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Abstract

One mode of human decision-making is considered intuitive,
i.e., unconscious situational pattern recognition. Implicit
statistical learning, which involves the sampling of
invariances from the environment and is known to involve
procedural (i.e., non-declarative) memory, has been shown to
be a foundation of this mode of decision making. We present
an ACT-R model of implicit learning whose implementation
entailed a declarative memory-based learner of the
classification of example strings of an artificial grammar. The
model performed very well when compared to humans. The
fact that the simulation of implicit learning could not be
implemented in a straightforward way via a non-declarative
memory approach, but rather required a declarative memory-
based implementation, suggests that the conceptualization of
procedural memory in the ACT-R framework may need to be
expanded to include abstract representations of statistical
regularities. Our approach to the development and testing of
models in ACT-R can be used to predict the development of
intuitive decision-making in humans.

Keywords: implicit learning; cognitive models; unconscious
learning; ACT-R theory.

Introduction

The vast majority of cognitive models discussed at this
conference are models of rational or analytical cognition.
The architectures used are primarily ACT-R (R for rational)
or Soar, and the best papers compare a computational
implementation of a theory, i.e. a model, to human behavior
observed in careful laboratory experiments. The authors of
these papers then claim that the model under consideration
is a plausible theory of the cognitive process behind the
observed behavior. This approach is advancing the
understanding of cognitive processes. However, modeling
consciously rational behavior addresses only part of human
cognition and it ignores the ubiquitous influence that
implicit processing and intuitive decision making has on
human behavior.

In the dual-process framework of reasoning and decision
making (e.g., Evans, 2008; Patterson, Pierce, Bell, Andrews
& Winterbottom, 2009; Sloman, 1996), one mode of
decision making is called intuitive. Intuitive decision
making refers to implicit situational pattern recognition that
is not thought to involve symbolic rules (Klein, 1998). The
other mode of decision making is called analytical, which is
generally accepted to entail symbolic rules. Intuitive
decision making, which falls under the rubric of 'System 1'

processing in this literature, is typically described as
unconscious, fast, and effortless decision making.
Analytical decision making, which falls under the rubric of
'System 2' processing, is described as conscious, rational,
slow, and effortful. Evans (2008) provides a review of the
evidence supporting the Dual-Process theory. Analytical
decision making is relatively simple to study because it is
easy to create tasks for testing and recording behavior
during rational performance. Intuitive decision making, on
the other hand, is difficult to study because it is hard to
artificially create environmental patterns with sufficient
fidelity to study situational pattern recognition.

Recently, Patterson and colleagues (Boydstun, Patterson,
Pierce, Park & Tripp, 2011; Covas-Smith, Patterson, Pierce,
Cooke & Homa, 2011; Patterson et al., 2009) have
investigated the development of intuitive decision making in
a simulated real-world environment. These authors had
human participants experience simulated flight over a
synthetic terrain with a sequences of objects (e.g., house;
vehicle) positioned on the terrain along the flight path. Each
object sequence was derived from paths taken through a
finite-state algorithm, which defined a grammar for
constructing the content of the scene. The use of a finite-
state grammar for creating object sequences was analogous
to the way in which finite-state grammars have been used
for studying the implicit learning of artificial letter strings
(e.g., Reber, 1967). Patterson and colleagues tested the
conjecture that implicit learning (Cleeremans, Destrebecqz
& Boyer, 1998; Perrachet & Pacton, 2006) could be one
way in which intuitive decision making is developed.

Patterson and colleagues found that naive participants
could implicitly learn the object sequences quite easily.
Moreover, the implicit learning of the sequences provided a
foundation for intuitive decision making about the
underlying structure of the sequences: following training
with the artificial object sequences, the participants were
successful in recognizing novel sequences taken from the
same grammar during test. That is, the human participants
implicitly learned to recognize situational patterns.

The ACT-R architecture (Anderson, 2007; Anderson, et
al., 2004) has been used before to model implicit learning.
In particular, Wallach and Lebiere (2003) reviewed the
theoretical approaches to implicit learning and observed “a
major shortcoming of these models is their failure to also
account for explicit learning and for the difference between
implicit and explicit learning” (pg 217). They then presented



Kennedy, W.G. and Patterson, R.E. (2012) Modeling Intuitive Decision Making in ACT-R. In Proceedings
of the 11th International Conference on Cognitive Modeling (ICCM). Berlin, Germany. 12-15 April 2012.

ACT-R models of two well-known implicit and explicit
learning tasks and specifically linked explicit learning with
the learning of declarative chunks and implicit learning with
ACT-R’s sub-symbolic learning of the activations of those
chunks. We will use the same approach here, using the sub-
symbolic representation associated with declarative memory
as the basis of our model of intuitive decision making.

This paper presents an approach to studying intuitive
decision making (i.e., System 1 cognition) that exposes the
cognitive process to computational modeling and
experimental testing of theories implemented as models. An
ACT-R model was developed and compared to human
subject data on an intuitive decision-making task used by
Patterson, Pierce, Boydstun, Park, Shannan, Tripp and Bell
(submitted).

Patterson et al. Study

Patterson, Pierce, Boydstun, Park, Shannon, Tripp, and
Bell (submitted) investigated whether implicit learning can
be a process by which intuitive decision making is acquired.
One form of implicit learning entails the learning of spatial
or temporal patterns without full awareness of what is
learned (Cleeremans, Destrebecqz & Boyer, 1998; Perrachet
& Pacton, 2006). Implicit learning is likely to be a key
process by which individuals learn situational patterns on
which intuitive decisions are based (e.g., Patterson et al.,
2009).

Patterson et al. extended the classic paradigm by Reber
(1967) used for studying implicit learning, which entailed
the learning of a synthetic grammar produced by a finite
state algorithm that generated artificial letter strings.
Patterson et al. instead investigated the implicit learning of
passively viewed, structured object sequences presented in a
simulated real-world immersive environment used for
simulating locomotion (Figure 1). In doing so, they used a
finite state algorithm that created an artificial grammar for
generating the object sequences and thus the content of the
environment (Figure 2). For comparison, Patterson et al.
also investigated the implicit learning of memorized static
letter strings presented on a flat display, as has been done in
the past (Reber, 1967) (See Figure 3).

The finite-state diagram of the grammar shown in Figure
3 has also been used in many other studies (Cleeremans,
Destrebecqz, & Boyer, 1998; Matthews, et al., 1989;
Perrachet & Pacton, 2006). It produces 44 valid structured
strings of length 8 or shorter. Participants are trained by
being presented a series of example strings from the
grammar and are then tested by being asked if a test string is
legal or not.

During training, Patterson et al. had human participants
(1) passively view structured sequences of objects presented
on a dynamic terrain seen in perspective view (the
'immersive display' condition), or (2) memorize structured
strings of letters presented on a static flat display. Following
training, participants were tested for implicit learning by
making intuitive pattern-recognition judgments of novel

structured object sequences or letter strings versus random
sequences or strings.

By training participants on the structured object
sequences or letter strings, and then testing recognition of
structured versus random sequences or strings, the

participants performed an ‘anomaly recognition' test. The
random sequences or strings effectively served as an
anomaly to be recognized because the participants were
never trained on random sequences or strings.

Figure 1. Photograph showing the simulated real-world
environment. The scene underwent expansive optic flow
motion, which simulated passive movement by the

participant in the forward direction toward the horizon.
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Figure 2. Depiction of finite state algorithm that defined
the grammar employed for generating the structured
sequences of objects used in Patterson, Pierce, Boydstun,
Park, Shannon, Tripp, and Bell (submitted).



Kennedy, W.G. and Patterson, R.E. (2012) Modeling Intuitive Decision Making in ACT-R. In Proceedings
of the 11th International Conference on Cognitive Modeling (ICCM). Berlin, Germany. 12-15 April 2012.

X

Figure 3. Finite state algorithm that defined a grammar of
letter strings with the same structure as the sequences of
objects of Figure 2. (From Reber, 1967.)

Results. Figure 4 depicts results obtained for the
simulated real-world environment and for the static flat
display, as reported by Patterson et al. Passive viewing of
object sequences (third bar from the left) resulted in an
average accuracy of intuitive decision making that was
equivalent to the average recognition performance that was
obtained when letter strings presented on a flat display were
memorized (middle bar). An a-priori ¢-test showed that the
difference between these two conditions was not significant,
t(14) = 0.4, p = 0.7. The two training conditions were
significantly higher than the no-training control condition
(left bar), which was at chance-level performance.

During debriefing, the human participants had trouble
explicitly verbalizing all of what they had learned during
training and that a number of their decisions made during
testing were from a feeling "in the gut". Thus, the training
methods produced a significant level of implicit learning
that was a foundation for the pattern-recognition-based
(intuitive) decision making.
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Figure 4. Accuracy of intuitive decision making, as
measured by recognition performance during the test phase.
During training, the object sequences were passively
viewed, and the letter strings were memorized. The control

group, which involved object sequences, entailed no
training. Each data point is the mean of eight human
participants; error bars depict + 1 standard error of the mean
(SEM). The data was from one portion of Patterson et al.
(submitted).

ACT-R Model

Our model is based on ACT-R (Anderson, 2007; Anderson,
et al, 2004). ACT-R is a rule-based architecture
representing cognitive processes symbolically and sub-
symbolically. Its declarative memory holds chunks of
declarative facts with an activation level based on the
recency and frequency of use. IF-THEN rules are held in a
long-term procedural memory. ACT-R models can learn by
adjusting the activation of accumulated declarative chunks,
by adjusting the relative measure of rules, or by combining
sequential rules into new rules.

Statistical learning is sometimes modeled as the tuning of
the relative measures of rules and that approach could have
been used here. However, to study different strategies
believed to be used in the implicit learning of abstract
grammars, the model developed here uses the activation of
declarative chunks of memory, with each chunk
representing a bigram of letters. (The task modeled was the
letter string version of the implicit learning task. An
analogous model would apply to the object sequence
version of the task.)

Our ACT-R model uses both the declarative and
procedural modules to passively learn and then respond to
this task. The rules are fixed during the run of the model.
Declarative memory chunks are added based on experience
during training and are recalled to make the valid/invalid
evaluation during testing.

During training, rules direct the system to read the string
letter by letter, left to right. The system then forms
declarative chunks and saves them as an internal
representation of the grammar based on observed training
strings. Each declarative fact is a representation of observed
bigrams indicating which letter was seen before another,
i.e., a first letter and a predicted second letter.

During testing, a representation of the intuitive decision-
making process determined whether all the bigrams in a test
stimulus have been seen before. To respond, the system
reads the string left to right and attempts to recall bigrams
predicting the next letter. A successful retrieval increases
the activation of that declarative chunk and the ACT-R
architecture returns the one declarative chunk for an
attempted recall operation. If the retrieved bigram does not
match the second letter, a second retrieval is attempted
using both the first and second letter. If successfully
recalled, the evaluation continues. If not successfully
recalled, the test string is evaluated as invalid.

This approach implements a form of predictive and
evaluative behavior. Other approaches that could have been
studied include recalling the first few letters of a string
(primacy), recalling the last few letters of a string (recency),
recalling both the first few and the last few letters, or simply
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deciding by noting whether the number of pairs of letters
recallable was above a threshold. We could also have tested
trigram representations, or other representations. The model
discussed here based its decisions on whether predictive
bigrams were recallable.

Replicating Human Subject Experiments

To compare the ACT-R model to data from Patterson et al
(submitted), we replicated the passive training and testing
protocols for strings of letters generated by the artificial
grammar shown in Figure 3. The human participants and the
model were trained and tested the same way.

Training used 18 unique strings drawn from the 44 valid
strings of length 8 or less. Training was organized as six
blocks of three unique valid strings, which were presented
16 times with each string presented for 5 seconds and a
blank screen shown for 0.6 seconds between strings.

The testing process also replicated that used with human
participants. The system presented 88 strings, 22 valid
strings that were not used for training, and 22 foils, each
presented twice in a random order. The foils used the same
letters, but in a random order and were of length 6, 7, or 8.

For this model, only default ACT-R parameters were
used, except the retrieval threshold (:rt) for declarative
memory and the activation noise variable (:ans).

Model’s Performance

The model reports whether a test string is valid or not for
each of the 88 trials. Response accuracy was our only
performance measure because the response time for the
human participants was not collected in the Patterson et al.
study. Figure 5 shows the performance results of the model
together with the human participants' test performance as
reported by Patterson et al. (submitted).

The plotted results for the human participants are the
means and standard error for 8 individuals as described in
Patterson et al. (submitted). The plotted model results are
the means and standard error for 30 runs of the model
varying the retrieval threshold (:rt) parameter from -1.5 to
+3.0. The noise parameter, :ans, was 0.1. The :rt parameter
sets the threshold for successful retrievals from memory
base on the activation level of chunks of memory. Lower
values of the parameter allow the model retrieve more
instances and higher values restrict retrievals to the most
activated memories.

A two-tailed, equal variance t-test found that the
difference in mean accuracy between the humans and the
model was not significant for the 30 runs with :rt =2.0 (t(29)
=15.74, p < 0.001). Note, however, that the mean accuracy
for the humans and model were very similar and within a
few percentage points of one another for several values of
:rt. Therefore, we are encouraged by the closeness of the
model behavior to that of humans on this implicit learning
task.

Because we are using a computational model, it is
relatively easy to collect additional information on the
performance of the model and compare it to human data.

Table 1 provides the human and model performance in more
detail than the summary information shown in Figure 5.
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Figure 5. Model and Human Performance. The human
performance (H column) and the model’s performance for
retrieval threshold parameter (:rt) from -1.5 to +3.0 on
strings of letters learned by passive viewing. Error bars in
this figure depict +1 standard error of the mean (SEM)

Table 1: Human and Model Performance in Detail.

Trial/Response Type Human Model
xt=2.0
Hits 33/44 34/44
Correct Rejections 36/44 39/44
Misses 11/44 10/44
False Alarms 8/44 5/44

In the table, "Hits" refers to the number of grammatical
strings that were detected as grammatical, "Correct
Rejections" refers to the number of ungrammatical strings
that were detected as ungrammatical, "Misses" refers to the
number of grammatical strings that were incorrectly seen as
ungrammatical, and "False Alarms" refers to the number of
ungrammatical strings that were incorrectly seen as
grammatical. In a signal detection analysis, one can
compare the hit rate and false alarm rate to get an estimate
of the level of criterion that is being used for detection: a
high hit rate coupled with a high false alarm rate would
suggest that the detection system is overly responsive and
that its actual sensitivity is not particularly high. However, a
high hit rate coupled with a low false alarm rate would
suggest that the system is responding selectively to a signal
and that its sensitivity is high.

While the data shown in Table 1 is insufficient for a
formal signal detection analysis, it is clear that both the
human data and the model data reveal a very similar pattern
of high hit rates coupled with low false alarm rates. This
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would suggest that both systems, human and model, possess
a similar high level of sensitivity for implicit learning.

Discussion

The results show that the ACT-R model can replicate the
human performance when the retrieval threshold parameter
is tuned to account for the training protocol. Interestingly,
the model appears better at recognizing foils than hits like
humans. Therefore, the results imply we have a reasonable
model of the intuitive decision making process.

Intuitive decision making and its development through
implicit learning depend upon a form of non-declarative
memory called procedural memory. According to Squire
(2004, 2009), human memory can be subdivided into two
basic systems. One system is a declarative memory system,
which entails conscious recollection about facts and events.
The other system is a non-declarative memory system, one
form of which is procedural memory, which involves
memory relating to the ability to extract common elements
and patterns from separate events (Knowlton, Ramus &
Squire, 1992; Knowlton & Squire, 1993; 1996), as well as
memory supporting the development of skill-like abilities.

Procedural memory is involved in much more than motor
skill. Rather, procedural memory is also involved in the
recognition of invariant properties within patterns of
information that unfold over time (Patterson, et al., 2009).
Because procedural knowledge is highly implicit and does
not require full conscious processing to be evoked and used,
it is especially useful in situations where the traditional
analytical (conscious) processing of information, which is
slow and limited by working memory capacity, would
burden a person already stressed within a dynamic, time-
pressed task environment.

ACT-R implements a formalized representation of
declarative memory and non-declarative procedural memory
systems and both systems have sub-symbolic components.
In ACT-R, the declarative memory contains facts and
events, but the retrieval of facts is not always a conscious
process in that it is based on the sub-symbolic activation,
which is based on the history of use of the memory.

ACT-R’s procedural memory is activated by recognizing
stimuli, i.e., matching the “IF” parts and then initiates
actions in one or more of the architecture's modules, such as
changing the current description of the goal, initiating the
recall of a declarative chunk of memory, initiating a motor
action, or moving the focus of the eyes. This is a different
concept of “procedural” memory that discussed above.

We used ACT-R’s declarative memory for facts and its
sub-symbolic activation associated with those memories
along with simple productions to represent the intuitive
decision making process. We can produce both the overall
performance as well as the different performance on hits and
correct rejections implying we are modeling the cognitive
processes involved. Our modeling formalization and data
available raises research questions concerning the intuitive
decision making process and the appropriate architectural
approach. Further research will be needed to determine if

another strategy for the learning and use of the learned
knowledge would also perform well compared with human
data.

Modeling the non-declarative knowledge that was
investigated in the present study is a challenge because this
kind of procedural knowledge is more abstract than ACT-
R’s simple symbolic chunks, their activations, or
productions, yet it is not declarative. This means that the
conceptualization of non-declarative procedural memory in
ACT-R may need to be expanded to include abstract
representations of statistical regularities and invariances
sampled from the environment.

Our ability to match available human performance data
does not mean that we have proven the ACT-R model is
necessarily an explanation of the underlying human
cognitive processes. Humans can make the translation of
their learning in one environment to another, as
demonstrated by Patterson, et al. Their participants could
learn pattern independent of the specific items in the
sequence. However, the ACT-R model is not able to do that
because the declarative chunks learned are specific to the
letters in the stimuli and the knowledge are not
generalizable. Further work in this area may justify
extending ACT-R to represent implicit patterns more
abstractly.

Conclusions

This work demonstrates some of the reasons for building
computational cognitive models. First, we are able to
replicate human performance on this implicit learning and
intuitive decision making task. This was accomplished by
implementing a model of a cognitive learning and
evaluation process that, while consistent with the ACT-R
theory of cognition (Anderson, 2007), was inconsistent with
the intuitive nature of procedural memory in humans. The
strategy implemented was to build a memory of bigrams of
sequential letters and then evaluating a test string by
checking that each bigram had been seen before. However,
other strategies may be similarly successful.

Second, cognitive modeling supports formally exploring
alternative explanations for observed behavior. The model
could be modified to test whether learning trigrams in the
training strings could yield similar results. It could also be
modified to test if recognizing only the first few and/or the
last few letters, i.e., primacy or recency, can match the
human participants’ performance. A third alternate strategy
is simply a voting strategy where recognized bigrams are
counted and if above a threshold, the model would report a
match. These strategies have not yet been tested, but with a
cognitive modeling environment, they can be.

Third, this work also demonstrates that at least some
System 1 as well as System 2 forms of cognition can be
replicated within the current ACT-R architecture, but not
necessarily all. This demonstration included implicit
learning and intuitive decision making. From the work of
Patterson et al. (submitted), there is data on the performance
of human participants who memorize training strings rather
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than passively viewing them. This may be a nice example of
an effortful System 2 learning strategy rather than the far
less effortful System 1 passive learning strategy. The
characteristics of each system need more study. To address
other examples of System 1 cognition, ACT-R may need to
be extended to include introspective factors representing
emotional aspects of cognition such as current arousal,
general mood, and temperament.

Finally, cognitive modeling advances our understanding
of cognitive processes by providing a framework to
represent and explore the explanation of behaviors, such as
intuitive decision making, that seem to be driven by
cognition that is “beyond rational”.

Acknowledgments

This work was supported in part by AFOSR/AFRL grant
FA9550-10-1-0385 and the George Mason University
Center of Excellence in Neuroergonomics, Technology, and
Cognition (CENTEC).

References

Anderson, J.R. (1996). Implicit memory and metacognition:
Why is the glass half-full? In L. M. Reder (Ed.) Implicit
memory and metacognition, 123-136. Mahwah, NI:
Erlbaum.

Anderson, J. R. (2007). How Can the Human Mind Occur in
the Physical Universe? Oxford University Press.

Anderson, J. R. & Reder, L. M. (1999). The fan effect: New
results and new theories. Journal of Experimental
Psychology: General, 128, 186-197.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglas, S.,
Lebiere, C., and Qin, Y. (2004). An integrated theory of
mind. Psychological Review, 111, 1036-1060.

Boydstun, A.S., Patterson, R.E., Pierce, B.J., Park, L.M., &
Tripp, L.M. (2011). Articulatory suppression affects
situational ~ pattern  recognition  in  immersive
environments. Proceedings of the 10th Annual
Conference on Naturalistic Decision Making (pp. 157-
159) Orlando, FL.

Covas-Smith, C.M., Patterson, R., Pierce, B.J., Cooke, N.,
& Homa, D. (2011). Diversity of experience and intuitive
decision making in an immersive environment.
Proceedings of the 10th Annual Conference on
Naturalistic Decision Making (pp. 53-156). Orlando, FL.

Cleeremans, A., Destrebecqz, A., and Boyer, M. (1998)
Implicit learning: News from the front. Trends in
Cognitive Sciences, 2, 406-416.

Evans, J. S. B. T. (2008). Dual-processing accounts of
reasoning, judgment and social cognition. Annual Review
of Psychology, 59, 255-278.

Klein, G. (1998). Sources of power: How people make
decisions. Cambridge, MA: MIT Press.

Knowlton, B.J., Ramus, S.J. & Squire, L.R. (1992). Intact
artificial grammar learning in amnesia: Dissociation of
classification learning and explicit memory for specific
instances. Psychological Science, 3, 172-179.

Knowlton, B.J. & Squire, L.R. (1996). Artificial grammar
learning depends on implicit acquisition of both abstract
and  exemplar-specific  information.  Journal  of
Experimental Psychology: Learning, Memory, and
Cognition, 22, 169-181.

Knowlton, B.J. & Squire, L.R. (1993). The learning of
categories: Parallel brain systems for item memory and
category knowledge. Science, 262, 1747-1749.

Lebiere, C. & Wallach, D. (2001). Sequence Learning in the
ACT-R Cognitive Architecture: Empirical Analysis of a
Hybrid Model. In R. Sun & C. L. Gilles (Eds.). Sequence
Learning: Paradigms, Algorithms, and Applications (pp.
188-212). Berlin: Spinger Lecture Notes in Computer
Science.

Lebiere, C. & Wallach, D. (2002). Explicit or implicit
learning? An integrative theory of sequence learning. In
Proceedings of the 43rd conference of the German
Psychological Association.

Matthews, R.C., Buss, R.R., Stanley, W.B., Blanchard-
Fields, F., Cho, J.R., and Druhan, B. (1989) Role of
implicit and explicit processes in learning from examples:
A synergistic effect. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 15, 1083-1100.

Patterson, R., Pierce, B.J., Bell, H.,, Andrews, D. &
Winterbottom, M. (2009). Training robust decision
making in immersive environments. Journal of Cognitive
Engineering and Decision Making, 3,331-361.

Patterson, R.E., Pierce, B.J., Boydstun, A.S., Park, L.,
Shannan, J., Tripp, L., and Bell, H. Implicit statistical
learning creates intuitive decision making in a simulated
real-world  environment.  Journal of  Cognitive
Engineering and Decision Making, submitted.

Perrachet, P. and Pacton, S. (2006) Implicit learning and
statistical learning: One phenomenon, two approaches.
Trends in Cognitive Sciences, 10, 233-238.

Reber, A.S. (1967). Implicit learning of artificial grammars.
Journal of Verbal Learning and Verbal Behavior, 6, 855-
863.

Sloman, S. A. (1996). The empirical case for two systems of
reasoning. Psychological Bulletin, 119, 3-22.

Squire, L.R. (2004). Memory systems of the brain: A brief
history and current perspective. Neurobiology of Learning
and Memory, 82, 171-177.

Squire, L.R. (2009). Memory and brain systems: 1969 —
2009. The Journal of Neuroscience, 29, 12711-12716.

Wallach, D. and Lebiere, C. (2003) Implicit and explicit
learning in a unified architecture of cognition. In L.
Jimenez (Ed.) Advances in Consciousness Research, 215-
250. Amsterdam: John Benjamins Publishing Company.





