take much longer than 500 msec.

Thus, in ACT-R the timing of the steps are bounded to within an order of magnitude.  By

the end of the experiment ACT-R was taking from about 50 ms to 100 ms to consider
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each exemplar in the random walk.  We had worried that ACT-R would not be able to

perform the steps in the random walk fast enough to match the data and were somewhat

surprised that we were able to fit the data with the timing parameters in Table 2.

While the ACT-R model is a fairly faithful implementation of the EBRW random

walk algorithm, the ACT-R partial matching and strengthening mechanism, which

implement the algorithm, are different from the EBRW mechanisms even if equivalent

for the purposes of this experiment.  One could imagine doing tests of the differences,

focusing on things like the difference between the city block metric and the Euclidean

metric.  While such tests would be valuable and might lead us to reformulate certain

aspects of ACT-R theory, they would not change the conclusion that the two systems are

nearly equivalent in the effect of their architectural assumptions.

Note that the RULEX component of this model did not play any role because we

did not provide the model with any rules to try.  This corresponds to the observation that

participants find it hard to articulate dimensional rules for the stimuli of the experiment.

We do not claim that ACT-R provides any explanation of the inability of participants to

analyze such color stimuli into their underlying dimensions.  It simply represents that fact

in its encoding of the situation.  A basic premise of the model is that the rule component

is available if and only if participants can identify the dimensions of the stimuli.  This

makes our interpretation of the RULEX system like the explicit verbal system of Ashby

et al. (1998).  We regard the cognitive neuroscience data that Ashby et al. cite for it as

evidence for this component.

Data Set 2: Nosofsky, Palmeri, and McKinley, 1994, Experiment 1
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We will now consider an experiment reported by Nosofsky, Palmeri, and

McKinley (1994) that introduced the RULEX model.  In this experiment 227 participants

were presented with 16 training blocks of 9 trials each, showing line drawings of rocket

ships that varied on four binary-valued dimensions.  During training, feedback was

provided after each classification decision.  After training, the remaining possible

patterns from the stimulus space were presented, and participants were prompted to make

a classification decision on these novel stimuli.  The complete category structure of the

stimuli is presented in Table 2.  These stimuli are isomorphic to those used in Experiment

2 of Medin and Schaffer (1978). No single-dimension rule or conjunctive rule can

correctly classify all the stimuli in this experiment.  Therefore, any successful rule-

oriented classification strategy will require storing exceptions. There is enough structure

in the stimulus set and the structure is simple enough that a rule-based approach does

enjoy a fair amount of initial success.  Therefore, it is possible to learn a rule that

correctly classifies most of the stimuli, and then learn a small number of specific

exceptions to that rule.

The generalization patterns shown by participants on novel stimuli are given in

Figure 4.  There are 7 transfer stimuli, each with 2 possible responses, for a total of 27

possible generalization patterns.  Palmeri and Johansen  (1999) suggest ignoring transfer

stimuli 3 and 7 in Table 3 since they received the same classification on all bases.  This

reduces the 128 transfer patterns to 2
5
 = 32 which are graphed in Figure 4.  Three blocks

of transfer stimuli were presented, so a participant was said to classify a transfer stimulus

into a given category if they responded with that category to the given stimulus on at least
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two of the three presentations.  The two most common generalizations shown were

AABBB and BBABA, which correspond to rules on dimensions 1 and 3.

Insert Figure 4 About Here

Nosofsky et al. fit a five-parameter version of RULEX to these data.  One of these

parameters was the strict criterion for single-dimension rules, which varied uniformly

between .65 and .85; and we similarly allowed this criterion to vary in ACT-R. We set

the difference between the binary values to be worth a M
i
 value of 2.25 (see Activation

Equation 2). The other ACT-R parameters are shown in Table 2. Note that we set the

counter for the random walk to 1, thus classifying the stimulus on the first retrieved item,

which effectively eliminates the random walk.  Since there is no latency data reported in

this experiment, there is nothing to be gained by the random walk process and it can

considerably lengthen the simulations.8  The ACT-R simulation was run through the

same 16 training blocks as the participants and given the same transfer trials.  Our results

are averages of 1000 simulated participants.

The results of RULEX and the ACT-R model are also presented in Figure 4.

These results show that the ACT-R hybrid model reproduces many of the major aspects

of the participant data.  The AABBB and BBABA generalization patterns are the most

frequently generated by this model, which is in accord with the data.   The first

generalization pattern represents a rule based on dimension 1 while the second

generalization pattern represents a rule based on dimension 3.  The overall correlation

with the data is .85 for ACT-R and .92 to RULEX.  As in the case of Data Set 1, this

establishes that the model can get in the range of the data without any special effort at

tuning.
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In any given run of the model, either the rule-based or exemplar-based system can

learn the category structure of the experiment.  Over trials the model tends to shift from

trying rules to using examples.  Figure 5 plots the proportion of example use as a function

of trials (rule use never succeeds for Data Set 1 and so there is not a comparable plot).

There are two reasons for the increased use of exemplars.  First, should a high criterion

be selected for rule success, no rule will exceed the criterion and ACT-R will switch to

examples.9 Second, as the amount of experience increases the examples become more

and more strongly encoded and retrieval becomes a faster way of classifying examples

without sacrificing accuracy.  As this is discovered the conflict resolution (see Equation

1) changes its preference from rules to examples.  Basically, ACT-R has realized a

variation on Logan’s exemplar model.  The system starts working with inferred rules and

switches to examples.  As Figure 5 illustrates, this same tendency occurs in the third data

set.  The fact that nearly 50% of the classifications are example-based by the end of the

experiment explains why more of the classifications in Figure 4 are not of the form

AABBB or BBABA.  The dominance of these two transfer patterns is a consequence of

the RULEX algorithm implemented in ACT-R and not of the architecture.  The RULEX

algorithm by itself would produce over 30% choice of each of these patterns rather than

the approximate 15% displayed in Figure 4.  The 30% is reduced to 15% because in

many of the runs ACT-R has switched to exemplars.  In the original RULEX model the

reduction in the frequency of these two generalization patterns occurs because of random

slips and because sometimes an exception blocks a generalization.  It is a prediction of

the ACT-R architecture that the rule-based generalization will become more muted as

participants practice the task more and switch more to example-based classification.  This
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is not a prediction of the original RULEX model.  Palmeri and Johansen (1999) report an

decreased tendency to make rule-based classifications in longer versions of this

experiment.  Smith and Minda (1998) report a similar effect.

Insert Figure 5 About Here

Data Set 3: Erickson and Krushke, 1998, Experiment 2

Erickson and Kruske (1998) described an experiment in conjunction with a

connectionist hybrid model for category learning.  They emphasized the effect of

interaction between exemplar-based and rule-based modules of their hybrid

categorization model.  This interaction was studied by varying the frequency with which

various stimuli were presented. Participants were presented with rectangles that varied in

height and the location of the vertical line segment that the rectangles contained.  These

two dimensions formed a stimulus space that is illustrated in Figure 6.  The height of the

rectangle was the primary dimension; a rule that divided the stimulus space based on

rectangle height correctly classifies all but two of the stimulus patterns.  These patterns

were exceptions, and each belonged to its own category (thus there were four categories

in all).  Each dimension could take a discrete value from 0 to 9, and the patterns were

presented on a display with axes to indicate the numeric value of both dimensions.10  All

but four stimuli were presented once per block of training.  One exception-classified

stimulus (E2) and one rule-classified stimulus (R2) were presented twice per block.  One

exception-classified stimulus (E4) and one rule-classified stimulus (R4) were presented

four times per block.  In transfer blocks they measured the percentage of rule-appropriate

responses to the 8 patterns adjacent in the stimulus layout to each of these higher-

frequency stimuli.
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Insert Figure 6 About Here

Participants alternated between 16 blocks of training where they were given

feedback on their classifications and 16 transfer blocks where no feedback was given.

Part (a) of Figure 7 displays the data from this experiment.  With respect to the training

data, there is an effect of frequency on both exception-classified stimuli and rule-

classified stimuli. Transfer stimuli are considered correct if participants give rule-

appropriate responses even if the stimuli surround an exception.  Participants generated a

higher percentage of rule-appropriate responses to stimuli surrounding R4 than to those

stimuli surrounding R2.  Further, participants generated fewer rule-appropriate responses

to stimuli surrounding E4 than to stimuli surrounding E2.  Erickson and Krushke used

these data to argue against a pure rule-based model because they claimed that this would

not predict a frequency effect for rule-classified stimuli.  They also used these data to

argue against a pure exemplar model because they claimed it would not predict that

transfer stimuli in the vicinity of the exception stimuli would be classified a majority of

the time according to the rule.  The model that they proposed with their data, ATRIUM,

was a connectionist model that, on each presentation of a stimulus, made a categorization

decision using a rule-based subsystem, another decision using an exemplar-based

subsystem, and combined these two judgements to reach a weighted final decision.

The ACT-R model that we developed for this task could either use exemplars or a

rule that separated the stimuli by a value of 4.5 on the height dimension.  This rule is like

the linear decision boundary rules proposed by Nosofsky and Palmeri (1998) in their

extension of RULEX to continuous dimensions.  Because the ACT-R hybrid model only

tries one method (rule or exemplar) on a trial, rather than merging the results of two
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methods, it was not initially apparent to us that it could predict an effect of frequency of

presentation on probability of rule-appropriate decisions.  The decision to use a rule-

based or exemplar-based approach is determined by the overall success of these

approaches rather than by the success with respect to a particular stimulus.  When we ran

the ACT-R model on this task we found, to our surprise, that it did a good job in

predicting qualitative trends in the data as indicated in Part b of Figure 7.  With respect to

correlations (Table 2), it does a slightly better job of predicting certain aspects the data

than does ATRIUM whose predictions are illustrated in Part c of Figure 7.11  The ACT-R

model tends to slightly overpredict performance—a problem we could have corrected by

adding a slip parameter but the complication did not seem worth it.  (Interestingly,

ATRIUM tends to slightly underpredict accuracy.)  The ACT-R parameters that were set

for this model were the same as for the previous model (Data Set 2) except that we

changed the retrieval threshold and had to scale the similarities separately for this

experiment.  We scaled the differences among stimuli so that each unit difference (on

either axis) in Figure 6 was worth a M
i
 of 1.5 (see Activation Equation 2).  Thus, for

instance, if the stimulus had a height of 4 and the target height was 7 and the other

dimension matched, the mismatch would be 3 * 1.5 + 0 x 1.5 = 4.5.

Figure 5 displays the growth in exemplar use over trials.  The ACT-R predictions

depend on the fact that it is using a mixture of exemplars and rules. The reason it tends to

classify transfer stimuli according to a rule, even when they are close to an exception, is

that a majority of the trials are rule based even at the end of the experiment.  ACT-R

tends to get the exceptions correct because they are stored as exceptions in the RULEX

portion of the model.  Note that these exceptions are represented twice—once as
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exceptions to the rules and once as exemplars. The frequency effects largely come from

the trials in which exemplars are used.

Erickson and Krushke thought that their data provided evidence for something

they called “representational attention”.  This was the ability to focus on the exemplar

module for exceptions and the rule module for the other stimuli.  This was the way they

were able to achieve high accuracy on exceptions and high accuracy on the other stimuli

as well.  In contrast to their ATRIUM model, our ACT-R model was able to achieve this

high accuracy even though it chooses to use the rule module or exception module

independent of the stimulus.  It can maintain high accuracy because its RULEX

component checks for exceptions.  Erickson and Krushke pointed out that RULEX by

itself would not be able to produce the frequency effects in the data.  This is what is

produced by our exemplar component.  Thus, our hybrid model both needs the exceptions

stored in RULEX to achieve accurate classification of the studied exceptions and the

exemplars to produce a frequency effect in transfer.

General Discussion

In this paper we have taken two algorithms for classification, the random walk in

EBRW and the rule search in RULEX, and implemented them with relatively few

modifications in the ACT-R architecture.  The fact that these algorithms could be

implemented in ACT-R is not a trivial result.  For instance, it would be hard to implement

the elaborate sequential decision structure of RULEX in most connectionist architectures.

Furthermore, the fact that we could implement the algorithms does not necessarily imply

that they would have behaved in a way that matched up with the data.  If we had

implemented these algorithms in earlier versions of the ACT-R architecture (Anderson,
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1976; Anderson, 1983; Anderson, 1993) or in other productions system architectures

(e.g., Just & Carpenter, 1992; Kieras & Meyer, 1997; Newell, 1991), they would have

behaved differently.  The successful performance of these algorithms in ACT-R required

certain properties of the declarative and procedural components of the ACT-R

architecture.

The declarative component of ACT-R (in the guise of the Activation Equation 2,

the Chunk Choice Equation 3, the Retrieval Probability Equation 4, and the Retrieval

Time Equation 5) was able to produce the frequency effects in Data Sets 1 and 3.  The

partial matching process was responsible for the similarity profiles in Data Set 1 and the

transfer performance in Data Set 3.  The success of ACT-R's declarative component

offers a significant generalization in three ways.  First, it shows that ACT-R is another

way of characterizing memory within the categorization algorithms.  Second, it shows

that the same memory characterization can work within both the EBRW and RULEX

algorithms.  Third, to the extent that ACT-R has been applied to domains other than

categorization, it shows that the same memory processes underlie categorization as other

tasks.

The other contribution of this paper was to show how the two categorization

algorithms can co-exist together.  That is to say, they can work in a single cognitive

architecture where they are constrained to share the same parameters (such as activation

noise and decay).  Moreover, they can coexist in an architecture that supports a wide

variety of other cognitive processes.  Here the credit goes to ACT-R's procedural

component.  The procedural component (in the guise of the Conflict Resolution Equation

1) was responsible for the mix of exemplar and rule-based strategies.  Exemplar use
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dominated from the beginning for Data Set 1 because it was not possible to formulate

rules.  In contrast, for Data Sets 2 and 3, rule use dominated early and slowly gave way to

exemplar use.  The exemplar use played a role in the account of the second data set and,

as Palmeri and Johansen have shown, it can be more significant with more practice.  The

mixture of rule and exemplar judgements was absolutely critical to our success in

accounting for Data Set 3.  The transition from rule-based to exemplar-based

classification is rational and is captured by the conflict resolution process in ACT-R.

Rule-based classification is more economical in terms of memory structures encoding the

exemplars but less efficient in terms of processing time.  As the memory structures

encoding the exemplars become strengthened ACT-R transitions to exemplar-based

classification.

It is worth emphasizing that both the exemplars and rules are represented as

declarative chunks in the current ACT-R model.  Production rules basically “interpret”

these chunks.  This contrasts with a much earlier ACT proposal (Anderson, Beasley, &

Kline, 1979) that represented both instances and abstractions as production rules.  This

production-rule implementation of categorization has recently been extensively modified

and elaborated by Vandierendock (1995).  We choose to implement categorical

knowledge declaratively because we believe participants can describe their knowledge

and only declarative knowledge can be described in ACT-R.

The suspicion is sometimes expressed that an architecture like ACT-R can fit any

pattern of data.  However, this is not true in general and not true in this case.  In

comparison to other models, we are constrained not only to fit the data at hand but to do

it in a way that is consistent with our models for other domains.  ACT-R is a system that
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actually performs the task in real time and moreover has strong commitments to the time

that each step of cognition takes.  These commitments are in the form of parameters and

bounds have been established for these parameters in fitting other data sets in other

domains.  This makes the first data set from Nosofsky and Palmeri (1997), with its timing

information, perhaps the most demanding.  As we noted, it was not a trivial matter that

ACT-R was able to implement the EBRW algorithm.  If the human data had been fit with

steps in that random walk that were only half as long, ACT-R would not have been able

to do the task in human time.

The strategic decision to implement EBRW and RULEX in ACT-R makes this

effort more constrained than if we had fashioned our own exemplar and rule-based

model.  Since the implementations of these models succeeded (a non-trivial result) our

exemplar module or our rule-based module are separately no more able to fit any pattern

of data than are the original models.  However, one might argue that the combination of

two modules is more flexible than either by itself.  This is not true in this case because of

the constraints that the architecture brings.  For instance, we are committed to the

prediction of increased exemplar use in tasks where these two strategies mix -- a

prediction that pure models do not make.  Also, our hybrid model commits us to

predicting the interaction observed in the Erickson and Krushke data (Figure 7).  All

parameter adjustment could do would be to change the size of the main effects and

interactions.  Thus, the ACT-R model would have been disconfirmed had the results of

these experiments been in the opposite direction.   These constraints on the mixture of the

strategies come from the basic declarative and procedural mechanisms in ACT-R.
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Table 2 lists the parameters used to fit the individual data sets.  In addition to

these we set two global parameters especially for these experiments.  These are the noise

parameters for utility (tE = 2.2) and activation (ta = .78) and they are in the range used for

other tasks.  While ACT-R has other parameters these were set at default values

established in past research.  The parameters in Table 2 were set to match the

performance level in the experiments.  Except for the first participant in Nosofsky and

Palmeri, who displayed slower times, the retrieval time parameter was kept constant at 50

ms.  Similarly, there was no serious effort to estimate the counter threshold parameter or

intercept parameter.  It was the activation threshold parameter, τ, that varied substantially

across data sets producing the different levels of performance.  Anderson, Bothell,

Lebiere, and Matessa (1998) noted that this parameter also varied substantially in their fit

to different list learning experiments.  It does appear to be one that captures the

performance differences across experiments.

With respect to the latency structure of the data, the current ACT-R model

assumes that all dimensions of a stimulus are encoded at once, as do EBRW and RULEX.

However, Lamberts (1998) has argued the various dimensions are encoded separately and

Lamberts and Freeman (1998) show, with stimuli like those from Data Set 2, that this is

an important consideration in predicting latency.  Clearly, this is a direction to proceed in

elaborating the model presented here.

Nosofsky and Johansen (in press) have recently made the case that an exemplar

model can account for all data that have been used to argue for rule-based processing.

This includes the last two data sets12 that we modeled in this paper.  They do not claim

that the exemplar model provides a superior account but rather question whether any
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existing data sets conclusively establish the need for something other than exemplars.

While one could strive to find the decisive experiment that decides the issue once and for

all, perhaps a more promising approach is to try to see how categorization behavior fits in

with a more complete characterization of human cognition.  Constraints from other

domains can point the way to the correct model of human categorization.  This paper is a

first step towards that goal.

EBRW is just one of many models for doing example-based classification and

RULEX is just one of many models for using abstractions to make category judgements.

To what degree do these results provide support for the EBRW and RULEX algorithms

specifically?  With respect to EBRW its essential feature is the random walk that allows

similarity to influence retrieval time.  We suspect that the number of steps in the random

walk in EBRW are too many.  Already in our fit to Data Sets 2 and 3 (where we were not

constrained by an existing model) we set the decision bound to 1 step.  For the first data

set, where we had a decision bound of 4 steps, we noted that ACT-R, given its minimal

cycle time, was barely able to complete the processing in human time.  Nosofsky and

Palmeri (1997b) report a simpler experiment where they estimated participants had

decision bounds of 6 steps and made their decisions in under 500 msec.  ACT-R could

not reproduce this result.

With respect to RULEX, it seems that an essential feature of the algorithm is its

ability to have exceptions override a general rule.  As we discussed earlier, it would have

been difficult to simulate the Erickson and Krushke data without this feature.  It also

seems that the Nosofsky et al. data (as well as the earlier concept learning literature)

indicate that people will try to classify stimuli according to a single dimension.  While we



ANDERSON & BETZ HYBRID KNOWLEDGE OF CATEGORIZATION
August 9, 2002

- 40 -

think that RULEX captures some essential features, we were stuck by the complexity of

implementing the rule-search algorithm in terms of doing an exhaustive search through

rules and keeping track of lax and strict criterion.  Perhaps some simpler system could

work as well.  For instance, the EPAM model described by Gobet, Richman, Staszewski

and Simon (1997) seems to have all the essential properties of RULEX.

Another question is whether rules are the only form of abstraction or whether

there are other ways of abstracting category information.  In particular, one can imagine

participants have prototypes perhaps with information about their variance as well as

their central tendency.  Our earlier rational model of categorization (Anderson, 1991) and

the earlier Anderson et al. model (1979) both proposed participants stored multiple

prototype-like representations.  It is of interest that Smith and Minda (1998) propose that

participants mix a prototype strategy with an exemplar strategy while Ashby et al. (1998)

propose that participants mix a prototype with a rule-based strategy.  This prototype

system may be implemented in the implicit, striatal system that Ashby et al. argue for and

Poldrack, Prabbakaran, Seger, and Gabrieli (1999) find fMRI evidence for.  Perhaps, the

right conclusion is that participants can use all three of the strategies: prototypes,

exemplars, and rules.

There has been recent discussion about the ability of cognitive neuroscience data

to select among alternative proposals for categorization.  For instance, Ashby et al.

(1998) argue that such data can be decisive.  They argue that the fact that amnesiac

populations appear to categorize successfully (Knowlton & Squire, 1993; Squire &

Knowlton, 1995) can be used to reject exemplar models since these patients cannot

remember the examples but can categorize them.  On the other hand, Nosofksy and Zaki
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(1998) and Palmeri and Flanery (1999) have shown that these results can be explained

within an exemplar framework.  It seems unlikely that such data really rules out any

categorization strategy altogether.  It seems more likely that neuroimaging data such as

that of Smith et al. (1998) will help identify which strategies particular subjects are using

in particular experiments.

In summary, it is probably too strong to say that this exercise has uniquely

supported EBRW or RULEX, but rather it indicates that these theories capture some

important aspects of categorization behavior.  Likewise, it would be too strong to

conclude that this research has uniquely supported the ACT-R architecture.  Rather, it has

relied on two critical features of that architecture, which are the activation-based

declarative memory and a procedural system where different paths are chosen among

according to their relative utility.  Perhaps, the safest conclusion to make is that this kind

of architecture can implement the kinds of strategies that participants use in

categorization.  This is significant because this is the kind of architecture that has

successfully modeled participant behavior in other domains.
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Footnotes/Endnotes

1 This research was supported by grant N00014-96-1-0491 from the Office of Naval

Research.  We would like to thank Christian Lebiere, Robert Nosofsky, Thomas Palmeri,

Alex Petrov, and Lynne Reder for their comments on this paper.

2 There is considerable discussion about the exact form of the speed up and whether it

conforms to a power-function or some other function like an exponential (e.g., Heathcote,

Brown, & Mewhort, 2000).

3 These three strategies are very similar to the three in Smith and Minda (1998) except

that Smith and Minda use a prototype abstraction strategy rather than a rule strategy. This

model also has some similarities with Reder and Schunn (1996) and Rickard (1997) in

that it chooses among strategies including retrieval and a rule-based procedure.

4 There are other constant terms to this equation (see Anderson & Lebiere, 1998;

especially p. 124) but they effectively cancel out in the current applications.

5 Activation is like log familiarity in SAM (Gillund & Shiffrin, 1984; Raaijimakers, &

Shiffrin, 1980) and Equation 3 is the formal equivalent of the sampling probability in that

equation.

6 In ACT-R, retrieving a chunk also increases the activation of that chunk.  That

increased activation means that the same chunk will have higher probability of recall in

future steps of the random walk.  In the early stages of an experiment, all chunks have

relatively equal activations, but minor differences can be rapidly amplified through this

positive feedback loop leading to runaway strengthenings. To eliminate such runaway

strengthenings in the ACT-R model, the activation of stored exemplars is held to a fixed
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rate of growth.  Thus, in ACT-R, like EBRW, there is one strengthening (or exemplar

formed) each time a stimulus is presented and the chunk representing the correct

stimulus-category pairing is strengthened.

7 Since the results come from Monte Carlo simulations, there are not analytic equations

that enable most parameter estimations procedures.  Given the complexity of the

simulations and the number of runs required to obtain stable estimates, it is not feasible to

do an exhaustive search of the parameter space.

8 Since ACT-R’s retrieval of instances is already stochastic the random walk is not

required to predict probability of choice.

9 Note, unlike the original RULEX, the ACT-R implementation only tries single

dimension rules and does not search through various 2-dimensional classification rules.

10 Nosofsky and Johansen (in press) wondered about the explicit presentation of numeric

values.  They show in a follow-up study that participants behave much like the exemplar

model if this numeric value were removed.  This is what our model would predict if the

effect of removing the numeric values was to eliminate the ability to formulate explicit

rules—see the discussion at the end of Data Set 1.

11 It should be stressed, however, that they fit a great deal more data than what is in

Figure 7.

12 Actually they modeled the first experiment (rather than the second) from Erickson &

Krushke (1998).  More recently, Erickson & Krushke (in press) have produced results

which cannot be so explained.
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Table 1
________________________________________________________________________
Traces of the Various Methods of Classification in the ACT-R Model
________________________________________________________________________

(1) Classification by Guessing

Cycle 10  Time  2.297: Guess

Cycle 11  Time  3.246: Random-Guess-Was-Right

Cycle 12  Time  3.296: Encode-4features

Cycle 13  Time  3.346: Study-Complete

Cycle 14  Time  3.396: Done-Right

________________________________________________________________________

 (2) Classification by Retrieving Examples

Cycle 2173  Time 287.301: Choose-To-Classify-By-Exemplar-2feature

    Cycle 2174  Time 287.479: Recall-2feature

    Cycle 2175  Time 287.579: Recall-2feature

    Cycle 2176  Time 287.679: Recall-2feature

    Cycle 2177  Time 287.779: Recall-2feature

    Cycle 2178  Time 287.879: Recall-2feature

    Cycle 2179  Time 287.979: Recall-2feature

    Cycle 2180  Time 288.079: Done-Classifying-By-Exemplar

 Cycle 2181  Time 288.259: Correct-Finish-From-Exemplar

 Cycle 2182  Time 288.309: Encode-2features

    Cycle 2183  Time 288.359: Study-Complete

 Cycle 2184  Time 288.409: Done-Right

________________________________________________________________________
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(3a) Classification by Applying Rule

Cycle 1483  Time 348.160: Choose-To-Classify-By-Rule

    Cycle 1484  Time 348.216: General-Rule-Match

Cycle 1485  Time 349.180: Feature1-Is-Nil

       Cycle 1486  Time 349.233: Feature2-Is-Nil

       Cycle 1487  Time 349.291: Feature3-Against-Rule-V1

       Cycle 1488  Time 349.423: Feature4-Is-Nil

       Cycle 1489  Time 349.474: Done-Applying-Presentation

    Cycle 1490  Time 349.524: Done-Classifying-By-Rule

 Cycle 1491  Time 350.183: Classification-By-Rule-Is-Right

    Cycle 1492  Time 350.233: Increment-Correct-Count

    Cycle 1493  Time 350.306: Imperfect-Rule-Satisfies-Stricter-Criterion

 Cycle 1494  Time 350.365: Encode-4features

    Cycle 1495  Time 350.415: Study-Complete

 Cycle 1496  Time 350.465: Done-Right

________________________________________________________________________

 (3b) Classification by Exception to Rule

Cycle 1497  Time 350.515: Choose-To-Classify-By-Rule

    Cycle 1498  Time 350.568: Use-exception-4dim

 Cycle 1499  Time 350.806: Classification-By-Rule-Is-Right

    Cycle 1500  Time 350.856: Increment-Correct-Count

    Cycle 1501  Time 350.911: Imperfect-Rule-Satisfies-Stricter-Criterion

 Cycle 1502  Time 350.963: Encode-4features
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    Cycle 1503  Time 351.013: Study-Complete

 Cycle 1504  Time 351.063: Done-Right

________________________________________________________________________
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Table 2
Parameter Sets and Fits.

Data  Set 1
Nosofsky &
Palmeri
(1997)
Participant 1

Data  Set 1
Nosofsky &
Palmeri
(1997)
Participant 2

Data  Set 1
Nosofsky &
Palmeri
(1997)
Participant 3

Data Set 2
Nosofsky
Palmeri &
McKinley
(1994)

Data Set 3
Erickson &
Kruske
(1998)

Retrieval Time
Parameter

0.10 s. 0.05 s. 0.05 s. 0.05 s. 0.05 s.

Retrieval Threshold
Parameter, τ

-0.3 0.5 0.0 0.8 0.0

Intercept Parameter 0.18 s. 0.18 s. 0.25 s. 0.20 s. 0.20 s.

Counter Threshold
Parameter

4 4 4 1 1

Learning Correlations 0.94 (0.94) 0.77 (0.78) 0.95 (0.96)      - 0.99 (0.98)

Generalization
Correlations

0.87 (0.89) 0.97 (0.99) 0.93 (0.95) 0.85 (0.92) 0.94 (0.91)

Retrieval Time is the minimum step time, in seconds, for one retrieval in the random
walk.  Retrieval Threshold is the minimum activation required for a chunk to be
retrieved.  Intercept is encoding and response time.  Counter Threshold is the magnitude
of the counter value that triggers a decision in the random walk. The last two cells in
each column show the correlation between the predictions of the ACT-R hybrid model
and data, and, in parentheses, the correlation between the predictions of the EBRW
model and data.
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Table 3

Stimuli from Nosofsky et al. (1994)

Experiment 1.

Category A Category B Transfer

A1: 1112 B1: 1122 T1: 1221

A2: 1212 B2: 2112 T2: 1222

A3: 1211 B3: 2221 T3: 1111

A4: 1121 B4: 2222 T4: 2212

A5: 2111 T5: 2121

T6: 2211

T7: 2122
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Figure Captions
Figure 1: Schematic illustration of the color stimuli used in Nosofsky and Palmeri (1997).

Circles represent one category and squares represent the other category.

Figure 2: Comparison of ACT-R learning data with participant learning data from

Nosofsky and Palmeri (1997).

Figure 3: Comparison of mean response times for each individual stimulus from each

participant and the ACT-R and EBRW model predictions for each participant from

Nosofsky and Palmeri (1997).

Figure 4: Comparison of generalization patterns shown in Nosofsky, McKinley and

Palmeri (1994) and by the ACT-R hybrid model.  The categories are the 32 categories

obtained by excluding responses to transfer stimuli 3 and 7 in Table 2.

Figure 5: Percentage of classification by examples (in contrast to rules) as a function of

trials for Data Set 2 (Nosofsky & Palmeri, 1994) and Data Set 3 (Erickson & Kruschke,

1998).

Figure 6: The category structure used by Erickson and Kruschke (1998).  Each 1

indicates a stimulus that was presented once per training block.  The cells labeled R2 and

R4 indicate stimuli that could be correctly classified by the rule and were presented 2 and

4 times, respectively, per training block.  The cells labeled E2 and E4 indicate stimuli that

were not correctly classified by the rule, and were presented 2 and 4 times, respectively,

per training block.  The shaded area indicates the transfer stimuli for which percentage of

rule-appropriate responses were measured.

Figure 7: Proportion “correct” (rule-appropriate responses are scored correct for transfer

stimuli) as a function of frequency.  (a) Data from Erickson & Krushke; (b) ACT-R

predictions; (c) ATRIM predictions.
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Figure 1
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Figure 2
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Figure 3

Comparison of Hybrid ACT-R Model with EBRW Model
Participant 2, profile data
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Figure 4
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Figure 5
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Figure 7a

Figure 7b
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1 This research was supported by grant N00014-96-1-0491 from the Office of
Naval Research.  We would like to thank Christian Lebiere, Robert Nosofsky, and
Thomas Palmeri for their comments on this paper.

2 There is considerable discussion about the exact for of the power law speed up
(e.g., Heathcote, Brown, & Mewhort, 2000).

3 These three strategies are very similar to the three in Smith & Minda (1998)
except that Smith & Minda use a prototype abstraction strategy rather than a rule
strategy. This model also has some similarities with Reder and Schunn (1996) and
Rickard (1997) in that it chooses among strategies including retrieval and a rule-
based procedure.

4 There are other constant terms to this equation (see Anderson & Lebiere, 1998;
especially p. 124) but they effectively cancel out in the current applications.

5 Activation is like log familiarity in SAM (Gillund & Shiffrin, 1984;
Raaijimakers & Shiffrin, 1980) and Equation 3 is the formal equivalent of the
sampling probability in that equation.

6 In ACT-R, retrieving a chunk also increases the activation of that chunk.  That
increased activation means that the same chunk will have higher probability of
recall in future steps of the random walk.  In the early stages of an experiment, all
chunks have relatively equal activations, but minor differences can be rapidly
amplified through this positive feedback loop leading to runaway strengthenings.
To eliminate such runaway strengthenings in the ACT-R model, the activation of
stored exemplars is held to a fixed rate of growth.  Thus, in ACT-R, like EBRW,
there is one strengthening (or exemplar formed) each time a stimulus is presented
and the chunk representing the correct stimulus-category pairing is strengthened.

7 Since the results come from Monte Carlo simulations, there are not analytic
versions of these equations that enable most parameter estimations procedures.
Given the complexity of the simulations and the number of runs required to obtain
stable estimates, it is not feasible to do an exhaustive search of the parameter
space.

8 Since ACT-R’s retrieval of instances is already stochastic the random walk is not
required to predict probability of choice.

9 Note, unlike the original RULEX, the ACT-R implementation only tries single
dimension rules and does not search through various 2-dimensional classification
rules.
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10 Nosofsky and Johansen (in press) wondered about the explicit presentation of
numeric values.  They show in a follow-up study that participants behave much
like the exemplar model if this numeric value were removed.  This is what our
model would predict if the effect of removing the numeric values was to eliminate
the ability to formulate explicit rules.

11 It should be stressed, however, that they fit a great deal more data than what is
in Figure 7.

12 Actually they modeled the first experiment (rather than the second) from
Erickson & Krushke (1998). More recently, Erickson & Krushke (in press) have
produced results which cannot be so explained.


