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Introduction 
Multitasking typically requires people to make performance 
trade-offs: paying more attention to one task can improve 
performance there, but might lead to performance 
decrements on other unattended tasks. In our work we try to 
gain a better understanding of how people make such trade-
offs. One difficulty in this effort is that performance is 
typically expressed in different units across tasks (e.g., 
“accuracy” of keeping a car inside a lane and “speed” of 
performing a secondary task such as dialing). How do 
people trade-off these different units?  

Explicit payoff functions have been proposed as a way to 
achieve the desired trade-off (e.g., Howes, Lewis, & Vera, 
2009; Janssen, Brumby, Dowell, Chater, & Howes, 2011; 
Payne, Duggan, & Neth, 2007; Schumacher, et al., 1999). 
They can be used to translate performance on multiple tasks 
into a single score. The participant and the modeler can then 
use this feedback to objectively compare performance for 
different strategies (Howes, et al., 2009; Janssen, et al., 
2011). If successful, payoff functions can be used as a 
formal way to manipulate a user’s priorities. Different 
strategies can be made optimal through changes of the 
payoff function. In ongoing work we are exploring under 
what conditions such “ideal payoff manipulations” can be 
made. We report some of our intermediate findings here. 

Ideal payoff functions and manipulations 
A payoff function is a function that translates performance 
on one or multiple tasks into a single, explicit, objective 
currency in a consistent manner. As a rule-of-thumb, the 
output of the function should be meaningful to the 
participant. Participants can then use the output of the 
payoff function to assess how well they are performing by 
comparing payoff values across trials and strategies. 
Similarly, a model can be used to compare payoff values of 
different strategies (e.g., Howes, et al., 2009; Janssen, et al., 
2011). In this way, a payoff curve can be generated that 
captures how payoff fluctuates as a function of the possible 
strategies. An ideal payoff curve has four properties: 
1. It has one global maximum.  
2. It has no local maxima other than the global maximum. 

3. The set of strategies that has a payoff value close to the 
maximum is narrow and these strategies are very 
similar in nature to the “optimum” strategy.  

4. The distribution of possible payoff values is consistent 
and narrow, such that the mean payoff value of a 
strategy is representative of the distribution of values.  

In essence, these properties guarantee that there is a 
unique, consistent, clear optimum strategy. This makes it 
easier for the participant and the modeler to identify the 
optimum strategy and to assess whether participants 
performed optimally. The black line in Figure 1 is an 
example of how payoff score (vertical axis) changes as a 
function of strategy (horizontal) in an ideal payoff curve.  

If payoff is successful in manipulating performance, then 
in an ideal setting this can be used to make any arbitrary 
strategy “optimal” for at least one payoff function. In Figure 
1 multiple alternative payoff curves are plotted in grey lines, 
as generated by hypothetical alternative payoff functions. 
This is considered an ideal payoff manipulation, because: 
1. Each curve is an ideal payoff curve. 
2. Across curves, each strategy is the optimum of at least 

one ideal payoff curve.  
With this definition of an ideal payoff manipulation, we 

are currently exploring under what conditions (e.g., what 
types of tasks) such ideal manipulations are possible.  

A mathematical model of interleaving 
Inspired by our previous work on a tracking-while-typing 
task (Farmer, Janssen, & Brumby, 2011; Janssen, et al., 
2011), we developed a mathematical model of this task. The 
model had to keep a one-dimensional first-order moving 
cursor inside a target area. The movement of the cursor was 
modeled using Pascal’s triangle, which can be used to give 

Figure 1: An ideal payoff manipulation (see text) 
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exact predictions of the probabilities of the position of the 
cursor at each timestamp. The model could exert active 
control of the cursor to overwrite the random movement. In 
addition a simple secondary task was included, which solely 
involved opening a task window.  

The model could only attend to one task at a time and 
experienced switch costs when switching between tasks. 
Both tasks were kept extremely simple on purpose, as this 
allowed us to focus on the role of payoff functions and 
whether an ideal payoff manipulation was possible, without 
having to worry about the correctness of each constraint and 
about the effects of constraints on performance. 

Performance on both tasks was encapsulated in the payoff 
function. For the tracking task, the model gained points on 
every sample when the cursor was inside its target area; it 
lost points otherwise. For the secondary task, the model 
gained points whenever the window of this task was open; it 
lost points otherwise. The values of these four gain and loss 
components were systematically manipulated to explore 
whether ideal payoff manipulations were possible. We also 
explored the effects of using a log or exponential 
transformation to the functions. The general pattern of 
results was similar across these simulations. 

Results and Discussion 
As a first step to identify ideal payoff manipulations, we 
explored whether the location of the global maxima differed 
across payoff functions. In contrast to the definition of an 
ideal payoff manipulation, the strategy required to achieve 
the maximum payoff did not vary much as the payoff 
function varied. Only specific points emerged as maxima. 
These maxima were for strategies of which the performance 
of at least one of the underlying tasks (i.e., how many time 
units was the cursor inside the target area, how many time 
units was the secondary task window open) had a local 
maximum. These local maxima were themselves the result 
of the constraints imposed by the task environment (e.g., 
boundary of the tracking task target) and cognition (e.g., 
switch costs). That is, global maxima in the payoff curve 
emerged at positions where the interaction of the constraints 
led to beneficial performance trade-offs.  

Looking at individual curves, many also violated the 
characteristics of an ideal payoff curve. Figure 2 shows 
three example curves. For each curve (different color lines), 
the strategy with the highest payoff is highlighted with an 
open circle. As can be seen, the curves violate the properties 
of an ideal payoff curve. There are local maxima and there 
are many strategies that achieved values close to the 
maximum value. This implies that fine tuned attentional 
strategies are not always required. We are therefore making 
further efforts to find task variants in which more subtle 
strategy choices are required. 
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Figure 2: Three example payoff curves 
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