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Abstract 

This paper explores the benefits and challenges of using the 
ACT-R cognitive architecture in the development of a large-
scale, functional, cognitively motivated language analysis 
model. The paper focuses on ACT-R’s declarative memory 
retrieval mechanism, proposing extensions to support 
verification of retrieved chunks, multi-level activation spread 
and carry over activation. The paper argues against the need 
for inhibition between competing chunks which is necessarily 
task specific. 

Keywords: ACT-R; activation; retrieval; verification; 
inhibition; language analysis. 
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Our team has been working on the research and 
development of a language analysis model (Ball, 2011a; 

Ball, Heiberg & Silber, 2007) within the ACT-R cognitive 

architecture (Anderson, 2007) since 2002 (Ball, 2003). 

Currently, the model comprises ~950 productions and over 

58,000 declarative memory (DM) chunks. The model is 

capable of processing a broad range of English language 

constructions (www.doublertheory.com/ comp-grammer/ 

comp-grammar.htm; Ball, Heiberg & Silber, 2007) and is a 

component of a larger synthetic teammate model (Ball et al., 

2010). The model accepts written input from single words to 

entire documents, and processes the input incrementally, 

one word or multi-word unit at a time. On a 64-bit quad-

core Windows machine with 8 Gig RAM, the model 

incrementally processes ~130 words per minute (wpm) with 
the full 58,000 chunk mental lexicon and ~320 wpm with a 

smaller 22,000 chunk mental lexicon. The model processes 

~145 wpm in ACT-R cognitive processing time which 

compares to adult reading rates ranging from 200-300 wpm. 

We are working on ways to improve the analysis rate of the 

model—which does not entail full comprehension—to bring 

it into closer alignment with adult reading rates (Freiman & 

Ball, 2010).  

Our focus is on research and development of a general-

purpose, large-scale, functional model that adheres to well 

established cognitive constraints on human language 

processing (HLP) (Ball et al., 2010). Two important 

constraints that we adhere to are incremental and interactive 

processing (Just & Carpenter, 1987; Altmann & Steedman, 

1988; Tanenhaus et al., 1995; Gibson & Pearlmutter, 1998). 

                                                   
1
 Thanks to Dan Bothell for pointing out several misconceptions 

about ACT-R in an earlier version of this paper 

Adherence to these constraints precludes the use of 

computational techniques like algorithmic backtracking and 

staged analysis (i.e., independent tokenizing, part of speech 

tagging, syntactic analysis, semantic analysis, and pragmatic 

analysis) and limits the use of techniques like lookahead, 

underspecification and parallel propagation of constructed 

alternatives—all of which are mainstays of many 

computational linguistic systems.   

ACT-R incorporates two architectural constraints, 
realized as serial bottlenecks, which largely determine 

incremental processing: 1) a single production can execute 

at a time, and 2) a single DM chunk can be retrieved at a 

time. In addition to these serial constraints which are the 

basis of incremental processing, ACT-R provides 

architectural support for parallel processing in the form of a 

parallel production selection mechanism based on utility, 

and a parallel DM retrieval mechanism based on activation. 

These parallel mechanisms are probabilistic and context 

dependent. The parallel/probabilistic/context dependent 

mechanisms provide the basis for interactive processing. 

They guide the processing of the language analysis model in 

directions that are likely to lead to a successful analysis 

given the current context and current input. The highly 

parallel retrieval mechanism is capable of selecting from 

existing DM chunks, but does not build any structure. The 

serial integration mechanism is responsible for building new 
structures, but is constrained to maintaining a small number 

of constructed representations, in parallel, in working 

memory which is composed of ACT-R buffers 

supplemented with specialized language analysis buffers 

(Ball, 2011b). 

Cognitive processing in ACT-R revolves around the 

selection and execution of a sequence of productions. The 

production with the highest utility that matches the current 

context provided by the ACT-R/language analysis buffers, 

is selected for execution. Production execution can result in 

a perceptual-motor action (e.g. visual attention shift, mouse 

movement), a modification to the contents of a buffer, or a 

DM retrieval. These actions change the context for selection 

and execution of the next production.  

When the executing production invokes a DM retrieval, 

the parallel spread of activation from chunks in buffers to 

associated chunks in DM (soft constraints or biases) 
combines with the base level activation—based on prior 

history of use of the chunk—to determine total chunk 

activation. The single most highly activated chunk which 

matches a retrieval template (hard constraint) specified by 
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the executing production is retrieved. Chunks can either be 

associated by sharing a slot value or by explicit specification 

of an association using the add-sji function. For 

activation to spread, the activating chunk must be in a buffer 

(matching slot value) or in a slot in a chunk in a buffer 

(explicit specification via add-sji). 

The language analysis model makes extensive use of 

ACT-R’s serial and parallel processing mechanisms. The 

model processes the linguistic input incrementally, one 
word or multi-word unit at a time, and uses all available 

information interactively to make the best choice at each 

choice point. The model also relies on a non-monotonic 

mechanism of context accommodation which is capable of 

making modest adjustments to the evolving representation 

when the current input, in combination with the current 

context, indicates the need for such accommodation. 

Context accommodation is part of normal processing—in 

the right context, a production capable of accommodating 

the input executes. For example, in incrementally processing 

―the airspeed restriction‖, when ―airspeed‖ is processed, it is 

integrated as the head of the noun phrase projected during 

the processing of ―the‖, but when ―restriction‖ is 

subsequently processed, the model accommodates 

―restriction‖ by shifting ―airspeed‖ into a modifier function 

and making ―restriction‖ the head. Context accommodation 

is not capable of handling the kinds of disruptive garden 
path sentences that are a mainstay of psycholinguistic 

research (e.g. Bever’s (1970) famous ―the horse raced past 

the barn fell‖). Such inputs require reanalysis mechanisms 

which have not yet been implemented. The focus of model 

development is on handling common English—inputs which 

humans process with ease, but which, nonetheless, present 

significant modeling challenges due to ambiguity. The 

combination of parallel/probabilistic/context dependent 

processing, and serial processing with context 

accommodation allows the model to pursue the single best 

analysis, but to adjust the analysis without backtracking or 

reanalysis, when needed. The overall result is a pseudo-

deterministic HLP which presents the appearance and 

efficiency of deterministic processing, despite the rampant 

ambiguity which makes truly deterministic processing 

impossible (Ball, 2011a).  

 

Activation 

In ACT-R, all DM chunks have an activation level which 

depends on the current context (source activation) and prior 

history of use (base level activation) of the chunk.  A key 

assumption is that the current context is captured in the 

contents of the ACT-R buffers which are sources of 

activation. The most basic form of the activation equation 

(ignoring partial matching which we do not use, and noise) 

is shown below where Ai = total activation of chunk i; Bi = 

base level activation of chunk i, and Si = spreading 

activation contribution to activation of chunk i: 

iii SBA   

The base level activation is a logarithmic function of the 

number of uses of a chunk over time combined with a 

negative exponential decay mechanism (assuming the 

default, optimized base level equation). Spreading activation 

is a weighted sum of activations from all the sources of 

activation in buffers which match the slot values of the 

chunk being activated or for which an explicit association 

has been specified (via add-sji). The amount of spreading 

activation to a chunk from each source decreases with the 

number of competing chunks which match the source. This 

proportional spreading activation is known as the fan effect. 

The fan effect does not apply to chunks for which an 

explicit association has been specified. 

The language analysis model makes extensive use of 

ACT-R’s retrieval (activation and selection) mechanism. In 

the word recognition subcomponent, a perceptual span 

which encodes the visual contents of the current attention 

fixation spreads activation to DM and the word or multi-

word unit which is most highly activated is retrieved 

(selected) and compared to the perceptual input. If the 
comparison is close enough, the retrieved word or multi-

word unit is considered a match. Overall, the process 

involves four steps: 1) perceptual encoding of the input 

(encoding); 2) activation of declarative memory 

(activation); 3) retrieval of the most highly activated DM 

chunk which matches the hard constraints of the retrieval 

template (selection); and 4) comparison of the retrieved 

memory element against the perceptual input (verification). 

Completion of all but the third step presents challenges for 

ACT-R based modeling.  

ACT-R’s built in perceptual encoding mechanism 

assumes words are divided into units by spaces and 

automatically separates punctuation into separate perceptual 

units. While this typically succeeds in identifying words and 

punctuation, it often does not. There are words like ―etc.‖ 

and ―didn’t‖ which incorporate punctuation and there are 

words like ―a priori‖ and ―none the less‖ which have spaces. 
In addition, the model includes multi-word units like ―have 

been‖, ―get out‖ and ―New York‖ which are encoded in the 

mental lexicon as lexical items. Higher level knowledge 

from the mental lexicon is needed to decide what constitutes 

a word or multi-word unit. To support the integration of 

higher level knowledge with perceptual processing, we 

modified ACT-R’s perceptual encoding mechanism to 

incorporate a perceptual span that does not automatically 

segment the input at spaces and punctuation (Freiman & 

Ball, 2010). Not only does the perceptual span mechanism 

support the integration of higher level knowledge, it speeds 

up processing significantly since words like ―don’t‖ are 

recognized as a single unit instead of three separate units 

―don‖, ―’‖ and ―t‖. Likewise, multi-word units like ―get out‖ 

are also recognized as a unit. Besides speeding up 

processing, the recognition of multi-word units reduces 

ambiguity significantly. The word ―take‖ is extremely 
ambiguous, whereas multi-word units like ―take out‖, ―take 

off‖ and ―take in‖ are far less ambiguous. The ability to 

recognize multi-word expressions is an important tool for 

handling the ambiguity of natural language and for speeding 

up the model. We view the addition of multi-word 

expressions as the best way of achieving adult reading rates. 
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With a mental lexicon near 58,000 lexical items, the 

computation of activation presents a serious computational 

challenge. It is not possible to compute the activations of 

58,000 lexical items prior to each retrieval, in real-time, on 

existing hardware. (This is also the reason we are unable to 

use the partial matching subsystem, since all DM chunks are 

candidates for retrieval when partial matching is enabled.) 

As a workaround, we developed a capability to minimize 

the activation computations in the event of an exact match 
to the form of the input. If there is a lexical item in DM 

which is an exact match to the perceptual span, a hard 

constraint is added to the retrieval template to restrict the 

number of matching DM elements. When the full perceptual 

span doesn’t match, the match is backed off to the last space 

in the perceptual span and re-attempted. Prior spaces can 

also be backed off to. If there is no match (e.g. if the input is 

―spped‖)—as a computational compromise—the model 

attempts a retrieval requiring a hard constraint match on the 

first letter in the perceptual span. We call this mechanism a 

disjunctive retrieval capability. Except for this last 

compromise, the disjunctive retrieval capability retrieves the 

same lexical item as a soft constraint retrieval. Even with 

this last compromise, computation of activations is slower 

than real-time in the worst case where only a first letter 

match is required, since there may be thousands of matching 

lexical items whose activation must be computed. We are 
looking for ways to improve processing with minimal 

compromise compared to the preferred soft constraint 

retrieval mechanism. 

The verification step is also problematic from an ACT-R 

modeling perspective. ACT-R does not provide the kind of 

low level perceptual matching capability that is needed to 

implement this step. Instead, we have incorporated the 

Levenshtein Distance algorithm to perform this comparison. 

We view verification as a key element of the word 

recognition mechanism in accord with the Activation-

Verification model of Paap et al. (1987) and in contrast to 

the Interactive-Activation model of McClelland & 

Rumelhart (1985) which has no verification stage.  

Verification is crucial for identifying novel inputs. A novel 

input is one that is not a close match to any chunk in 

memory, although exactly what constitutes a ―close match‖ 

is an open research question.   

 
Multi-Level Activation Spread 

In ACT-R, activation spreads from the slots in chunks in 

buffers to chunks in DM with matching slot values or 

explicitly set associations (using add-sji). For example, 

we have a context buffer that encodes information about the 

context that has a slot named ―gram-pos-bias‖ (grammatical 

part of speech bias). Following the processing of a word like 

―the‖ (a determiner), this slot will be set to the chunk noun. 

During the retrieval of a lexical item, the noun chunk will 

spread activation to all lexical items with a matching noun 

chunk (i.e. all nouns). If the word ―point‖ follows ―the‖, this 

bias will spread activation to the noun chunk for ―point‖ as 

opposed to the verb chunk (i.e. ―to point‖). In this way the 

grammatical context biases the selection of the part of 

speech (POS) of a word during retrieval.  

There is no mechanism in ACT-R to spread activation 

from slots in chunks in DM to other chunks in DM with 

matching slot values or to explicitly associated chunks. 

Once activation spreads from slots in buffers to DM chunks 

during a retrieval, activation spread stops and the final 

activation is computed to determine which DM chunk to 

retrieve. We refer to this as single level activation spread.   
Our model assumes that there are DM chunks which 

encode both the form of a word (e.g. ―speed‖, ―speeds‖) and 

POS (e.g. ―noun‖, ―verb‖). Originally, word form and POS 

information were encoded in distinct word-form and pos 

chunks. The model first retrieved a word-form chunk given 

the letters and trigrams in the input, then retrieved a pos 

chunk for the word form. In order to improve the analysis 

rate of the model (Freiman & Ball, 2010), word form and 

part of speech information was combined into a single 

word-pos chunk (i.e. word form + part of speech). While 

we were successful in eliminating a retrieval, the resulting 

word-pos chunks contain a mixture of word form 

information (e.g. the letters and trigrams in the word) and 

POS information (e.g. noun, verb, as well as grammatical 

features like number, animacy and gender for nouns, and 

tense and aspect for verbs). Note that this mixture of word 

form and POS information makes it possible to capture the 

interaction of word form and POS with single level 

activation spread. For example, retrieval of the POS for 

―speed‖ (i.e. noun or verb) given the input "spped" depends 

on the biasing context (e.g. noun bias following ―the‖, verb 

bias following ―to‖) as well as the letters and trigrams. 

However, the word-pos chunks do not (yet) contain any 

representation of phonetic, phonemic, syllabic or 

morphemic information. With just letter, trigram and POS 

information, word-pos chunks contain many slots. Adding 

phonetic, phonemic, syllabic and morphemic information 

will increase the number of slots substantially. Ideally, we 

would like to represent letter, trigram, POS, phonetic, 

syllabic etc. information independently of each other in 

separate chunks—allowing them to interact in retrieving a 

word (or letter, or POS, or phoneme), but given the single-

level activation spreading mechanism in ACT-R, there is no 

way to capture the interaction without including all the 

linguistic knowledge in a single chunk or using add-sji to 

establish links between chunks and retrieving and retaining 

chunks at all levels in buffers to spread activation.   

A negative consequence of the integration of word form 

and POS information is the need to redundantly encode 

information. If a given word form is associated with 

multiple POSs, then multiple word-pos chunks are needed. 

For example, the word ―speed‖ can be both a noun and a 

verb. To represent this, two word-pos chunks are needed, 

one for the noun and one for the verb. In these two word-

pos chunks, the letters and trigrams in the word form are 

redundantly encoded. To minimize redundancy, it is 

desirable to factor out word form and POS knowledge. But 

to model adult human reading rates, it is important to 

minimize the number of retrievals. Both can be 
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accomplished with multi-level activation spread. For 

example, if the goal is to retrieve a POS, the letters and 

trigrams in the input can spread activation to a word-form 

chunk which can spread activation to a pos chunk. Then the 

pos chunk can be retrieved without first retrieving the 

word-form chunk.   

We are in the process of mapping the linguistic 

representations that are generated by our language analysis 

model into a situation model based semantic representation. 
We are trying to do this in a representationally reasonable 

way within ACT-R. The problem we face is the many-to-

many mapping between words and concepts. Individual 

words may map to multiple concepts (river ―bank‖ vs. 

financial ―bank‖), and individual concepts may map to 

multiple words (―dog‖ vs. ―canine‖). Given this many-to-

many mapping, we would like to use mapping chunks to 

map from words to concepts. The mapping chunks would 

encode a single mapping relationship (e.g. a separate 

mapping chunk to map from the word "bank" to the 

financial institution concept; from the word "bank" to the 

river bank concept; from the concept dog to the word "dog"; 

from the concept dog to the word "canine"). When 

processing a word, a key goal is to retrieve the contextually 

relevant concept. We would like to accomplish this with a 

minimum number of retrievals since our model is already 

slower than adult humans even without the mapping into 
concepts. Since there is no direct link between a word and a 

concept if mapping chunks are used (i.e. there is no slot in 

the concept chunk that contains the word), the word will 

not spread activation to the concept. Instead, given the use 

of mapping chunks, two retrievals are needed: 1) given a 

word-pos chunk, retrieve a mapping chunk, and 2) given a 

mapping chunk, retrieve a concept chunk. The use of 

mapping chunks can be eliminated is we use the add-sji 

function to establish direct links between word-pos chunks 

and concept chunks. We are currently pursuing this option 

to avoid the need to retrieve an intermediate mapping 

chunk. Even with explicit links from word-pos chunks to 

concept chunks, a word-pos chunk must first be retrieved 

to spread activation to associated concept chunks. With 

multi-level activation spread it would be possible to directly 

retrieve a concept chunk, eliminating the need to retrieve a 

word-pos chunk.  

Alternatively, if we were to combine concept chunks 

with word-pos chunks, then a single retrieval could be 

used to retrieve a word-pos-concept chunk. However, 

there may be multiple concepts associated with a word-pos 

chunk (e.g. ―river bank‖ vs. ―financial bank‖). If we create 

separate word-pos-concept chunks for each alternative, 

the amount of redundancy is increased again. Further, it is 

questionable whether letter and trigram information should 
be directly associated with (non-linguistic) concepts.  

The main advantage of creating word-pos-concept 

chunks is the reduction in the number of retrievals needed to 

go from the input to a concept. To see how problematic 

retrievals are for models of reading, consider the E-Z 

Reader model (Reichle, Warren & McConnell, 2009), a 

model of eye movements in reading which models lexical 

processing (not reading). E-Z Reader allows just 25 msec 

per word beyond lexical access for post-lexical processing 

to influence lexical processing. According to the authors, 25 

msec is ―the minimal amount of post-lexical processing that 

(on average) is necessary to satisfy the language-processing 

system that comprehension is proceeding without difficulty 

and that it is not necessary to interrupt lexical processing 

and/or halt the progression of the eyes‖ (ibid., p. 6). Since it 
requires 50 msec to execute a production in ACT-R which 

attempts a retrieval, plus the retrieval time, there would be 

insufficient time for a single retrieval in an ACT-R 

implementation of E-Z Reader to influence lexical 

processing and eye movements! However, the E-Z Reader 

model makes the simplifying assumption that words are 

space delimited and since our model is capable of 

recognizing multi-word units, the 25 msec limit can be 

relaxed somewhat. But there is still insufficient time for 

more than 1 or 2 retrievals (on average) beyond the retrieval 

needed to support word recognition itself.  

 
Carry Over Activation and Resonance 

Activations are computed in ACT-R as part of a retrieval 

attempt. The activation computation involves combining the 

base level activation and activation spread from all buffers 

which are sources of activation. The logarithmic nature of 

the default, optimized base level activation computation 

means that the base level of overused DM chunks does not 

vary much from use to use (i.e. the base level activation has 

reached asymptote). Words constitute very highly used DM 

chunks. Using estimates of the number of occurrences of a 

word over a lifetime results in a base level activation that 

varies little from use to use and decays very slowly. Since 

the spread of activation is computed independently on each 

retrieval, for a word that has been used recently, there is no 

contextual indication of this prior use (i.e. the base level 

hasn’t significantly changed and any prior spread of 

activation is not retained). Yet there is clear evidence of 
priming effects from prior uses of words. According to Dan 

Bothell (p.c.), this is a limitation of ACT-R’s default 

optimized base level equation. We are exploring use of a 

hybrid version of the base level equation which does not 

suffer this limitation (Bothell, 2011, p. 213). Use of the non-

optimized base-level equation is not possible given the size 

of our mental lexicon and the large number of word uses.  

Another alternative is to retain the word in a buffer so that 

activation can continue to spread from the word to 

corresponding chunks in DM. We have tried this approach 

in the case of idiom processing. To see the basic challenge, 

consider the processing of idioms like ―kicked the bucket‖ 

and verb-particle combinations like ―pick…up‖ as in ―pick 

the ball up‖. We assume that idioms and verb-particles 

correspond to distinct chunks (i.e. multi-word units) in DM. 

These multi-word expressions exceed the size of the 

perceptual span and cannot be recognized in a single 
attention fixation. Instead, the model must somehow 

recognize the idiom ―kicked the bucket‖ when the word 

―bucket‖ is processed and the verb-particle combination 
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―pick…up‖ when the word ―up‖ is processed. If there is no 

evidence that ―kicked‖ has occurred at the processing of 

―bucket‖, then there is no way for the model to retrieve 

―kicked the bucket‖ instead of ―bucket‖. Similarly for 

―pick‖ when ―up‖ is processed. Since the DM element 

―bucket‖ is an exact match to ―bucket‖ and ―bucket‖ has a 

higher base frequency than ―kicked the bucket‖ (i.e. single 

words have a higher base frequency than multi-word units 

containing them), there must be some mechanism for 
preferring ―kicked the bucket‖ in this context. ―Kicked‖ and 

―the‖ could be retained in the context to spread activation to 

―kicked the bucket‖ to handle this example, but, in general, 

this would mean retaining an arbitrary number of words in 

the context to spread activation. In the case of ―pick…up‖, 

―pick‖ would need to be retained in a buffer for an indefinite 

period of time (e.g. ―pick the big red ball up‖, ―pick the ball 

that is on the table up‖). 

Even with the hybrid base-level equation, relying on an 

increase in base level for ―kicked the bucket‖ will not work 

in this example. Since the processing of ―kicked‖ is likely to 

retrieve ―kicked‖ and not ―kicked the bucket‖, the base level 

activation of ―kicked the bucket‖ will be unaffected at the 

processing of ―kicked‖ (i.e. the ―kicked the bucket‖ chunk 

must be retrieved and merged back into DM to constitute a 

use). Further, any temporary spreading activation from 

―kicked‖ to ―kicked the bucket‖ will have been lost at the 
processing of ―bucket‖.  

A possible solution is to introduce a carry-over activation 

capability. When ―kicked‖ is processed it will spread 

activation to ―kicked the bucket‖ as well as ―kicked‖. 

Despite the fact that ―kicked the bucket‖ is not retrieved, 

some of this activation will carry-over so that when 

―bucket‖ is processed, ―kicked the bucket‖ will receive 

activation from ―bucket‖ as well as carry-over activation 

from ―kicked‖ and ―the‖. The combination of carry-over 

activation from ―kicked‖ and ―the‖, plus the activation from 

―bucket‖ should allow ―kicked the bucket‖ to be retrieved in 

this context. In general, this seems like a better solution than 

trying to retain ―kicked‖ and ―the‖ in the context when 

―bucket‖ is processed. In the case of ―pick…up‖, carry over 

activation should handle cases where the gap between 

―pick‖ and ―up‖ is small (e.g. ―pick the ball up‖), but cause 

problems when the gap is large enough that any carry over 
activation will have decayed. This result might explain the 

preference for placing the particle before the object when 

the description of the object is long (e.g. ―pick up the big red 

ball on the table‖ is preferred over ―pick the big red ball on 

the table up‖). 

There are additional reasons for suggesting the 

introduction of carry-over activation. Carry-over activation 

corresponds to a short-term increase in the activation of a 

DM chunk that extends beyond the execution of a single 

chunk retrieval. This carry-over activation (i.e. neuron 

spiking) differs from increases in base level activation 

which we view as more permanent changes in long-term 

potentiation. The introduction of carry-over activation 

combined with multi-level activation spread, could support 

an ART-like adaptive resonance capability (Grossberg, 

1987)—although it is unclear how this could be done in a 

computationally tractable way. Note that ART uses 

resonance to distinguish novel from previously experienced 

inputs—previous inputs lead to resonance with memory 

whereas novel inputs do not. With carry-over activation, the 

verification stage of the word recognition subcomponent 

could be implemented within the architecture via resonance 

instead of using the Levenshtein Distance metric outside the 

architecture.   

 
Inhibition 

Inhibition is a winner-take-all mechanism that is commonly 

used in connectionist architectures to allow a network of 

nodes to settle into a solution (cf. McClelland & Rumelhart, 

1981; Kintsch, 1998). Over time, the most active node or 

co-activating nodes inhibit competing nodes. There is no 

equivalent in ACT-R—although it is possible to get 

inhibitory effects by explicitly setting the strength of 

association between two or more chunks to a negative value. 

But even here, there is no notion of settling into a solution 

in ACT-R.  
The need for inhibition as a mechanism for settling into a 

solution is obviated in ACT-R by the retrieval mechanism 

which results in selection of the single most highly activated 

chunk matching the retrieval template. This is ACT-R’s 

equivalent of a ―winner-take-all‖ network. The retrieval 

mechanism picks out the most highly activated chunk which 

matches the hard constraints of the retrieval template.  

ACT-R’s spreading activation mechanism doesn’t bias a 

model to any particular task. The same cannot be said of 

inhibition. For any inhibitory network, it is possible to 

define conflicting tasks that the inhibitory network cannot 

perform. For example, if both singular and plural forms of 

nouns (e.g. ―child‖ and ―children‖) occur in a network, 

should they inhibit each other? It depends on the task. If the 

task is a lexical decision task, then we want ―child‖ to 

inhibit ―children‖ and vice versa, so that they don’t interfere 

(i.e. if ―child‖ is the winner when the input is ―children‖, 
presumably the lexical decision response would be negative 

since ―child‖ doesn’t match the input). On the other hand, if 

the task is to generate the singular form of the word in 

response to the plural word, or the plural in response to the 

singular, than we need facilitation rather than inhibition. As 

another example, consider the verbs ―go‖ and ―went‖. For a 

lexical decision task, these words should inhibit each other. 

But for a task of generating the past tense of ―go‖, they 

should facilitate each other.  

Not only are inhibitory links task specific, but in a large 

declarative memory, the number of such links will be 

explosive. If a word must inhibit all its competitors, with a 

58,000 word lexicon, the number of inhibitory links is 

computationally explosive. Inhibitory links don’t scale.  

Besides the task specificity of inhibitory networks, most 

inhibitory networks assume well-defined levels with 

inhibitory links typically constrained to occurring within a 
level and excitatory links occurring across levels. The 

recognition of multi-word expressions like ―get up‖, 

inflected words like ―books‖ and morphologically complex 
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words like ―progressivity‖ present a challenge for such 

networks? Are multi-word expressions (e.g. ―get up‖), 

inflected words (e.g. ―books‖), morphologically complex 

words (e.g. ―progressivity‖), morphologically simple words 

(e.g. ―cat‖) and morphemes (e.g. plural ―s‖) represented on 

the same level, in which case they compete, or on different 

levels, in which case they co-activate each other? It depends 

on the task. If ―get‖, ―up‖ and ―get up‖ are all represented 

on the same lexical item level where they inhibit each other, 
how do we recognize ―get up‖ as a lexical unit (i.e. how 

does the model settle in to ―get up‖)? Even if multi-word 

expressions are represented on a different level from words, 

the words in the multi-word expression will inhibit each 

other, making it difficult to distinguish the multi-word 

expression from the word which wins the word level 

competition, unless the task is specifically to recognize 

multi-word expressions. Similar questions arise for 

inflected, morphologically complex, and morphologically 

simple words, and morphemes. In short, multi-word 

expressions, inflected words, morphologically complex 

words and morphemes call into question the typical 

assumption that there is a well defined word level. In a 

model restricted to four letter words without inflectional 

variants where the task is word recognition (e.g. McClelland 

& Rumelhart, 1981), well-defined levels can be established. 

When we consider real language, there is no well-defined 
word level with inhibitory links that is task independent.  

In sum, inhibition is not a viable alternative to ACT-R’s 

task general spreading activation mechanism combined with 

a winner-take-all retrieval mechanism that depends on the 

current task. 

 

Conclusions 

The use of ACT-R for language analysis provides several 

benefits. ACT-R solves the problems of how to integrate 

symbolic and probabilistic processing combined with serial 

and parallel processing in an effective and elegant manner. 

For the most part, the capabilities provided by ACT-R have 

proved useful for the development of our language analysis 

model, and much of the success of our model is attributable 

to the capabilities and constraints of ACT-R.  
However, there is room for improvement of ACT-R. 

Interestingly, the suggestions presented in this paper are 

consistent with Anderson’s seminal paper on spreading 

activation (Anderson, 1983a) and the ACT* architecture 

(Anderson, 1983b). Multi-level activation spread is capable 

of spreading activation to indirectly related DM chunks, 

obviating the need to specify indirect links or to add slots to 

directly model the associations, and keeping the capability 

to model interactions and minimize retrievals. Carryover 

activation allows the effects of multi-level spreading 

activation to be retained until needed. Of course, the 

computational costs of multi-level activation spread and 

carry-over activation are potentially explosive and it will be 

a challenge to figure out how to extend ACT-R’s 

capabilities in the ways suggested in this paper in a 

computationally tractable manner.  
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