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Introduction

Multitasking typically requires people to make performance
trade-offs: paying more attention to one task can improve
performance there, but might lead to performance
decrements on other unattended tasks. In our work we try to
gain a better understanding of how people make such trade-
offs. One difficulty in this effort is that performance is
typically expressed in different units across tasks (e.g.,
“accuracy” of keeping a car inside a lane and “speed” of
performing a secondary task such as dialing). How do
people trade-off these different units?

Explicit payoff functions have been proposed as a way to
achieve the desired trade-off (e.g., Howes, Lewis, & Vera,
2009; Janssen, Brumby, Dowell, Chater, & Howes, 2011;
Payne, Duggan, & Neth, 2007; Schumacher, et al., 1999).
They can be used to translate performance on multiple tasks
into a single score. The participant and the modeler can then
use this feedback to objectively compare performance for
different strategies (Howes, et al., 2009; Janssen, et al.,
2011). If successful, payoff functions can be used as a
formal way to manipulate a user’s priorities. Different
strategies can be made optimal through changes of the
payoff function. In ongoing work we are exploring under
what conditions such “ideal payoff manipulations” can be
made. We report some of our intermediate findings here.

Ideal payoff functions and manipulations

A payoff function is a function that translates performance
on one or multiple tasks into a single, explicit, objective
currency in a consistent manner. As a rule-of-thumb, the
output of the function should be meaningful to the
participant. Participants can then use the output of the
payoff function to assess how well they are performing by
comparing payoff values across trials and strategies.
Similarly, a model can be used to compare payoff values of
different strategies (e.g., Howes, et al., 2009; Janssen, et al.,
2011). In this way, a payoff curve can be generated that
captures how payoff fluctuates as a function of the possible
strategies. An ideal payoff curve has four properties:

1. Tt has one global maximum.

2. It has no local maxima other than the global maximum.
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3. The set of strategies that has a payoff value close to the
maximum is narrow and these strategies are very
similar in nature to the “optimum” strategy.

4. The distribution of possible payoff values is consistent

and narrow, such that the mean payoff value of a
strategy is representative of the distribution of values.

In essence, these properties guarantee that there is a
unique, consistent, clear optimum strategy. This makes it
easier for the participant and the modeler to identify the
optimum strategy and to assess whether participants
performed optimally. The black line in Figure 1 is an
example of how payoff score (vertical axis) changes as a
function of strategy (horizontal) in an ideal payoff curve.

If payoff is successful in manipulating performance, then
in an ideal setting this can be used to make any arbitrary
strategy “optimal” for at least one payoff function. In Figure
1 multiple alternative payoff curves are plotted in grey lines,
as generated by hypothetical alternative payoff functions.
This is considered an ideal payoff manipulation, because:

1. Each curve is an ideal payoff curve.
2. Across curves, each strategy is the optimum of at least
one ideal payoff curve.

With this definition of an ideal payoff manipulation, we
are currently exploring under what conditions (e.g., what
types of tasks) such ideal manipulations are possible.

Payoff Score
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Strategy (e.g., time on task)

Figure 1: An ideal payoff manipulation (see text)

A mathematical model of interleaving

Inspired by our previous work on a tracking-while-typing
task (Farmer, Janssen, & Brumby, 2011; Janssen, et al.,
2011), we developed a mathematical model of this task. The
model had to keep a one-dimensional first-order moving
cursor inside a target area. The movement of the cursor was
modeled using Pascal’s triangle, which can be used to give



exact predictions of the probabilities of the position of the
cursor at each timestamp. The model could exert active
control of the cursor to overwrite the random movement. In
addition a simple secondary task was included, which solely
involved opening a task window.

The model could only attend to one task at a time and
experienced switch costs when switching between tasks.
Both tasks were kept extremely simple on purpose, as this
allowed us to focus on the role of payoff functions and
whether an ideal payoff manipulation was possible, without
having to worry about the correctness of each constraint and
about the effects of constraints on performance.

Performance on both tasks was encapsulated in the payoff
function. For the tracking task, the model gained points on
every sample when the cursor was inside its target area; it
lost points otherwise. For the secondary task, the model
gained points whenever the window of this task was open; it
lost points otherwise. The values of these four gain and loss
components were systematically manipulated to explore
whether ideal payoff manipulations were possible. We also
explored the effects of using a log or exponential
transformation to the functions. The general pattern of
results was similar across these simulations.

Results and Discussion

As a first step to identify ideal payoff manipulations, we
explored whether the location of the global maxima differed
across payoff functions. In contrast to the definition of an
ideal payoff manipulation, the strategy required to achieve
the maximum payoff did not vary much as the payoff
function varied. Only specific points emerged as maxima.
These maxima were for strategies of which the performance
of at least one of the underlying tasks (i.e., how many time
units was the cursor inside the target area, how many time
units was the secondary task window open) had a local
maximum. These local maxima were themselves the result
of the constraints imposed by the task environment (e.g.,
boundary of the tracking task target) and cognition (e.g.,
switch costs). That is, global maxima in the payoff curve
emerged at positions where the interaction of the constraints
led to beneficial performance trade-offs.

Looking at individual curves, many also violated the
characteristics of an ideal payoff curve. Figure 2 shows
three example curves. For each curve (different color lines),
the strategy with the highest payoff is highlighted with an
open circle. As can be seen, the curves violate the properties
of an ideal payoff curve. There are local maxima and there
are many strategies that achieved values close to the
maximum value. This implies that fine tuned attentional
strategies are not always required. We are therefore making
further efforts to find task variants in which more subtle
strategy choices are required.
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Figure 2: Three example payoff curves
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