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Abstract

Problem solving involves adapting known problem solving
methods and strategies to the task at hand (Schunn & Reder,
2001) and cognitive flexibility is considered to be “the human
ability to adapt the cognitive processing strategies to face new
and unexpected conditions of the environment” (Caiias et al.,
2005, p. 95). This work presents an ACT-R 6.0 model of
complex problem solving behavior for the dynamic
microworld game FireChief (Omodei & Wearing, 1995) that
models the performance of participants predisposed to behave
either more or less flexibly based on the nature of previous
training on the task (Cafias et al., 2005). The model exhibits a
greater or lesser degree of cognitive inflexibility in problem
solving strategy choice reflecting variations in task training.
The model provides an explanation of dynamic task
performance compatible with the Competing Strategies
paradigm (Taatgen et al., 2006) by creating a second layer of
strategy competition that renders it more flexible with respect
to strategy learning, and provides an explanation of cognitive
inflexibility based on reward mechanisms.

Keywords: complex problem solving; cognitive inflexibility;
dynamic tasks; strategy use; adaptation.

Introduction

Problem solving involves adapting known problem solving
methods and strategies to the task at hand (Schunn & Reder,
2001) and cognitive flexibility is considered to be “the
human ability to adapt the cognitive processing strategies to
face new and unexpected conditions of the environment”
(Canas et al., 2005, p. 95). When approaching a new
problem, it is thought that problem solvers with higher
levels of cognitive flexibility will outperform those who are
less flexible because the former tend to consider alternative
ways to solve the problem (Stewin & Anderson, 1974)
rather than rigidly adhering to well-used methods. In their
study of cognitive flexibility, Cafias et al. (2005) found that
participants became predisposed to behave either more or
less flexibly based on the nature of previous training on the
task. Those trained repeatedly on the same problem scenario
developed a preference for how they solved the task,
becoming faster and more fluid in their actions over time.
When subsequently tested on a different scenario their
behavior was inflexible in adapting to the new test
conditions and performance suffered. In contrast, those
trained on a series of varying problem solving scenarios
demonstrated an ability to adapt their problem solving
behavior flexibly to the challenges presented by the new test
scenario. The work presented here describes an ACT-R
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model for the Cafas et al. (2005) problem solving task that
demonstrates varying degrees of cognitive flexibility
depending on the training regime it undergoes. Analysis of
the model provides an explanation of cognitive inflexibility
based on reward mechanisms.

Background

There are several cognitive modeling paradigms (Taatgen et
al., 2006) for problem solving involving strategy selection.
In the Competing Strategies paradigm (ibid.), several
strategies are implemented in a cognitive architecture and
then compete for use in solving a problem. According to
Taatgen et al. (2006) utility learning can be used to
determine the best strategy. This paradigm has been
successfully applied in modeling problem solving behavior
for static tasks (Lovett & Anderson, 1996; Peebles &
Bothell, 2004) and tasks in dynamically changing situations
such as Air Traffic Control (Schunn & Reder, 2001;
Schoelles & Gray, 2000).

Dynamic problem solving tasks pose an added layer of
complexity. In dynamic situations the problem solver needs
to execute not only the appropriate action but also to
implement it at the right time: a good decision at one
moment could be ineffective the next. In order to obtain
good performance both selection and execution of the
chosen strategy must be effective.

Problem solvers must also be ready to change strategy as
and when the situation demands (Gonzalez et al., 2004);
they must continuously process feedback in order to select
appropriate actions within an ever-changing situation
(Brehmer & Déorner, 1993). Underlying this ability,
according to Schunn & Reder (2001), strategy choice is
influenced by overall success and “Dynamic tasks bring to
the forefront the importance of the ability to adapt to
changing success rates” (p. 61). They argue that although
participants may use a similar set of strategies they can
differ in their ability to opportunistically apply those
strategies in response to the situation.

This ability to adapt behavior may be affected by factors
such as cognitive inflexibility, which can be produced as a
consequence of the way problem solvers interact with the
task at hand. As skill in a task improves and becomes more
automatic so cognitive inflexibility may increase,
particularly in tasks with a high level of consistency
(Ackerman, 1988). For example, in a fire-fighting task,
Cafias et al. (2005) found evidence of cognitive inflexibility
in participants trained repeatedly on the same problem
scenario who, having found an effective strategy, failed to



relinquish it despite situational changes that reduced its
effectiveness. This contrasted with participants trained on a
variety of different problem scenarios.

However, studies investigating cognitive inflexibility
have not always drawn consistent results. For example,
Schunn & Reder (2001) found no evidence for cognitive
inflexibility in their study involving training on an Air
Traffic Control task when situational changes affecting
success on the task were introduced.

The work presented here implements an ACT-R model of
the Cafias et al. (2005) study to elucidate the mechanisms of
cognitive inflexibility further in an attempt to reconcile
these disparate findings.

The FireChief Microworld

The Cafias et al. (2005) study used a dynamic microworld
game called FireChief (Omodei & Wearing, 1995) for the
problem solving task. Figure 1 shows the FireChief display.
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Figure 1: The FireChief microworld display

Players combat fires spreading in a landscape using truck
and copter fire-fighting units. A FireChief problem scenario
depicts a landscape comprising forest, clearings and
property, the position of initial fires, fire-fighting units, and
the direction and strength of the wind. Copter and trucks can
be moved between landscape grid cells and Drop Water
(DW) over cells to extinguish fires. Copters move three
times faster than trucks and cannot be destroyed by fire, but
a truck’s water tanks have double capacity and are able to
Control Fire (CF) by creating a fire-break. Commands are
issued through a combination of mouse and keyboard
operations and their execution takes a fixed amount of time
(4 seconds to DW; 2 seconds to CF) and a variable amount
of time to Move a unit depending on distance and type of
unit. Wind strength and direction are in the upper right-hand
corner of the display. Task performance is inversely
proportional to the number of cells destroyed by fire at the
end of the trial.

The FireChief problem state changes both independently
and as a consequence of the participant’s actions and time
pressure is directly related to fire development, which
depends heavily on wind strength.

The Canas et al. (2005) study

Each trial for the FireChief task lasts 260 seconds. The
experimental data comprises a list of commands executed
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during each trial that is indexed to a detailed description of
the changing scenario. The first 16 trials comprise the
training phase and the last 8 trials the testing phase. There
were two training conditions: constant and variable.

In the constant training (CT) condition the problem
scenario is exactly the same for each trial and wind strength
and direction remains fixed. In the case of variable training
(VT) a different scenario is presented in each of the sixteen
trials. Trials vary in landscape composition, initial position
of fire-fighting units and fires and, importantly, wind
direction and strength varies throughout the trial.

There are also two test conditions. In the Wind Direction
Change (WDC) condition the wind changes direction every
60 seconds. These shifts in wind direction have a dramatic
impact on fire development. In the second Efficiency
Reduction (ER) test condition, appliances deliver less water
and are therefore less effective in extinguishing fires.

As previously hypothesized, Cafas et al. (2005) found
participants in the CT condition improved performance as
the number of trials increased; however, during the test
phase this same group demonstrated a distinct lack of
flexibility in adapting their problem solving strategy to the
new task demands. In contrast, participants in the VT
condition demonstrated a greater facility for changing
strategies under test conditions. The findings were
consistent across both WDC and ER test conditions

The Model

The ACT-R 6.0 (Anderson et al., 2004) model interfaces to
a LISP version of the FireChief microworld (De Obeso
Orendain & Wood, 2010). Task knowledge comprises both
procedural (condition-action) rules that produce behavior
according to four high level strategies: Barrier, Non-
Barrier, Stop, and Follow (ibid.) and three declarative
knowledge components that impact this behavior: (1) the
goal chunk, the main task objective is to extinguish the fire;
(2) the strategy specification chunk, which defines whether
the model will use a mixture of DW and CF commands,
whether or not a barrier will be created, and which method
of attacking the fire is preferred (attack weak fires, attack
strong fires or attack the strongest fire); and (3) the intention
chunk, used to track the current intention (stored in the
ACT-R imaginal buffer, Anderson et al., 2004). Intentions
emanate from steps in pursuit of the main goal, according to
the chosen strategy.

The model identifies its preferred strategy by comparing
the utility of its four strategy rules, combined with a
situation assessment, and retrieves the corresponding
strategy specification chunk. This chunk remains unaltered
throughout the entire trial, unless there is a strategy change.

Overall the model behavior reflects the use of procedural
knowledge over declarative knowledge: it is constructed in
such a way that it is mainly controlled by the utility learning
mechanism. The content of the three declarative chunks
determine which rules are applicable in different situations,
but there is always more than one eligible rule, so the
decision about what to do next is taken in terms of utility.



ACT-R’s utility learning mechanism

Utility designates the perceived value of implementing a
procedural rule, and thereby its associated behavior, and is
updated via a reward mechanism reflecting task success.
Throughout runtime, Rule utilities are compared during the
process of conflict resolution where only the rule with the
highest utility is selected and thereby acted upon. In ACT-R
when a reward is triggered the utility values of all rules that
have fired since the last reward are updated. The actual
reward allocated depends on the absolute value of the
reward and the length, in time, between the giving of the
reward and the execution of that rule. The consolidation of
strategies and the existence of cognitive inflexibility
discussed here are explained in terms of utility variations in
the set of rules indentified as key in implementing a
strategy. A key rule is one that enters the conflict set during
ACT-R conflict resolution and hence competes in
determining the next intention or action of the model.

Achieving adaptivity

The considerable variability observed in participants’
protocols suggests that for the FireChief task there is
variation not only in strategy choice, but also in the chosen
method of execution. The dynamic nature of FireChief
introduces a dynamic component into the execution of
strategies that forces a second layer of competition between
alternative courses of action within the same strategy. For
this reason a paramount feature of the model is to enable
this kind of competition. In the FireChief task there are four
fire-fighting units (Copter, Truck), three commands (DW,
CF, Move) and four hundred locations. From a very broad
perspective the model’s operations are devoted to
determining the agent, type and spatial location of the next
command and a strategy functions as a mechanism for
helping the model to constrain this decision. Two types of
control coexist within the model. The current representation
of the task (the strategy specification chunk) guides actions
through top-down control. Nevertheless bottom-up control
is particularly relevant when considering dynamic tasks
therefore feedback from the environment is used to guide
the further selection of actions by triggering a wider variety
of rules than those specified in the strategy chunk.

Receive
Reward

Execute
Action

Decision
Point

:T.

External
event

Figure 2: The basic cycle of the model comprising a
second layer of within-strategy competition
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The model uses an adaptation of the Competing Strategies
paradigm (Taatgen et al., 2006): the core of the model is the
Decision Point/Action/Reward cycle shown in figure 2.

The basic cycle starts with a Decision Point (identifying
eligible rules) continues with the Execution of an action
(rule-firing), and finishes with the awarding of a Reward.
The branching factor at every Decision Point is variable and
there are External Events that can interrupt the flow of
actions in the cycle such as alarms and visible changes in
the environment that prevent the effects of an action taking
place, for example, a cell catching fire before a CF
command is completed. The model is designed in such a
way that Decision Points occur frequently. In this way the
model is mainly governed by the utility values of its rules.
This bottom-up control feature results in the emergence of
interesting behaviors (observed in participants) such as
“waiting behavior”: when a truck is Moved to a cell with the
intention of issuing a CF command, if the movement’s
length is shorter than 2 cells, the model tends to wait for the
unit to arrive (incurring in a waste of time but increasing the
probability of issuing the CF command as soon as the unit
arrives, rendering its success more likely). The description
and analysis of emergent behaviors is outside the scope of
this paper.

The same set of rules is used for modeling performance of
the task under both training conditions from the Cafias et al.
(2005) study. However, rewards for task performance and
thus specific rule utility values will vary according to the
unique experience of the model on any given trial (model
run). Furthermore, these utility values will accumulate over
both training and testing phase.

Rewarding the execution of commands

Within the model positive rewards are received for
successfully completing commands and negative rewards
for failing to execute commands successfully or for wasting
time (this means that the utility of a rule can be negative). In
this way, any action that contributes to the successful
completion of a command is rewarded predisposing the
model to continually issue commands. External reward:
final performance

In addition to built-in ACT-R utility learning mechanisms
a further external reward mechanism affects the utility of the
four strategy rules. The strategy rule invoked for a given
trial is modified at the end of each trial based on final
performance (the amount of non-destroyed terrain
remaining at the end of the trial). For instance, if the rule
that selects the Stop strategy is fired and the final
performance achieved during the trial is high, the rule’s
utility is increased. Manipulating rule utilities outside the
standard ACT-R mechanism, has also been used elsewhere
(e.g., Schoelles & Gray, 2000).

Results

Data fitting: The model was fitted to the Cafias et al. (2005)
study participant data as described in De Obeso Orendain &
Wood (2010).

Performance: During the training phase the average
performance of participants in the CT group is 78.7 while



the average performance of the model for CT is 77.1. In the
VT group, the average performance of participants is 78.45
versus 81.2 for the model. The fit of the model is better for
the Barrier and Stop strategies (r°=.987) which are the most
structured strategies (De Obeso Orendain & Wood, 2010).

Strategy use: For the CT training scenario the Barrier
strategy using CF commands to construct a fire-break (ibid.)
is a good option because the fire develops quickly and soon
reaches an intensity that surpasses the capability of the fire-
fighting units. In the CT condition both participants and the
model use the Barrier strategy increasingly more frequently,
by trial 16 participants use the Barrier strategy 71% of the
time while the model is using it 79% of the time.

Strategy change: During the training phase participants
in the VT group change strategy with more frequency than
participants in the CT group, the model captures this
tendency (r’=.93 RMSD=1.43). The fact that both
participants and model use the Barrier strategy more
frequently, and there is less strategy change, during CT
facilitates the consolidation of this strategy in the CT group.

Learning in CT: A significant performance increment
was obtained by comparing the first (1-4) and last four
training trials (12-16) for both participants and the model.
(F(1,33)=4.417, p<.05 and F(1,33)=5.17 p<.05
respectively). This means that consolidating the use of the
Barrier strategy is beneficial by objective criteria.

Cognitive inflexibility: After the training period both
participants and the model undergoing the CT condition
exhibit inflexibility on two levels: strategy choice and
strategy implementation. Both kinds of inflexibility can be
traced to variations in key rule utility values induced by the
two training conditions.

The set of rules available for use are exactly the same for
both training conditions (a single model undergoes either of
the training conditions). However, the pattern of change in
utility values varies as a consequence of the training
received. As shown in figure 3 for the Barrier strategy: over
the sixteen training trials average utility values of Barrier
strategy rules for the CT group (TOP-DOWN CT) far exceed
those for the VT group (TOP-DOWN VT).

This contributes towards an explanation of cognitive
inflexibility in strategy choice. As a consequence of the CT
condition, the reward function shapes the utility values of
the model’s rules in such a way that it becomes relatively
insensitive to changes in reward. The high utility values of
rules for the preferred Barrier strategy in the CT group
shield the model from relatively small variations in success.
When creating a barrier is no longer the best approach, such
as occurs during the test phase, the model will eventually
change its behavior through repeated negative reward after
the utility values of the rules for the preferred strategy have
reduced sufficiently in comparison to the rules for
alternative strategies. But this takes time, giving rise to the
observable phenomenon of cognitive inflexibility.

In contrast, the model subjected to the VT condition is
more sensitive to changes in reward during the test phase
because its rules for implementing alternative strategies are
more evenly weighted; because the differences between
their utility values is smaller, a small amount of negative
reward is able to trigger a switch to an alternative strategy.
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Differences in utility also contribute towards an
explanation of cognitive inflexibility in strategy
implementation, again discussed here in relation to the
Barrier strategy.

There are a range of actions that might be involved in
constructing a barrier by a variety of methods represented as
the set of rules available whenever the Barrier strategy is
selected. One subset of rules comprises methods that
implement the Barrier strategy in a structured top-down
manner. For example, top-down Barrier strategy rules
systematically identify the next section of the barrier to be
constructed by locating CF commands in grid cells adjacent
to that section of the barrier just formed.

In comparison, other rules involve a greater degree of
bottom-up control in implementing actions. For example, a
bottom-up strategy rule might locate the next section of the
barrier to be constructed by looking to see where the fire is
before making a decision about where to put the next
section of the barrier. These top-down and bottom-up rules
compete throughout the creation of a barrier (while the
Barrier strategy is selected) and those selected by ACT-R
give rise to the final form of the barrier.
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Figure 3: Changes in top-down strategy and bottom-up
responsive Barrier rule utilities during training

Figure 3 shows the average utility values for these two
notional subsets of rules over the sixteen training trials: the
utility of the rules implementing the strategy top-down
increases as more trials are completed during CT (TOP-
DOWN CT) as their repeated use is continuously rewarded.
This phenomenon occurs only when the problem scenario
does not vary dramatically between trials so that there is no
significant variation in the effectiveness (and thus reward
value) of the actions being executed on repeated trials. In
comparison the bottom-up responsive rules involve many
more perceptual actions to locate the spread of fire, taking
longer to construct the barrier, consequently receiving a
relatively lower reward (BOTTOM-UP CT). Over time, this
serves to increase the probability of using the top-down
subset of rules in the CT group producing the divergence
shown in Figure 3. The utility values for the same notional
subsets of rules for the VT group, again, remain more
evenly balanced owing to the variability in training
rewarding the top down implementation of the strategy less
consistently.



As in the case of strategy choice, CT leads to cognitive
inflexibility in strategy implementation, with potentially
insufficient regard given to sensing the environment over
top-down construction of the barrier, when conditions
change, as witnessed for the CT group under test conditions.

Testing phase: Comparisons were made to determine the
impact of cognitive inflexibility on performance in the first
testing trial. The average performance in the 17" trial in the
ER condition in better for participants/model after CT
(86.09/78.14) than after VT (72.19/69.83). Both participants
and the model in the CT group use the Barrier strategy
more effectively than the VT group in the ER condition, an
indication that these participants have consolidated the
Barrier strategy following a top-down approach. The CT
group does not need to change strategy because using CF
commands is the only sure way to stop the fire in the ER
condition (and constructing a barrier using CF is the best
approach and therefore has an advantage). The average
performance in the 17" trial in the WDC condition is better
for participants/model after VT (78.51/78.14) than after CT
(71.38/74.87). This is because shifts in wind direction make
fire behavior unpredictable so flexible behavior is required.
This flexibility is best achieved using more situation-
sensitive responsive rules such as those contributing more
bottom-up control in the creation of the barrier.

Control of behavior: Figure 3 shows that the model
trained in the CT condition has a clear preference for the use
of top-down control while the model trained in the VT
condition has no such preference. This difference has an
impact in the WDC test phase when the wind changes
direction in trial 17 at second 60. In a model trained in the
VT condition the bottom-up rules are more easily able to
win the competition through small variations in utility
values following negative reward. Therefore, when the
change in the wind occurs, the model will probably select
the next target cell based on the location of the fire. On the
other hand, the behavior of a model trained in the CT
condition will reflect its high utility rules implementing the
top-down approach to the creation of the barrier so it will
continue to place the next section of barrier without recourse
to observing the fire. The risk is that when the form of the
barrier is constructed without considering the actual shape
of the fire it may not be effective. In this sense the
automation of the strategy (cf. Ackerman, 1988) runs the
risk of deterring the problem solver from extracting relevant
information about the problem state to guide behavior.

To validate the results obtained with the cognitive model,
further evidence to support this interpretation was sought
from the spatial distribution of CF commands in the Cafias
et al. (2005) study data for participants during the WDC
testing phase: groups CT-WDC and VT-WDC to determine
whether the semicircle pattern, a top-down control outcome,
was present. These test groups were chosen because the
wind direction change test condition alters the path of the
fire in such a way as to make the top-down control
implementation of the Barrier strategy less effective than a
bottom-up more responsive mode of barrier construction. It
was found is that the CT-WDC group data presents a
semicircle pattern of barrier, evidence of top-down
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application of the Barrier strategy, whilst the VT-WDC
group does not. This indicates that the semicircular pattern
does not emerge in the VT group behavior because the
variability of both the VT condition and the WDC testing
phase does not reward the rules implementing it.

Discussion

The model captures the behavior of both training groups
with a single set of rules for implementing all four strategies
either or both bottom-up and top-down control. Participants
in the CT group have the opportunity to consolidate their
strategies and hence generate quick, fluid actions; while
those in the VT group execute more controlled, albeit
flexible, actions. When the testing phase begins people in
the CT group are less (cognitively) flexible in adapting to
the new demands of the task. In general terms, participants
in the VT condition changed strategy more often and
showed more cognitive flexibility during the testing phase.
The model demonstrates how cognitive inflexibility can be
traced to the utility values of rules governing behavior
indicating the potential role of reward feedback learning
mechanisms in complex problem solving in dynamic
domains.

The CT condition presents to the model more stable
feedback from the environment (in the form of rewards) to
its actions in comparison with the VT condition. In the CT
condition the model tends to respond by executing CF
commands in a fashion that resembles a barrier. As
experience in the task is gained, the model learns how to
deploy this strategy with more efficiency.

The ACT-R reinforcement learning mechanism is able to
capture the phenomenon of cognitive inflexibility but in
order to achieve this it was necessary to provide the model
with adequate responsiveness. Rather than following a
recipe to implement a strategy, the approach used in this
research was the Decision Point/Action/Reward cycle which
(using standard ACT-R mechanisms) maximizes the number
of decision points during strategy execution and thereby
enforces competition between rules in selecting the next
action at almost every time step so that the model can find
the best way of implementing a strategy. This reflects the
model’s dependence on ACT-R’s sub-symbolic processes.
In this way, the model was able to capture critical aspects of
the data including interesting phenomena such as waiting
behavior. This indicates that in complex dynamic tasks
participants may be aware of the consequences of their
actions over relatively small time intervals.

This study contributes to our understanding about strategy
use in complex dynamic tasks: which strategies are used,
how they are selected, and how strategy execution changes
as experience is gained. Good performance is linked to an
effective combination of strategic control with attention to
changing task demands.

The cognitive model also prescribes a mechanism in
which environmental feedback controls how actions are
selected in a highly dynamic task. Through the
implementation of the cognitive model it was found, for
example, that strategy execution depends on the fine-tuning
of ACT-R production rule utilities as a consequence of



environmental rewards. Selecting actions based on utility
comparisons facilitates a fluid and quick selection of actions
that is instrumental in obtaining good performance,
particularly in dynamic and time pressured situations. In
dynamic tasks there is a continuous competition between
top-down and bottom-up control. This competition is
mediated by the characteristics of the learning process such
as those exemplified in the Cafias et al. (2005) study, for
which in the CT condition the top-down form of control
dominates. The account provided by the model is that rules
implementing top-down strategic control come to dominate
behavior increasingly over rules implementing bottom-up
responsive behavior during the CT phase owing to task
consistency. This phenomenon increases the probability of
performing well in the CT problem scenario but also
produces cognitive inflexibility.

As mentioned in the introduction, Schunn & Reder
(1996) found no evidence for cognitive inflexibility in their
ATC study regarding strategy selection (choice of runway —
long or short — on which to land aircraft) despite a long
training period. However, we can learn from the work
presented here; this would indicate that rules involved in the
selection of choices in behaviour (for example, choosing
between runways on which to land aircraft) have similar
utility. A critical factor that enabled the dominance of
certain rules in FireChief was the high consistency of the
CT trial. In this respect, the ATC task is only partially
consistent. An examination of the Ackerman (1988) study,
from which the data for the second experiment of Schunn &
Reder (1991) was extracted, reveals that weather conditions
(wind speed, wind direction, and ground condition) varied
randomly about twice a minute, and also that within each
trial aircraft type, of which there are four, are randomly
drawn from the queue. It seems that this experimental
design shares more similarity with the VT condition in the
Cafias et al. (2005) study rather than the CT condition, so
when experimental changes are introduced no subset of
rules has become dominant.

This research also provides an explanation of how
dynamic tasks can be modeled using the Competing
Strategies paradigm by incorporating an additional layer of
within-strategy execution competition, enabling the bottom-
up manifestation of strategies, such as that described here.
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