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Abstract 

One mode of human decision-making is considered intuitive, 
i.e., unconscious situational pattern recognition. Implicit 
statistical learning, which involves the sampling of 
invariances from the environment and is known to involve 
procedural (i.e., non-declarative) memory, has been shown to 
be a foundation of this mode of decision making. We present 
an ACT-R model of implicit learning whose implementation 
entailed a declarative memory-based learner of the 
classification of example strings of an artificial grammar. The 
model performed very well when compared to humans. The 
fact that the simulation of implicit learning could not be 
implemented in a straightforward way via a non-declarative 
memory approach, but rather required a declarative memory-
based implementation, suggests that the conceptualization of 
procedural memory in the ACT-R framework may need to be 
expanded to include abstract representations of statistical 
regularities. Our approach to the development and testing of 
models in ACT-R can be used to predict the development of 
intuitive decision-making in humans. 

Keywords: implicit learning; cognitive models; unconscious 
learning; ACT-R theory. 

Introduction 
The vast majority of cognitive models discussed at this 
conference are models of rational or analytical cognition. 
The architectures used are primarily ACT-R (R for rational) 
or Soar, and the best papers compare a computational 
implementation of a theory, i.e. a model, to human behavior 
observed in careful laboratory experiments. The authors of 
these papers then claim that the model under consideration 
is a plausible theory of the cognitive process behind the 
observed behavior. This approach is advancing the 
understanding of cognitive processes. However, modeling 
consciously rational behavior addresses only part of human 
cognition and it ignores the ubiquitous influence that 
implicit processing and intuitive decision making has on 
human behavior. 

In the dual-process framework of reasoning and decision 
making (e.g., Evans, 2008; Patterson, Pierce, Bell, Andrews 
& Winterbottom, 2009; Sloman, 1996), one mode of 
decision making is called intuitive. Intuitive decision 
making refers to implicit situational pattern recognition that 
is not thought to involve symbolic rules (Klein, 1998). The 
other mode of decision making is called analytical, which is 
generally accepted to entail symbolic rules. Intuitive 
decision making, which falls under the rubric of 'System 1' 

processing in this literature, is typically described as 
unconscious, fast, and effortless decision making. 
Analytical decision making, which falls under the rubric of 
'System 2' processing, is described as conscious, rational, 
slow, and effortful. Evans (2008) provides a review of the 
evidence supporting the Dual-Process theory. Analytical 
decision making is relatively simple to study because it is 
easy to create tasks for testing and recording behavior 
during rational performance. Intuitive decision making, on 
the other hand, is difficult to study because it is hard to 
artificially create environmental patterns with sufficient 
fidelity to study situational pattern recognition. 

Recently, Patterson and colleagues (Boydstun, Patterson, 
Pierce, Park & Tripp, 2011; Covas-Smith, Patterson, Pierce, 
Cooke & Homa, 2011; Patterson et al., 2009) have 
investigated the development of intuitive decision making in 
a simulated real-world environment. These authors had 
human participants experience simulated flight over a 
synthetic terrain with a sequences of objects (e.g., house; 
vehicle) positioned on the terrain along the flight path. Each 
object sequence was derived from paths taken through a 
finite-state algorithm, which defined a grammar for 
constructing the content of the scene. The use of a finite-
state grammar for creating object sequences was analogous 
to the way in which finite-state grammars have been used 
for studying the implicit learning of artificial letter strings 
(e.g., Reber, 1967). Patterson and colleagues tested the 
conjecture that implicit learning (Cleeremans, Destrebecqz 
& Boyer, 1998; Perrachet & Pacton, 2006) could be one 
way in which intuitive decision making is developed. 

Patterson and colleagues found that naive participants 
could implicitly learn the object sequences quite easily. 
Moreover, the implicit learning of the sequences provided a 
foundation for intuitive decision making about the 
underlying structure of the sequences: following training 
with the artificial object sequences, the participants were 
successful in recognizing novel sequences taken from the 
same grammar during test. That is, the human participants 
implicitly learned to recognize situational patterns.  

The ACT-R architecture (Anderson, 2007; Anderson, et 
al., 2004) has been used before to model implicit learning. 
In particular, Wallach and Lebiere (2003) reviewed the 
theoretical approaches to implicit learning and observed “a 
major shortcoming of these models is their failure to also 
account for explicit learning and for the difference between 
implicit and explicit learning” (pg 217). They then presented 
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ACT-R models of two well-known implicit and explicit 
learning tasks and specifically linked explicit learning with 
the learning of declarative chunks and implicit learning with 
ACT-R’s sub-symbolic learning of the activations of those 
chunks. We will use the same approach here, using the sub-
symbolic representation associated with declarative memory 
as the basis of our model of intuitive decision making. 

This paper presents an approach to studying intuitive 
decision making (i.e., System 1 cognition) that exposes the 
cognitive process to computational modeling and 
experimental testing of theories implemented as models. An 
ACT-R model was developed and compared to human 
subject data on an intuitive decision-making task used by 
Patterson, Pierce, Boydstun, Park, Shannan, Tripp and Bell 
(submitted). 

Patterson et al. Study 
 
Patterson, Pierce, Boydstun, Park, Shannon, Tripp, and 

Bell (submitted) investigated whether implicit learning can 
be a process by which intuitive decision making is acquired. 
One form of implicit learning entails the learning of spatial 
or temporal patterns without full awareness of what is 
learned (Cleeremans, Destrebecqz & Boyer, 1998; Perrachet 
& Pacton, 2006). Implicit learning is likely to be a key 
process by which individuals learn situational patterns on 
which intuitive decisions are based (e.g., Patterson et al., 
2009).  

Patterson et al. extended the classic paradigm by Reber 
(1967) used for studying implicit learning, which entailed 
the learning of a synthetic grammar produced by a finite 
state algorithm that generated artificial letter strings. 
Patterson et al. instead investigated the implicit learning of 
passively viewed, structured object sequences presented in a 
simulated real-world immersive environment used for 
simulating locomotion (Figure 1). In doing so, they used a 
finite state algorithm that created an artificial grammar for 
generating the object sequences and thus the content of the 
environment (Figure 2). For comparison, Patterson et al. 
also investigated the implicit learning of memorized static 
letter strings presented on a flat display, as has been done in 
the past (Reber, 1967) (See Figure 3).  

The finite-state diagram of the grammar shown in Figure 
3 has also been used in many other studies (Cleeremans, 
Destrebecqz, & Boyer, 1998; Matthews, et al., 1989; 
Perrachet & Pacton, 2006). It produces 44 valid structured 
strings of length 8 or shorter. Participants are trained by 
being presented a series of example strings from the 
grammar and are then tested by being asked if a test string is 
legal or not.  

During training, Patterson et al. had human participants 
(1) passively view structured sequences of objects presented 
on a dynamic terrain seen in perspective view (the 
'immersive display' condition), or (2) memorize structured 
strings of letters presented on a static flat display. Following 
training, participants were tested for implicit learning by 
making intuitive pattern-recognition judgments of novel 

structured object sequences or letter strings versus random 
sequences or strings.  

By training participants on the structured object 
sequences or letter strings, and then testing recognition of 
structured versus random sequences or strings, the 
participants performed an 'anomaly recognition' test. The 
random sequences or strings effectively served as an 
anomaly to be recognized because the participants were 
never trained on random sequences or strings. 

     

 
 
Figure 1. Photograph showing the simulated real-world 

environment. The scene underwent expansive optic flow 
motion, which simulated passive movement by the 
participant in the forward direction toward the horizon. 

 
 
Figure 2. Depiction of finite state algorithm that defined 

the grammar employed for generating the structured 
sequences of objects used in Patterson, Pierce, Boydstun, 
Park, Shannon, Tripp, and Bell (submitted). 
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Figure 3. Finite state algorithm that defined a grammar of 

letter strings with the same structure as the sequences of 
objects of Figure 2. (From Reber, 1967.) 

 
Results. Figure 4 depicts results obtained for the 

simulated real-world environment and for the static flat 
display, as reported by Patterson et al. Passive viewing of 
object sequences (third bar from the left) resulted in an 
average accuracy of intuitive decision making that was 
equivalent to the average recognition performance that was 
obtained when letter strings presented on a flat display were 
memorized (middle bar). An a-priori t-test showed that the 
difference between these two conditions was not significant, 
t(14) = 0.4, p = 0.7. The two training conditions were 
significantly higher than the no-training control condition 
(left bar), which was at chance-level performance.  

During debriefing, the human participants had trouble 
explicitly verbalizing all of what they had learned during 
training and that a number of their decisions made during 
testing were from a feeling "in the gut". Thus, the training 
methods produced a significant level of implicit learning 
that was a foundation for the pattern-recognition-based 
(intuitive) decision making. 

 

 
Figure 4. Accuracy of intuitive decision making, as 

measured by recognition performance during the test phase.  
During training, the object sequences were passively 
viewed, and the letter strings were memorized. The control 

group, which involved object sequences, entailed no 
training. Each data point is the mean of eight human 
participants; error bars depict ± 1 standard error of the mean 
(SEM). The data was from one portion of Patterson et al. 
(submitted). 

ACT-R Model  
Our model is based on ACT-R (Anderson, 2007; Anderson, 
et al., 2004). ACT-R is a rule-based architecture 
representing cognitive processes symbolically and sub-
symbolically. Its declarative memory holds chunks of 
declarative facts with an activation level based on the 
recency and frequency of use. IF-THEN rules are held in a 
long-term procedural memory. ACT-R models can learn by 
adjusting the activation of accumulated declarative chunks, 
by adjusting the relative measure of rules, or by combining 
sequential rules into new rules.  

Statistical learning is sometimes modeled as the tuning of 
the relative measures of rules and that approach could have 
been used here. However, to study different strategies 
believed to be used in the implicit learning of abstract 
grammars, the model developed here uses the activation of 
declarative chunks of memory, with each chunk 
representing a bigram of letters. (The task modeled was the 
letter string version of the implicit learning task. An 
analogous model would apply to the object sequence 
version of the task.) 

Our ACT-R model uses both the declarative and 
procedural modules to passively learn and then respond to 
this task. The rules are fixed during the run of the model. 
Declarative memory chunks are added based on experience 
during training and are recalled to make the valid/invalid 
evaluation during testing.  

During training, rules direct the system to read the string 
letter by letter, left to right. The system then forms 
declarative chunks and saves them as an internal 
representation of the grammar based on observed training 
strings. Each declarative fact is a representation of observed 
bigrams indicating which letter was seen before another, 
i.e., a first letter and a predicted second letter. 

 During testing, a representation of the intuitive decision-
making process determined whether all the bigrams in a test 
stimulus have been seen before. To respond, the system 
reads the string left to right and attempts to recall bigrams 
predicting the next letter. A successful retrieval increases 
the activation of that declarative chunk and the ACT-R 
architecture returns the one declarative chunk for an 
attempted recall operation. If the retrieved bigram does not 
match the second letter, a second retrieval is attempted 
using both the first and second letter. If successfully 
recalled, the evaluation continues. If not successfully 
recalled, the test string is evaluated as invalid.  

This approach implements a form of predictive and 
evaluative behavior. Other approaches that could have been 
studied include recalling the first few letters of a string 
(primacy), recalling the last few letters of a string (recency), 
recalling both the first few and the last few letters, or simply 
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deciding by noting whether the number of pairs of letters 
recallable was above a threshold. We could also have tested 
trigram representations, or other representations. The model 
discussed here based its decisions on whether predictive 
bigrams were recallable. 

Replicating Human Subject Experiments 
To compare the ACT-R model to data from Patterson et al 
(submitted), we replicated the passive training and testing 
protocols for strings of letters generated by the artificial 
grammar shown in Figure 3. The human participants and the 
model were trained and tested the same way.  

Training used 18 unique strings drawn from the 44 valid 
strings of length 8 or less. Training was organized as six 
blocks of three unique valid strings, which were presented 
16 times with each string presented for 5 seconds and a 
blank screen shown for 0.6 seconds between strings.  

The testing process also replicated that used with human 
participants. The system presented 88 strings, 22 valid 
strings that were not used for training, and 22 foils, each 
presented twice in a random order. The foils used the same 
letters, but in a random order and were of length 6, 7, or 8. 

For this model, only default ACT-R parameters were 
used, except the retrieval threshold (:rt) for declarative 
memory and the activation noise variable (:ans). 

Model’s Performance 
The model reports whether a test string is valid or not for 
each of the 88 trials. Response accuracy was our only 
performance measure because the response time for the 
human participants was not collected in the Patterson et al. 
study. Figure 5 shows the performance results of the model 
together with the human participants' test performance as 
reported by Patterson et al. (submitted). 

The plotted results for the human participants are the 
means and standard error for 8 individuals as described in 
Patterson et al. (submitted). The plotted model results are 
the means and standard error for 30 runs of the model 
varying the retrieval threshold (:rt) parameter from -1.5 to 
+3.0. The noise parameter, :ans, was 0.1. The :rt parameter 
sets the threshold for successful retrievals from memory 
base on the activation level of chunks of memory. Lower 
values of the parameter allow the model retrieve more 
instances and higher values restrict retrievals to the most 
activated memories. 

A two-tailed, equal variance t-test found that the 
difference in mean accuracy between the humans and the 
model was not significant for the 30 runs with :rt =2.0 (t(29) 
= 15.74, p < 0.001). Note, however, that the mean accuracy 
for the humans and model were very similar and within a 
few percentage points of one another for several values of 
:rt. Therefore, we are encouraged by the closeness of the 
model behavior to that of humans on this implicit learning 
task. 

Because we are using a computational model, it is 
relatively easy to collect additional information on the 
performance of the model and compare it to human data. 

Table 1 provides the human and model performance in more 
detail than the summary information shown in Figure 5.  

 
Figure 5. Model and Human Performance. The human 
performance (H column) and the model’s performance for 
retrieval threshold parameter (:rt) from -1.5 to +3.0 on 
strings of letters learned by passive viewing. Error bars in 
this figure depict ±1 standard error of the mean (SEM) 

 
Table 1: Human and Model Performance in Detail. 

 
Trial/Response Type Human  Model 

:rt=2.0  
Hits 33/44 34/44 
Correct Rejections 36/44 39/44 
Misses 11/44 10/44 
False Alarms 8/44 5/44 

 
In the table, "Hits" refers to the number of grammatical 
strings that were detected as grammatical, "Correct 
Rejections" refers to the number of ungrammatical strings 
that were detected as ungrammatical, "Misses" refers to the 
number of grammatical strings that were incorrectly seen as 
ungrammatical, and "False Alarms" refers to the number of 
ungrammatical strings that were incorrectly seen as 
grammatical. In a signal detection analysis, one can 
compare the hit rate and false alarm rate to get an estimate 
of the level of criterion that is being used for detection: a 
high hit rate coupled with a high false alarm rate would 
suggest that the detection system is overly responsive and 
that its actual sensitivity is not particularly high. However, a 
high hit rate coupled with a low false alarm rate would 
suggest that the system is responding selectively to a signal 
and that its sensitivity is high. 

While the data shown in Table 1 is insufficient for a 
formal signal detection analysis, it is clear that both the 
human data and the model data reveal a very similar pattern 
of high hit rates coupled with low false alarm rates. This 
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would suggest that both systems, human and model, possess 
a similar high level of sensitivity for implicit learning.  

Discussion 
The results show that the ACT-R model can replicate the 
human performance when the retrieval threshold parameter 
is tuned to account for the training protocol. Interestingly, 
the model appears better at recognizing foils than hits like 
humans. Therefore, the results imply we have a reasonable 
model of the intuitive decision making process. 

Intuitive decision making and its development through 
implicit learning depend upon a form of non-declarative 
memory called procedural memory. According to Squire 
(2004, 2009), human memory can be subdivided into two 
basic systems. One system is a declarative memory system, 
which entails conscious recollection about facts and events. 
The other system is a non-declarative memory system, one 
form of which is procedural memory, which involves 
memory relating to the ability to extract common elements 
and patterns from separate events (Knowlton, Ramus & 
Squire, 1992; Knowlton & Squire, 1993; 1996), as well as 
memory supporting the development of skill-like abilities.  

Procedural memory is involved in much more than motor 
skill. Rather, procedural memory is also involved in the 
recognition of invariant properties within patterns of 
information that unfold over time (Patterson, et al., 2009). 
Because procedural knowledge is highly implicit and does 
not require full conscious processing to be evoked and used, 
it is especially useful in situations where the traditional 
analytical (conscious) processing of information, which is 
slow and limited by working memory capacity, would 
burden a person already stressed within a dynamic, time-
pressed task environment.  

ACT-R implements a formalized representation of 
declarative memory and non-declarative procedural memory 
systems and both systems have sub-symbolic components. 
In ACT-R, the declarative memory contains facts and 
events, but the retrieval of facts is not always a conscious 
process in that it is based on the sub-symbolic activation, 
which is based on the history of use of the memory.  

ACT-R’s procedural memory is activated by recognizing 
stimuli, i.e., matching the “IF” parts and then initiates 
actions in one or more of the architecture's modules, such as 
changing the current description of the goal, initiating the 
recall of a declarative chunk of memory, initiating a motor 
action, or moving the focus of the eyes. This is a different 
concept of “procedural” memory that discussed above. 

We used ACT-R’s declarative memory for facts and its 
sub-symbolic activation associated with those memories 
along with simple productions to represent the intuitive 
decision making process. We can produce both the overall 
performance as well as the different performance on hits and 
correct rejections implying we are modeling the cognitive 
processes involved. Our modeling formalization and data 
available raises research questions concerning the intuitive 
decision making process and the appropriate architectural 
approach. Further research will be needed to determine if 

another strategy for the learning and use of the learned 
knowledge would also perform well compared with human 
data.  

Modeling the non-declarative knowledge that was 
investigated in the present study is a challenge because this 
kind of procedural knowledge is more abstract than ACT-
R’s simple symbolic chunks, their activations, or 
productions, yet it is not declarative. This means that the 
conceptualization of non-declarative procedural memory in 
ACT-R may need to be expanded to include abstract 
representations of statistical regularities and invariances 
sampled from the environment.  

Our ability to match available human performance data 
does not mean that we have proven the ACT-R model is 
necessarily an explanation of the underlying human 
cognitive processes. Humans can make the translation of 
their learning in one environment to another, as 
demonstrated by Patterson, et al. Their participants could 
learn pattern independent of the specific items in the 
sequence. However, the ACT-R model is not able to do that 
because the declarative chunks learned are specific to the 
letters in the stimuli and the knowledge are not 
generalizable. Further work in this area may justify 
extending ACT-R to represent implicit patterns more 
abstractly. 

Conclusions 
This work demonstrates some of the reasons for building 
computational cognitive models. First, we are able to 
replicate human performance on this implicit learning and 
intuitive decision making task. This was accomplished by 
implementing a model of a cognitive learning and 
evaluation process that, while consistent with the ACT-R 
theory of cognition (Anderson, 2007), was inconsistent with 
the intuitive nature of procedural memory in humans. The 
strategy implemented was to build a memory of bigrams of 
sequential letters and then evaluating a test string by 
checking that each bigram had been seen before. However, 
other strategies may be similarly successful. 

Second, cognitive modeling supports formally exploring 
alternative explanations for observed behavior. The model 
could be modified to test whether learning trigrams in the 
training strings could yield similar results. It could also be 
modified to test if recognizing only the first few and/or the 
last few letters, i.e., primacy or recency, can match the 
human participants’ performance. A third alternate strategy 
is simply a voting strategy where recognized bigrams are 
counted and if above a threshold, the model would report a 
match. These strategies have not yet been tested, but with a 
cognitive modeling environment, they can be. 

Third, this work also demonstrates that at least some 
System 1 as well as System 2 forms of cognition can be 
replicated within the current ACT-R architecture, but not 
necessarily all. This demonstration included implicit 
learning and intuitive decision making. From the work of 
Patterson et al. (submitted), there is data on the performance 
of human participants who memorize training strings rather 
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than passively viewing them. This may be a nice example of 
an effortful System 2 learning strategy rather than the far 
less effortful System 1 passive learning strategy. The 
characteristics of each system need more study. To address 
other examples of System 1 cognition, ACT-R may need to 
be extended to include introspective factors representing 
emotional aspects of cognition such as current arousal, 
general mood, and temperament.  

Finally, cognitive modeling advances our understanding 
of cognitive processes by providing a framework to 
represent and explore the explanation of behaviors, such as 
intuitive decision making, that seem to be driven by 
cognition that is “beyond rational”. 
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