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We investigated the time course of associative recognition using
the response signal procedure, whereby a stimulus is presented
and followed after a variable lag by a signal indicating that an
immediate response is required. More specifically, we examined
the effects of associative fan (the number of associations that an
item has with other items in memory) on speed–accuracy tradeoff
functions obtained in a previous response signal experiment
involving briefly studied materials and in a new experiment
involving well-learned materials. High fan lowered asymptotic
accuracy or the rate of rise in accuracy across lags, or both. We
developed an Adaptive Control of Thought-Rational (ACT-R) model
for the response signal procedure to explain these effects. The
model assumes that high fan results in weak associative activation
that slows memory retrieval, thereby decreasing the probability
that retrieval finishes in time and producing a speed–accuracy
tradeoff function. The ACT-R model provided an excellent account
of the data, yielding quantitative fits that were as good as those of
the best descriptive model for response signal data.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Associative recognition—the process of determining whether two items were previously experi-
enced together—is not instantaneous. It takes time to probe memory for associative information
and there are many variables that affect the time and accuracy of retrieval. In the present study we
focus on the effects of associative fan, which refers to the number of associations that an item has with
other items in memory. Past research has shown that the time taken to recognize an item becomes
c. All rights reserved.
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longer as its fan increases, a finding known as the fan effect (Anderson, 1974; for reviews, see
Anderson, 2007; Anderson & Reder, 1999). As we discuss below, the fan effect is thought to be due
to a decrease in associative activation that slows memory retrieval. However, little is known about
the fine-grained temporal structure of the slowed retrieval process.

To address this issue, we investigated fan effects on the time course of associative recognition using
the response signal procedure (Dosher, 1976, 1979; Reed, 1973, 1976; Schouten & Bekker, 1967;
Wickelgren, 1977). In this procedure, a stimulus is presented and followed after a variable lag by a sig-
nal indicating that an immediate response is required. Varying the response signal lag allows one to
map out the time course of processing in the form of a speed–accuracy tradeoff function that shows
how accuracy changes over time. Below, we provide an overview of the response signal procedure and
we review two previous studies involving fan manipulations (Dosher, 1981; Wickelgren & Corbett,
1977). We then report the results of a new response signal experiment involving well-learned mate-
rials in a paradigm that is more typical of fan-effect studies.

At the heart of the present study is the development and evaluation of a formal model of fan effects
on the time course of associative recognition. We describe a model based on the Adaptive Control of
Thought-Rational (ACT-R) theory, which has a long history of success in cognitive psychology (see
Anderson, 2007; Anderson & Lebiere, 1998). More specifically, we show how the extant ACT-R model
of the fan effect, which applies to mean reaction time (RT), can be extended in a straightforward
manner to account for data from the response signal procedure. We demonstrate that our ACT-R mod-
el not only accounts for fan effects on the time course of associative recognition, but it does so with
quantitative fits that are as good as those of the best descriptive model for response signal data.
2. The fan effect and ACT-R

The fan effect is often demonstrated in the fact retrieval paradigm (Anderson, 1974), wherein sub-
jects memorize a set of fictional facts (e.g., person–location pairs):

The hippie is in the park.
The hippie is in the factory.
The detective is in the library.
The tourist is in the factory.

Some items occur in only one fact (e.g., detective occurs in only the third fact) whereas other items
occur in more than one fact (e.g., hippie occurs in the first and the second facts). The number of facts in
which an item occurs is the fan of that item (e.g., hippie has a fan of 2). After memorizing the facts
during a study phase, subjects perform a recognition task during a test phase in which they have to
distinguish between targets (studied facts) and foils (non-studied facts, which are usually rearranged
items from the studied facts; e.g., The detective is in the park).

The main finding from fan manipulations in the fact retrieval paradigm is the fan effect: recognition
takes longer for items with higher fans (e.g., Anderson, 1974; King & Anderson, 1976; Pirolli &
Anderson, 1985; for reviews, see Anderson, 2007; Anderson & Reder, 1999). Recognition accuracy also
tends to be lower for items with higher fans, as reflected in higher false alarm rates but mixed effects
on hit rates (Dyne, Humphreys, Bain, & Pike, 1990; Verde, 2004; see also Postman, 1976). Fan effects
have been observed not only in the retrieval of fictional facts, but also in the retrieval of real-world
knowledge (Lewis & Anderson, 1976), faces (Anderson & Paulson, 1978), and alphabet-arithmetic facts
(White, Cerella, & Hoyer, 2007; Zbrodoff, 1995). In addition, fan effects have been observed not only in
behavioral data (e.g., RT and accuracy), but also in neuroimaging data (e.g., differences in brain acti-
vation; Danker, Gunn, & Anderson, 2008; Sohn, Goode, Stenger, Carter, & Anderson, 2003; Sohn, Goode
et al., 2005). Thus, the fan effect is a robust phenomenon and consistent with the general principle of
cue overload, which is the idea that a retrieval cue becomes less effective as it becomes associated
with more items in memory (Surprenant & Neath, 2009; Watkins & Watkins, 1975).

The fan effect played an important role in the early development of the ACT-R theory of cognition
(Anderson, 1976, 1983). ACT-R is a cognitive architecture in which a production system coordinates
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the activity of modules associated with perception, memory, and action (Anderson, 2007; Anderson,
Bothell, Byrne, et al., 2004a). Research on the fan effect helped shape the structure and functioning
of the declarative memory module in ACT-R, which is a repository of knowledge ranging from fictional
facts learned in an experiment (e.g., The hippie is in the park) to real-world information (e.g., Ottawa is
the capital of Canada). Knowledge is represented in units called chunks, which can be retrieved from
declarative memory and placed in the module’s buffer for use by the rest of the ACT-R system.

The mechanism for retrieving chunks from declarative memory is formally specified in ACT-R
(Anderson, 2007; Anderson & Lebiere, 1998). Each chunk has an activation level in declarative memory
that is given by:
Ai ¼ Bi þ
X

J

WjSji; ð1Þ
where Ai is the total activation of chunk i, Bi is its base-level activation, and the last term is the asso-
ciative activation that the chunk receives from all sources j that are used as retrieval cues. Base-level
activation reflects the frequency and recency with which the chunk has been used in the past, which
provides an indication of how likely the chunk will be needed in the future (Anderson & Schooler,
1991). Associative activation reflects the strength of association between chunks in declarative
memory:
Sji ¼ Sþ ln½PðijjÞ�; ð2aÞ
where Sji is the strength of association between chunks j and i, S is the maximum associative strength,
and P(i|j) reflects learning about the probability that chunk i will be needed when chunk j is used as a
retrieval cue (based on the rational analysis of Anderson, 1990, 1991; see also Anderson & Reder,
1999). If all the chunks associated with chunk j occur with equal probability, which is a reasonable
assumption in many contexts, then P(i|j) = 1/fanj, where fanj is the fan of chunk j. The strength of asso-
ciation between chunks can then be expressed in terms of fan:
Sji ¼ S� lnðfanjÞ: ð2bÞ
Eq. (2b) indicates that as chunk j becomes associated with more chunks (i.e., its fan increases), its
strength of association with each of those chunks decreases. The amount of associative activation for a
chunk (the last term in Eq. (1)) is determined by weighting the strength of association by the amount
of activation allocated to each source j (Wj) used as a retrieval cue for chunk i. Source activation is typ-
ically partitioned equally among all sources and sums to a constant (W), which implies that Wj = W/J,
where J is the number of sources (Anderson, Reder, & Lebiere, 1996). Associative activation is summed
across all sources and added to a chunk’s base-level activation to give its total activation (Eq. (1)).

The total activation of a chunk determines the time taken to retrieve the chunk from declarative
memory:
tretrieve ¼ Fe�A; ð3Þ
where tretrieve is the retrieval time, A is the chunk’s activation, and F is a parameter that scales retrieval
time. Considering Eqs. (1)–(3) together, as the fan of a source increases, its strength of association with
each chunk in declarative memory decreases (Eq. (2b)), resulting in less associative activation and, by
extension, less total activation (Eq. (1)), yielding a longer retrieval time (Eq. (3)).

Eqs. (1)–(3) are the standard equations for declarative memory retrieval in ACT-R and represent the
basic model for the fan effect. To understand how the model produces the fan effect, we return to the
aforementioned fact retrieval paradigm where the recognition task is to decide whether a specific
person–location probe was studied. The person and the location serve as sources of activation for
retrieving facts from declarative memory. Each source provides an amount of associative activation
based on the source activation allocated to it and its strength of association with facts in memory, with
the latter being negatively related to the source’s fan (Eq. (2b)). The associative activation summed
across both sources contributes to the total activation of a specific fact (Eq. (1)) and determines the
time taken to retrieve it (Eq. (3)). The model retrieves the fact that has the greatest total activation
and compares it with the probe. If there is a match, as in the case of a target, then the model makes
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a ‘‘yes’’ response. If there is a mismatch, as in the case of a foil, then the model makes a ‘‘no’’ response.
Thus, the model implements a recall-to-reject strategy for foils, consistent with extant theorizing
about associative recognition (e.g., Malmberg, 2008; Rotello & Heit, 2000; Rotello, Macmillan, & Van
Tassel, 2000).

The fan effect arises in the model from differences in associative activation from probes that have
different fans. For example, from the list of person–location pairs presented earlier, the probe The
detective is in the library involves person and location sources that each have a fan of 1 because each
source occurs in only one fact, whereas the probe The hippie is in the factory involves person and loca-
tion sources that each have a fan of 2 because each source occurs in two facts. We refer to these as Fan
1 and Fan 2 probes, respectively. From Eq. (2b), the strength of association between probe sources and
fact chunks in memory will be greater for the Fan 1 probe than for the Fan 2 probe. Consequently, the
Fan 1 probe will produce more associative activation than will the Fan 2 probe (Eq. (1)), resulting in
more total activation and a shorter retrieval time (Eq. (3)). The difference in retrieval times for probes
that have different fans is the fan effect produced by the model.

The fan effect in the preceding example applies to targets, but the model produces a fan effect for
foils in a similar way. For example, the probe The tourist is in the library is a foil that involves person
and location sources that each have a fan of 1. However, unlike targets, both sources do not provide
activation for the same fact in memory because that specific person–location pair was not studied. In-
stead, tourist is a source of activation for The tourist is in the factory and library is a source of activation
for The detective is in the library. One of these two facts is retrieved and compared with the probe,
yielding a mismatch that is used to reject the foil. In this example, each source has a fan of 1, but
one could construct other foils that have higher fans. Given that retrieval works the same way for foils
as for targets, the model produces a similar fan effect for foils.

The ACT-R model has produced good quantitative fits to empirical fan effects in several studies
(e.g., Anderson, 1974; Anderson & Reder, 1999; Pirolli & Anderson, 1985; for a review, see Anderson,
2007). In addition, the basic principles governing associative activation in the model have been ap-
plied successfully to other cognitive phenomena, including a variety of list memory effects (Anderson,
Bothell, Lebiere, & Matessa, 1998; Anderson & Matessa, 1997) and set-size effects in multiple-choice
behavior (Schneider & Anderson, 2011). However, an important limitation of the model’s account of
the fan effect in past studies is that its predictions applied only to mean RT. Attempts to account
for RT data in greater detail and the relationship between RT and accuracy have been rare (for early
exceptions concerning the latter, see Anderson, 1981; King & Anderson, 1976). The main objective
of the present study was to take a step toward addressing this limitation by extending the model
to account for fan effects on the time course of associative recognition, as reflected in speed–accuracy
tradeoff functions obtained using the response signal procedure.
3. The response signal procedure

It is well known that people can trade speed for accuracy in task performance, slowing down to
make fewer errors and speeding up at the risk of making more errors (Pachella, 1974; Wickelgren,
1977). A popular method for investigating speed–accuracy tradeoff functions in recognition is the
response signal procedure (Dosher, 1976, 1979; Reed, 1973, 1976; Schouten & Bekker, 1967;
Wickelgren, 1977). In this procedure, a stimulus is presented for a yes–no recognition task and
followed after a variable lag by a signal indicating that an immediate response is required (usually
within 200–300 ms). The main dependent variable is accuracy as a function of the time available
for task processing. Accuracy is often expressed as a d0 measure to control for response bias and plot-
ted against total processing time (lag + mean RT, where RT is defined as the time from response signal
onset to the response). Varying the response signal lag allows one to map out the time course of
processing in the form of a speed–accuracy tradeoff function.

An idealized example of a speed–accuracy tradeoff function from the response signal procedure is
illustrated in Fig. 1. At very short lags, accuracy is at chance because not enough time has elapsed for
task processing to yield any useful response information. At very long lags, accuracy is at a high
asymptote because enough time has elapsed for task processing to finish, often resulting in selection
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of the correct response. At intermediate lags, there is an intercept time at which accuracy begins to
rise above chance, then accuracy continues to grow in a negatively accelerated manner until it reaches
asymptote (see Fig. 1). This accuracy data pattern is often described by a shifted exponential function
(SEF):
d0ðtÞ ¼ kf1� exp½�bðt � dÞ�g; if t > d; else 0; ð4Þ
where k is the asymptote for accuracy, d is the intercept time marking the transition from chance to
above-chance accuracy, and b is the rate at which accuracy rises from chance to asymptote. The time
variable t equals lag + mean RT to address the likely possibility that task processing does not stop pre-
cisely at the time the lag elapses and to account for any changes in RT as a function of lag. Indeed, RT
typically becomes shorter as the lag becomes longer.

The SEF has been shown to provide a very good characterization of speed–accuracy tradeoff func-
tions obtained using the response signal procedure in several studies (e.g., Dosher, 1976, 1981; Gronl-
und & Ratcliff, 1989; Hintzman, Caulton, & Levitin, 1998; Hintzman & Curran, 1994, 1997; McElree &
Dosher, 1989; Wickelgren & Corbett, 1977; Wickelgren, Corbett, & Dosher, 1980). An alternative to Eq.
(4) that yields similar fits to response signal data is an expression for monotonic growth to a limit de-
rived from the diffusion model (see Ratcliff, 1978, 1980; for applications, see Dosher, 1981, 1984b;
Gronlund & Ratcliff, 1989; McElree & Dosher, 1989; Ratcliff & McKoon, 1982; Rotello & Heit, 2000).
Typically, the SEF is fit to the speed–accuracy tradeoff functions associated with different experimen-
tal conditions, allowing one or more of its parameters to vary across conditions. For example, if there
are two conditions, then there are eight possible SEF variants based on whether each parameter (inter-
cept, rate, or asymptote) is the same or different across conditions. Each SEF variant is fit to the data
and model comparison techniques are used to determine which variant provides the best fit without
excessive model complexity.

The parameters of the best SEF variant are often interpreted in terms of memory strength and re-
trieval dynamics. Differences in asymptote among conditions are thought to reflect differences in
memory strength, such that a condition in which items are strongly represented in memory (e.g., as
a consequence of extensive learning) will have a higher asymptote than a condition in which items
are weakly represented. Differences in intercept and rate among conditions are thought to reflect
retrieval dynamics—the nature of the process by which items are retrieved from memory. A condition
with a shorter intercept (reflecting earlier onset of retrieval) or a higher rate (reflecting faster speed of
retrieval) than another condition is considered to have faster retrieval dynamics.

The response signal procedure and fits of the SEF to speed–accuracy tradeoff functions have been
used to investigate fan effects on the time course of associative recognition in two previous studies
(Dosher, 1981; Wickelgren & Corbett, 1977). In Wickelgren and Corbett’s experiment, subjects studied
lists of words organized into pairs and triples. Pairs consisted of two words (denoted here as A and B),



Fig. 2. Speed–accuracy tradeoff functions for the Fan 1 and Fan 2 conditions in Wickelgren and Corbett (1977). Points denote
data, solid lines denote ACT-R model predictions, and dashed lines denote shifted exponential function (SEF) predictions.
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with A appearing on the left and B appearing on the right. Given that each word was associated with
only one other word, pairs can be classified as Fan 1 items. Triples consisted of three words (denoted
here as A, B, and C), with A appearing on the left and B and C appearing on the right. Given that each
word was associated with two other words, triples can be classified as Fan 2 items.1 Each pair or triple
was presented for 3 s during a study phase, then associative recognition judgments were made in a test
phase involving the response signal procedure.

The empirical speed–accuracy tradeoff functions from Wickelgren and Corbett (1977), averaged
across subjects, are presented as points in Fig. 2. It is clear that Fan 1 items have higher asymptotic
accuracy than do Fan 2 items, but it is less obvious whether there are rate or intercept differences be-
tween fan conditions. The solid and dashed lines in Fig. 2 represent the mean predictions from indi-
vidual-subject fits of an ACT-R model and the best SEF variant, respectively, both of which we discuss
in detail later. At this point, we simply note that the best SEF variant is one in which the asymptote
and the intercept (but not the rate) differ between fan conditions, consistent with what Wickelgren
and Corbett found with their fits. However, a very similar fit is obtained when the asymptote and
the rate (but not the intercept) differ between fan conditions.

Wickelgren and Corbett’s (1977) basic findings were replicated by Dosher (1981). In Dosher’s
experiment, subjects studied a list of three pairs of words (denoted here by letters) for a study–test
sequence involving one of two conditions. In the independent condition, the pairs had no words in
common (e.g., A–B, D–E, and F–C), which meant that each word had a fan of 1. In the interference con-
dition, the first and third pairs shared a word (e.g., A–B, D–E, and A–C), which meant that the A word
had a fan of 2. Each pair was presented for 3 s during a study phase, then associative recognition judg-
ments were made in a test phase involving the response signal procedure. The critical results from
Dosher concern the speed–accuracy tradeoff functions for Fan 1 and Fan 2 items in the independent
and interference conditions, respectively. To avoid redundancy with our presentation of Wickelgren
and Corbett’s results, we simply note that Dosher found that the best SEF variant for her data was
one in which the asymptote and either the rate or the intercept (but not both) differed between fan
conditions, mirroring the findings of Wickelgren and Corbett.

The results from Wickelgren and Corbett (1977) and Dosher (1981) concerning fan effects on the
time course of associative recognition are generally consistent with the standard ACT-R model of
the fan effect. A difference in asymptote between fan conditions suggests a difference in memory
strength, which is concordant with the ACT-R interpretation of fan affecting the strength of association
between items in memory. A small difference in intercept or rate between fan conditions suggests a
1 Wickelgren and Corbett (1977) instructed subjects that they would never be tested on the B–C association, but such an
association was likely formed to some degree during the study phase.
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modest effect of fan on retrieval dynamics. Given that differences in strength of association affect the
time for declarative memory retrieval in ACT-R, a fan effect on retrieval dynamics is consistent with
the theory. However, it is an open issue as to whether ACT-R can account for the quantitative (not just
qualitative) pattern of response signal data observed in previous studies. Before we address this issue,
we report the results of a new experiment in which response signal data were collected in the context
of the fact retrieval paradigm with well-learned materials.
4. A new response signal experiment on the fan effect

One possible reason for the modest effects of fan on retrieval dynamics in the studies by
Wickelgren and Corbett (1977) and Dosher (1981) is that their experiments involved brief study
phases in which there was a limited opportunity to learn each study list (i.e., each item on a list
was presented just once for only 3 s). A practical advantage of the brief study phase is that accuracy
was kept below ceiling, making it easier to detect differences in asymptotic accuracy and facilitating
the calculation of d0 (which poses definitional problems when accuracy is perfect). However, a poten-
tial disadvantage is that the fan manipulation may not have been very strong because the represen-
tations of items in memory and the associations between them may have been somewhat weak
due to limited learning. This raises the issue of whether the results of these previous studies can be
replicated with well-learned materials that may elicit stronger fan effects.

To address this issue, we conducted a multi-session response signal experiment involving the fact
retrieval paradigm. In a study phase at the start of the first session, subjects were presented with a list
of person–location facts, half with a fan of 1 and the other half with a fan of 2. Subjects then completed
a cued recall test in which they answered questions of the form Where is the person? and Who is in the
location?. Each question had to be answered correctly three times, thereby ensuring that the facts were
well-learned (Rawson & Dunlosky, 2011). In subsequent sessions there was an abbreviated study
phase in which the cued recall test involved answering each question correctly once. Following the
study phase, subjects completed a recognition test phase involving the response signal procedure. A
person–location probe was presented on each trial and subjects had to distinguish between targets
(studied facts) and foils (non-studied facts, which were rearranged persons and locations that main-
tained their fan status). The test probe was followed after one of eight lags by a response signal. Thus,
our experiment was similar in many respects to the experiments of Wickelgren and Corbett (1977)
and Dosher (1981), with the main difference being a more extensive study phase designed to promote
better learning of the materials.

4.1. Method

4.1.1. Subjects
Ten individuals from the Carnegie Mellon University community each participated in five sessions

for monetary compensation. There was one session per day for five consecutive days. The first session
was 2 h in duration and subsequent sessions were each 1 h. Subjects were paid at a rate of $10/h, plus
a bonus based on their performance (see below; the mean bonus payment was $4 per session).

4.1.2. Apparatus
The experiment was conducted using Tscope (Stevens, Lammertyn, Verbruggen, & Vandierendonck,

2006) on computers that displayed stimuli on monitors and registered responses from QWERTY
keyboards. Text was displayed onscreen in white 14-point Courier font on a black background. Audi-
tory response signals were presented over headphones.

4.1.3. Materials
Each study fact was of the form The person is in the location. Study facts were created from lists of 24

persons and 24 locations (see Appendix A). Word length was 3–9 letters (M = 6.25, SD = 1.59) for per-
sons and 4–10 letters (M = 6.25, SD = 1.39) for locations. Each subject received a random assignment of
persons and locations to a study list of 32 person–location facts. Half of the facts had a fan of 1 (i.e., the
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person and the location each occurred in only one fact) and the other half had a fan of 2 (i.e., the per-
son and the location each occurred in two different facts). The facts on the study list were the targets
in the recognition test phase of the experiment. The foils in the test phase were drawn from a list of 32
non-studied facts created by rearranging persons and locations from studied facts such that their fan
status was maintained (e.g., a Fan 2 foil was created using a person and a location from different Fan 2
studied facts).

4.1.4. Procedure
Subjects were seated at computers in private testing rooms after providing informed consent. Writ-

ten instructions were presented to subjects and explained by the experimenter during the first ses-
sion. The instructions were available for subjects to review in subsequent sessions if necessary.
Each session was divided into a study phase and a test phase.

In the study phase for the first session, the study list of 32 facts was presented. Each fact appeared
in the center of the screen for 5000 ms and was followed by a 500-ms blank screen. Subjects were in-
structed to read each fact and make an initial effort to memorize it. After all the facts were presented,
subjects completed a cued recall test in which they answered questions of the form Where is the per-
son? and Who is in the location?. There were 24 person questions and 24 location questions represent-
ing all studied items (see Appendix A). On each trial, a single question appeared in the center of the
screen with an answer prompt below it. Subjects had to type the appropriate answer to the question
based on the facts in the study list (e.g., when asked about a person, they had to recall the location(s)
the person was in). Questions about Fan 1 and Fan 2 facts required one- and two-word answers,
respectively. Multiple words were separated by commas and the Enter key was pressed to submit
the answer. There was no time limit for giving the answer. If the answer was correct, there was no
feedback and the next question appeared after a 500-ms blank screen. If the answer was incorrect,
the word INCORRECT and the correct answer were displayed for 2500 ms, followed by the 500-ms
blank screen.

An answer to a question about a Fan 1 fact was judged as incorrect if: (a) the answer was blank; (b)
a single word was submitted, but it did not match the studied word; or (c) multiple words were sub-
mitted, even if one of them matched the studied word. An answer to a question about a Fan 2 fact was
judged as incorrect if: (a) the answer was blank; (b) a single word was submitted, even if it matched
one of the studied words; (c) two words were submitted, but one or both did not match the studied
words; or (d) more than two words were submitted, even if one or two of them matched the studied
words. The words for a Fan 2 answer could be entered in any order. Subjects were instructed to submit
a blank answer if they could not recall anything. As noted above, they would then receive the correct
answer as feedback, which served as a learning opportunity. They were also instructed to use any
mnemonics or mental strategies that might help them memorize the facts (e.g., forming a semantic
association between the person and the location in a fact).

The questions were presented in random order according to a dropout procedure: If a question was
answered correctly, it was dropped from the list; if a question was answered incorrectly, it was pre-
sented again later, after all the other questions had been asked. A block of trials ended when each of
the 48 questions had been answered correctly once. Subjects completed three blocks of trials in this
manner; thus, each question was answered correctly three times by the end of the study phase of the
first session. The remaining sessions involved an abbreviated study phase in which the initial presen-
tation of the study list was omitted and the cued recall test involved only one block of trials, which
served as an assessment of subjects’ memory for the study list from one session to the next.

In the test phase, subjects performed a recognition task in blocks of trials involving the response
signal procedure. Each trial began with a fixation cross presented in the center of the screen for
1000 ms, after which time the cross disappeared and a test probe of the form Is the person in the loca-
tion? was presented in the center of the screen. The test probe was followed after one of eight lags
(200, 500, 800, 1100, 1400, 1800, 2400, or 3000 ms) by a response signal consisting of an 800 Hz tone
for 50 ms and offset of the test probe (resulting in a blank screen). Subjects were instructed to make a
yes–no recognition response within 300 ms after the tone by pressing either the ‘‘/’’ key to respond
‘‘yes’’ or the ‘‘Z’’ key to respond ‘‘no’’ with their right or left index fingers, respectively. If they had
determined their response before hearing the tone (which was likely at the longest lags), they were
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instructed to wait until the tone and then make the response immediately. If they had not determined
their response by the time of the tone (which was likely at the shortest lags), they were instructed to
immediately make whichever response they thought was most likely. It was emphasized that they
should always try to respond within 300 ms after the tone.

After making their response, subjects received feedback about their trial performance for 1500 ms,
followed by a 500-ms blank screen before the next trial commenced. There were three pieces of feed-
back. First, subjects were informed as to whether their response was correct or incorrect. Second, they
were informed of their RT from response signal onset. Third, they received a message characterizing
their performance. If they responded before the response signal, the message was TOO EARLY. If they
responded longer than 300 ms after the response signal, the message was TOO LATE. If they responded
within 300 ms after the response signal and correctly, the message was BONUS. If they responded
within 300 ms after the response signal but incorrectly, there was no message. The BONUS message
referred to a bonus system designed to motivate compliance with the response signal procedure
and accurate performance. A correct response within 300 ms after the response signal earned one bo-
nus point. Bonus points were accumulated over trials and converted to bonus pay at the end of the
experiment (1 bonus point = 1 cent).

The test phase was divided into nine blocks, with 64 trials per block. At the start of each block, sub-
jects were informed of the number of bonus points earned in the previous block and their cumulative
number of bonus points earned in the session. The 64 trials in each block consisted of the 32 targets
and 32 foils described earlier, presented in random order subject to the constraint that no person or
location was repeated across consecutive trials. The eight response signal lags were randomly as-
signed to probes such that each lag occurred twice with each combination of probe (target or foil)
and fan (1 or 2). Thus, each condition in the full 2 (probe) � 2 (fan) � 8 (lag) experimental design
was represented twice per block, giving a total of 18 observations per condition in each session and
90 observations per condition in the entire experiment. Excluding the first session and the first block
of each subsequent session as practice, there were 64 observations per condition for each subject’s
experimental data.
4.2. Results and discussion

4.2.1. Study phase
The mean frequency with which questions about Fan 1 and Fan 2 facts were asked during each

block of the cued recall test in each session is provided in Table 1. Question frequency can be inter-
preted as a measure of the difficulty in learning the facts (with higher frequency indicating greater dif-
ficulty). The minimum possible frequency was equal to 1 because each question had to be answered
correctly at least once per block. In the first session, subjects initially had more difficulty learning Fan
2 facts than Fan 1 facts, but the difference in frequency essentially disappeared by the second and
third blocks, suggesting that all the facts had been memorized equally well by the end of the session.
In subsequent sessions, question frequency was at or near the minimum of 1 and approximately equal
for Fan 1 and Fan 2 facts, suggesting that subjects maintained good memory for the facts from one ses-
sion to the next.

These observations are supported by the results of two repeated-measures analyses of variance
(ANOVAs). First, a 3 (block) � 2 (fan) ANOVA on question frequency for the first session revealed a sig-
nificant main effect of block, Fð2;18Þ ¼ 32:55; MSE ¼ 0:42; p < :001;g2

p ¼ :78, a significant main ef-
fect of fan, Fð1;9Þ ¼ 25:45; MSE ¼ 0:21; p < :01; g2

p ¼ :74, and a significant interaction between
Table 1
Mean question frequency in the study phase of our experiment.

Question Session 1 Session 2 Session 3 Session 4 Session 5

Block 1 Block 2 Block 3

Fan 1 1.8 1.0 1.0 1.1 1.0 1.0 1.0
Fan 2 3.3 1.2 1.1 1.5 1.2 1.0 1.0
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block and fan, Fð2;18Þ ¼ 15:29; MSE ¼ 0:21; p < :001; g2
p ¼ :63, reflecting the decrease in the differ-

ence in question frequency between fan conditions across blocks. Second, a 5 (session) � 2 (fan)
ANOVA on question frequency for the third block of the first session and the blocks of all subsequent
sessions revealed no significant effects, all ps > .1, reflecting the stable, near-minimum question
frequency across sessions.
4.2.2. Test phase
The data from the first session and the first block of each subsequent session were excluded as

practice. Trials with RTs shorter than 100 ms or longer than 350 ms were also excluded from all anal-
yses (following Hintzman & Curran, 1994, 1997; Hintzman et al., 1998; Rotello & Heit, 2000) because
the shorter RTs likely reflect anticipations and the longer RTs may reflect substantial post-lag task pro-
cessing (indicating non-compliance with the instructions to respond immediately after the response
signal). Only 5.7% of trials were excluded for not meeting the RT criteria, indicating that subjects were
generally compliant with the demands of the response signal procedure. We present the group data in
the figures below and we provide the individual-subject data in Appendix B.

Mean accuracy (proportion correct) is plotted as a function of lag + mean RT in Fig. 3A for each
combination of probe (target or foil) and fan (1 or 2). At the shortest lag, accuracy was near chance,
but it increased rapidly with more processing time until it was at or near ceiling at the longest lag
in all conditions. Accuracy was slightly higher for foils than for targets at the shortest lag, reflecting
A

B

Fig. 3. Data from our experiment as a function of probe (target or foil) and fan (1 or 2). A: Accuracy data. B: Reaction time data.



Fig. 4. Speed–accuracy tradeoff functions for the Fan 1 and Fan 2 conditions in our experiment. Points denote data, solid lines
denote ACT-R model predictions, and dashed lines denote shifted exponential function (SEF) predictions.

A

B

Fig. 5. Reaction time data (points) and ACT-R model predictions (solid lines) for our experiment. A: Reaction time for the Fan 1
and Fan 2 conditions. B: Fan effect.
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an initial bias to respond ‘‘no,’’ but the difference disappeared at later lags. Accuracy was higher for Fan
1 items than for Fan 2 items, predominantly at the intermediate lags, although there were small
numerical differences at the longest lags. These results represent evidence of a fan effect on the time
course of associative recognition.

These observations are supported by the results of a 2 (probe) � 2 (fan) � 8 (lag) repeated-
measures ANOVA on accuracy (proportion correct). There was a significant main effect of fan,
Fð1;9Þ ¼ 61:20; MSE ¼ 0:004; p < :001; g2

p ¼ :87, a significant main effect of lag, Fð7;63Þ ¼
180:01; MSE ¼ 0:007; p < :001; g2

p ¼ :95, and a significant interaction between fan and lag,
Fð7;63Þ ¼ 7:28; MSE ¼ 0:003; p < :001; g2

p ¼ :45. There were no significant effects involving probe
(target versus foil), all ps > .2.

To illustrate the fan effect in an alternative way, mean accuracy is plotted in terms of d0, as a func-
tion of lag + mean RT, as points in Fig. 4 for each fan condition (d0 was calculated separately for each
individual subject, then averaged across subjects). To permit calculation of d0 when accuracy was per-
fect, the raw accuracy values (proportion correct) were adjusted by adding 0.5 to the number of ‘‘yes’’
responses and dividing by the total number of responses +1.0 (Hintzman & Curran, 1994, 1997; Rotello
& Heit, 2000; Snodgrass & Corwin, 1988). Fig. 4 shows there were typical speed–accuracy tradeoff
functions in both fan conditions, with what appears to be a higher rate of rise to asymptote for Fan
1 items than for Fan 2 items. There was also a difference in d0 at the longest lag for Fan 1 and 2 items,
but this difference should be interpreted with caution because d0 still appears to be rising at the
longest lag in the Fan 2 condition, suggesting that the asymptote had not yet been reached. Moreover,
the model fits we present later do not provide evidence in favor of different asymptotes.

Mean RT is plotted as a function of lag in Fig. 3B for each combination of probe (target or foil) and
fan (1 or 2). The most prominent effect was that RT became shorter as the lag became longer, which is
typical of response signal data. However, there were also differences in RT between the fan conditions
that are not particularly evident in Fig. 3B. To make the fan differences clearer, Fig. 5A shows the data
collapsed over targets and foils, and Fig. 5B shows the fan effect (the difference in RT between Fan 2
and Fan 1 items) as a function of lag. There was a small but statistically significant fan effect of 3 ms
and it varied across lags, being almost non-existent at the shortest lag, emerging at the second-
shortest lag, and then gradually decreasing back to zero by the longest lags (see Fig. 5B). Thus, our
experiment revealed a fan effect not only on accuracy, but also on the lag function for RT.

These observations are supported by the results of a 2 (probe) � 2 (fan) � 8 (lag) repeated-
measures ANOVA on mean RT. There was a significant main effect of fan, Fð1;9Þ ¼ 66:18; MSE ¼
9:9; p < :001; g2

p ¼ :88, reflecting the 3-ms fan effect. Given that RTs in the response signal procedure
are very short and have low variance, it is not unusual for small differences between conditions to be
statistically significant (e.g., see Hintzman et al., 1998). There was also a significant main effect of lag,
Fð7;63Þ ¼ 172:65; MSE ¼ 86:2; p < :001; g2

p ¼ :95, and a significant interaction between fan and lag,
Fð7;63Þ ¼ 5:50; MSE ¼ 19:2; p < :001; g2

p ¼ :38, reflecting the modulation of the fan effect across
lags. The only significant effect involving probe (target versus foil) was an interaction between probe
and lag, Fð7;63Þ ¼ 4:36; MSE ¼ 19:5; p < :01; g2

p ¼ :33.
4.2.3. Summary
The results of our experiment complement those of Wickelgren and Corbett (1977) and Dosher

(1981) by revealing fan effects on the time course of associative recognition, but with materials that
were well-learned instead of briefly studied. The data from the study phase support the conclusion
that all the studied facts were represented strongly in memory by the end of the cued recall test in
the first session and in subsequent sessions (see Table 1). The data from the test phase indicate that
our materials and procedure yielded typical speed–accuracy tradeoff functions, with fan primarily
affecting the rate of rise to asymptotic accuracy (see Figs. 3A and 4). In addition, we found that RT be-
came shorter as the lag become longer (see Fig. 3B) and there was a small fan effect on RT that varied
across lags (see Fig. 5). Collectively, the results constitute an important challenge for the ACT-R model
of the fan effect, which has not addressed response signal data. In the next section, we present an
extension of the ACT-R model that overcomes this limitation and we assess how well it accounts
for speed–accuracy tradeoff functions compared with variants of the SEF.
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5. An ACT-R model for the response signal procedure

5.1. Model description

We extended the standard ACT-R model of the fan effect in a straightforward manner to account for
data from the response signal procedure. Memory retrieval is still a central process in the model, but
other processes involved in task performance need to be included to generate a time course for asso-
ciative recognition. The four kinds of processes in the model—encoding, retrieval, guessing, and
responding—are summarized in Table 2 and described below in the context of the fact retrieval par-
adigm. To aid in the understanding of when each process is active during a trial, Fig. 6A and B
illustrates the organization of the model’s processing stages at long and short lags, respectively.

5.1.1. Encoding
There are two things that need to be encoded on every trial: the probe stimulus and the response

signal. Stimulus encoding begins at stimulus onset (see Fig. 6) and results in a representation of the
probe. The time to encode the stimulus, tstim, is a free parameter. Response signal encoding begins
at response signal onset (see Fig. 6) and results in a representation of the signal. Given that the re-
sponse signal is typically a simple tone, we set the time to encode the response signal, tsignal, equal
to 50 ms, which is the default time for simple tone detection in ACT-R (based on work by Meyer &
Kieras, 1997).

5.1.2. Retrieval
Memory retrieval involves using the encoded stimulus to probe declarative memory and retrieve a

fact. Targets and foils retrieve matching and nonmatching studied facts, respectively, with a match
resulting in selection of a ‘‘yes’’ response and a nonmatch resulting in selection of a ‘‘no’’ response.
For simplicity, we assume that retrieval is an error-free process (e.g., a target will never retrieve an
alternative studied fact), although there are variants of the retrieval process in ACT-R that allow errors
to arise from partial matching (Anderson & Lebiere, 1998). Consequently, if retrieval has time to finish,
then the model will always produce a correct response.

Retrieval begins as soon as stimulus encoding has finished (see Fig. 6) and retrieval time, tretrieve, is
determined by Eq. (3), which we repeat here:
Table 2
Summa

Proc

Enco
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Gues
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a Den
tretrieve ¼ Fe�A: ð3Þ
Recall that the activation of fact i (Ai) in memory is determined by its base-level activation (Bi) and
associative activation (see Eq. (1)). Given that facts are typically tested equally often and practice ef-
fects are generally not a concern, we assume equal base-level activation for all facts and set Bi = 0. As
described earlier, associative activation varies as a function of the total source activation (W), the max-
imum associative strength (S), and the fan from the person and location sources used as retrieval cues
ry of ACT-R model parameters.

ess Parameter Value Description

ding tstim –a Stimulus encoding time
tsignal 50 ms Response signal encoding time

ieval W 1.0 Total source activation
S 1.5 Maximum associative strength
F –a Scales retrieval time
s –a Controls the variability of activation noise
s –a or �1 Activation threshold

sing tguess 50 ms Guessing time
bias 0.5 Bias to guess ‘‘yes’’

onding trespx –a Response execution time

otes free parameters.



Fig. 6. Schematic illustration of the organization of the ACT-R model’s processing stages at long and short lags (panels A and B,
respectively).
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(see Eqs. (1) and (2b)). We set W = 1.0, which is the default value in ACT-R (Anderson et al., 1996), and
we set S = 1.5, which is an arbitrary value that we have used previously (Schneider & Anderson, 2011).
We fixed S because it trades off with F, which is a free parameter that scales retrieval time in Eq. (3).

A critical feature of the response signal procedure is that there is limited time available for retrieval
(determined by the response signal lag). If there were a constant retrieval time in the model, then its
resulting time-course function would be a step function: Retrieval would never have time to finish at
very short lags, resulting in low accuracy, and it would always finish at very long lags, resulting in high
accuracy. An abrupt shift from low to high accuracy would occur at some intermediate lag where re-
trieval time equaled the time available for retrieval. However, it is clear from response signal data that
empirical time-course functions are not step functions (e.g., see Figs. 2 and 4).2

For the model to produce a more appropriate time-course function, there has to be some variability
in retrieval time. Variability can be introduced by adding noise to the activation of facts in memory.
The default in ACT-R is for activation noise to be distributed logistically (Anderson, 2007) with a mean
equal to 0 and variability controlled by a free parameter s. In this situation, retrieval times will follow a
log–logistic distribution (Schneider & Anderson, 2011). Having a distribution of retrieval times means
that, for a given response signal lag, there will be some probability that retrieval has finished. To deter-
mine this probability, one must first determine the time available for retrieval. It is not simply equal to
the lag because some time is needed to encode the probe stimulus and the response signal. As men-
tioned earlier, we assume that retrieval begins when stimulus encoding has finished (see Fig. 6), so
2 The curved time-course functions for the group data in Figs. 2 and 4 are not artifacts from averaging individual-subject data.
No subject in Wickelgren and Corbett’s (1977) experiment or in our experiment had a data pattern that resembled a step function
(see Appendix B for individual-subject data).
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stimulus encoding time must be subtracted from the lag. We also assume that retrieval can go on in
parallel with response signal encoding (tone detection) because the two processes involve different
modules in ACT-R (the declarative memory module and the auditory module, respectively). Conse-
quently, response signal encoding time can be added to the lag. The total time available for retrieval,
tavail, can be expressed as (see Fig. 6):
tavail ¼ lag þ tsignal � tstim: ð5Þ
Knowing the time available for retrieval and that retrieval time follows a log–logistic distribution,
one can determine the probability that retrieval has finished in the time available, pretrieve, from the
cumulative distribution function (CDF) of the log–logistic distribution:
pretrieve ¼
1

1þ ðtretrieve=tavailÞ1=s ; if tavail > 0; else 0: ð6Þ
Examples of the log–logistic CDF (with tretrieve = 500 ms and s = 0.2 or 0.4) are shown in Fig. 7. Com-
paring the two solid curves, one can see how the retrieval function becomes closer to a step function
as s decreases (i.e., as the noise becomes less variable). The crossing point of the two curves—which is
where the step would occur for a step function—corresponds to the median of the retrieval time dis-
tribution, which is equal to tretrieve (Eq. (3)). The two sets of broken lines show how the probability of
retrieval changes as a function of the time available for retrieval in the context of a specific retrieval
time distribution (indicated by the solid black curve). When tavail = 700 ms (dashed line), pretrieve = .70,
meaning that retrieval would not finish in the time available on 30% of trials (in which case the model
resorts to guessing, as described below). Assuming that stimulus encoding time and response signal
encoding time do not vary with lag, then lengthening the lag by 300 ms results in tavail = 1000 ms (dot-
ted line) and pretrieve = .85, showing that retrieval is more likely to finish at longer lags. As noted earlier,
we assume that retrieval is an error-free process; therefore, a higher probability of retrieval results in a
higher level of accuracy (an equation for the model’s accuracy that involves pretrieve is presented be-
low). Moreover, retrieval is a discrete, all-or-none process because it either finishes or does not finish
in the time available. There is no partial information from an unfinished retrieval process to guide the
model’s selection of a response. We discuss the issue of retrieval being a discrete (as opposed to a con-
tinuous) process and the absence of partial information further when we compare our model with
other models of response signal data in Section 6.

The preceding discussion is based on the assumption that the lag is used to generate an external
deadline (tavail) for the retrieval process (Eq. (5)). As a result, given a long enough lag, retrieval will al-
ways finish and accuracy will be perfect. This might be reasonable for a situation in which facts are
well-learned (e.g., our experiment) and subjects know that a fact can ultimately be retrieved if there
Fig. 7. Examples of the log–logistic cumulative distribution function for two levels of activation noise (s).
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is enough time to do so. However, it is less reasonable for a situation in which facts are briefly studied
(e.g., Wickelgren & Corbett, 1977) and, as a result, have low activation in memory and may take a long
time to retrieve. If subjects have some perception of the degree to which facts are active in memory,
then they may set an internal deadline to limit the time spent on futile attempts to retrieve facts with
low activation that might ultimately never be retrieved. If an internal deadline is set for the retrieval
process, then retrieval fails if it is taking too long. A standard aspect of the retrieval process in ACT-R is
that retrieval fails if it takes longer than an internal deadline, tfailure, given by:
tfailure ¼ Fe�s; ð7Þ
which is a variant of Eq. (3) in which activation (A) is replaced by an activation threshold (s). To deter-
mine the probability that retrieval finishes before the failure time, one simply replaces tavail with tfailure

in Eq. (6). The two sets of broken lines in Fig. 7 can then be reinterpreted as illustrating the effect of
varying the threshold, with a high threshold (dashed line) resulting in a shorter failure time and a low-
er probability of retrieval than a low threshold (dotted line).

If the internal and external deadlines represented by tfailure and tavail, respectively, are both present
during a trial, then the probability of retrieval is determined by whichever deadline is shorter. For
example, if the dashed line in Fig. 7 is associated with tfailure and the dotted line is associated with tavail

(i.e., tfailure < tavail), then pretrieve is determined by tfailure and equals .70. Similar logic applies when
tavail < tfailure. Critically, when tfailure falls within the range of available times bounded by the shortest
and longest lags (i.e., it is between the shortest and the longest values of tavail), it determines the
asymptotic level of accuracy achieved by the model. Continuing with the example of the dashed line
in Fig. 7 being associated with tfailure, the mean accuracy of the retrieval process would never exceed
.70—even at the longest lags—because failure time is not affected by lag (compare Eq. (7) with Eq. (5)).
For modeling asymptotic levels of accuracy that are below ceiling, s is a free parameter. For modeling
asymptotic levels of accuracy that are at or near ceiling, we show in our model fits below that one can
justify setting s = �1, which is similar to having no internal deadline or, more precisely, an infinitely
long internal deadline that would never be reached, which is functionally equivalent to having no
internal deadline. More generally, one could set s equal to any value that makes the internal deadline
exceed the longest external deadline. In this situation, accuracy will be perfect whenever tavail is long
enough for retrieval to finish.

At very short lags there may not be any time available for retrieval (i.e., tavail 6 0) because stimulus
encoding has not finished. For example, the shortest lag in Wickelgren and Corbett’s (1977) experi-
ment and in our experiment was 200 ms, which is most likely insufficient for stimulus encoding. In-
deed, in a fan experiment involving associative recognition of person–location facts in which eye
movements were monitored, Anderson, Bothell, and Douglass (2004b) found that mean first-gaze
duration for the probe stimulus was 400 ms, suggesting that it may have taken that long to encode
the stimulus. In our model, if stimulus encoding has not finished then retrieval is not initiated; instead,
the model resorts to guessing. This is true even in the case where there may be sufficient time to en-
code one part of the stimulus (e.g., the person) but not the other (e.g., the location). Anderson et al.
found no evidence that retrieval began with the first gaze, suggesting that both parts of the stimulus
have to be encoded before retrieval is initiated. This seems sensible because even if retrieval were ini-
tiated by part of the stimulus (e.g., the person) and was able to finish in time, it would not be possible
to respond accurately because the retrieved fact (e.g., a person–location pair) would match the en-
coded part of the stimulus regardless of whether the stimulus was a target or a rearranged foil (i.e.,
item recognition alone is insufficient). Accurate responding is possible only when the retrieved fact
is matched against the entire stimulus, and for that to happen, both parts of the stimulus have to
be encoded.
5.1.3. Guessing
If the stimulus has been encoded and retrieval has enough time to finish (i.e., tretrieve is shorter than

the shortest deadline represented by tfailure or tavail), then the model waits until the response signal is
encoded before it executes a response based on the match or mismatch between the retrieved fact and
the probe (see Fig. 6A). If retrieval is not initiated because the stimulus has not been encoded or it is
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initiated but does not finish because it either fails (i.e., it reaches the internal deadline represented by
tfailure) or there is not enough time available (i.e., it reaches the external deadline represented by tavail),
then the response is determined by guessing. Guessing starts after the response signal has been en-
coded and occurs only if retrieval has not finished or been initiated (see Fig. 6B). It does not occur
in parallel with retrieval (cf. Meyer, Irwin, Osman, & Kounios, 1988) and the response is not deter-
mined by retrieval even if retrieval happens to finish while guessing is in progress. The contingency
of guessing on unfinished retrieval is based on the assumption that subjects do not guess unless
the need arises.

We assume a simple guessing process whereby the model guesses ‘‘yes’’ with a probability equal to
bias and ‘‘no’’ with a probability equal to 1 � bias. For predicting d0, which controls for response bias,
as a simplifying assumption we set bias = 0.5, although it would be a free parameter when predicting
other accuracy measures such as proportion correct for targets and for foils. Note that the bias param-
eter is fixed across lags and the guessing process does not change as a function of lag because an unfin-
ished retrieval process provides no partial information. Given that retrieval is error-free, guessing is
the sole source of errors in the model. For simplicity, we set the time to take a guess, tguess, equal to
50 ms, which is the default time for firing a single production (condition–action rule) in ACT-R
(Anderson, 2007). Thus, our model implements a guessing process (cf. Ollman, 1966; Yellott, 1967,
1971) that is triggered by the response signal and contingent on unfinished retrieval.

5.1.4. Responding
Once a response has been determined either by retrieval or by guessing, it is executed (see Fig. 6).

For simplicity, we assume that response execution is an error-free process. The time to execute a
response, trespx, is a free parameter.

5.1.5. Predictions
To understand how the model predicts speed–accuracy tradeoff functions, consider what happens

at long and short lags. At a long lag (see Fig. 6A), stimulus encoding and memory retrieval both have
time to finish before the lag elapses. Consequently, the model has determined the correct response
during the lag and simply waits until the response signal is encoded, then the response is executed.
Accuracy is high because retrieval is an error-free process. At a short lag (see Fig. 6B), there may be
insufficient time available to finish stimulus encoding and memory retrieval. For the example in
Fig. 6B, retrieval is only about halfway done by the time the response signal is encoded. Given that
retrieval is unfinished, the model resorts to guessing and then executes the guessed response.
Accuracy is low because guessing is an error-prone process.

The accuracy (proportion correct) predicted by the model is determined by the probability that re-
trieval finished (Eq. (6)) and the probability of a correct guess, pcguess, which is controlled by the bias
parameter (i.e., pcguess = bias for targets and pcguess = 1 � bias for foils):
accuracy ¼ pretrieveð1Þ þ ð1� pretrieveÞpcguess: ð8Þ
In other words, overall accuracy is a mixture of perfect accuracy based on retrieval (reflected in the
multiplication of pretrieve by 1) and imperfect accuracy based on guessing (pcguess < 1). Given that
the probability of retrieval increases as the lag becomes longer, accuracy increases across lags. The
shape of the speed–accuracy tradeoff function produced by the model is based on the log–logistic
CDF for the probability of retrieval (Eq. (6)).

Besides accuracy, the model also makes predictions for RT. When retrieval has time to finish, RT is
the sum of response signal encoding time and response execution time (see Fig. 6A). When retrieval
does not finish, RT is the sum of response signal encoding time, response execution time, and guessing
time (see Fig. 6B). The mean RT predicted by the model is a mixture of times that do and do not include
guessing time, as determined by the probability that retrieval finished (Eq. (6)):
RT ¼ pretrieveðtsignal þ trespxÞ þ ð1� pretrieveÞðtsignal þ trespx þ tguessÞ: ð9Þ
Given that the probability of retrieval increases as the lag becomes longer, RT gets shorter across lags
due to the reduced contribution of guessing time. As noted earlier, RT typically becomes shorter across
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lags in the response signal procedure (e.g., see Fig. 3B). It follows from Eq. (9) that the difference in RT
between the shortest and the longest lags will be approximately equal to the guessing time (assuming
retrieval never finishes at the shortest lag and always finishes at the longest lag), a point we consider
further in Section 6.
5.1.6. Summary
Our ACT-R model includes all the processes taking place in the time course of associative recogni-

tion in the response signal procedure: encoding, retrieval, guessing, and responding (see Fig. 6 and Ta-
ble 2). Stimulus encoding results in a representation of the probe that is used to access memory.
Retrieval is an all-or-none, error-free process that involves retrieving a fact from memory for compar-
ison with the probe. The probability of retrieval is determined by the distribution of retrieval times
(which is affected by the amount of associative activation and the level of activation noise) and the
time available for retrieval (which is affected by lag and the activation threshold). When retrieval does
not finish, the model resorts to guessing, which is an error-prone process subject to response bias.
Responding involves executing the response determined by retrieval or by guessing. The model is
completely specified by Eqs. (1)–(3) and (5)–(9), allowing for precise quantitative predictions. Its pre-
dictions for accuracy and for RT are strongly determined by the probability of retrieval, which in-
creases as the lag becomes longer, resulting in higher accuracy and shorter RT across lags.
5.2. Modeling details

We evaluated our ACT-R model of the response signal procedure by fitting it to the individual-sub-
ject data from Wickelgren and Corbett (1977) and from our experiment (see Figs. 2 and 4), then com-
paring its fits to those of different SEF variants.3 Before presenting the modeling results, we summarize
the ACT-R model and SEF parameters, describe the fitting process, explain how models were compared,
and discuss simulations of the ACT-R model.
5.2.1. Model parameters
For fitting the ACT-R model to d0 accuracy data, there are only four free parameters: tstim, F, s, and s.

The only constraints on free parameter values were that tstim and F had to be greater than 0 because
time cannot be negative. In the modeling results presented below, we also consider a variant of the
model in which we set s = �1, which is equivalent to having no internal deadline for the retrieval
process. We set the other parameters in the model equal to the fixed values mentioned earlier (see
Table 2). Thus, there was a maximum of four free parameters for fitting the 16 d0 accuracy data points
in each experiment (2 fan conditions � 8 lags; see Figs. 2 and 4). Note that there are no free parame-
ters that distinguish between fan conditions or vary as a function of lag. Thus, fan effects on accuracy
and changes in accuracy across lags are predictions of the model that reflect its basic structure and
functioning.

For fitting the ACT-R model to RT data, we set all encoding, retrieval, and guessing parameters
equal to their fixed values or to their best-fitting values from the fit to accuracy data. This leaves only
one free parameter, trespx, which functions merely as an intercept shift for overall RT when fitting the
16 mean RT data points in our experiment (see Fig. 5). Once again, note that there no free parameters
that distinguish between fan conditions or vary as a function of lag. Thus, fan effects on RT and
changes in RT across lags are predictions of the model that reflect its basic structure and functioning.
The model was fit sequentially to d0 accuracy and RT data for our experiment,4 but only to d0 accuracy
for Wickelgren and Corbett’s (1977) experiment because they did not report individual-subject RT data.
3 We did not fit any data from Dosher (1981) because she did not report individual-subject data; however, her group data were
similar to the data of Wickelgren and Corbett (1977).

4 We followed a sequential model-fitting approach because we were primarily interested in the fit of the ACT-R model to
accuracy data and how that compared with fits of SEF variants. Given that the SEF only addresses accuracy data, it seemed fair to
use the fit of the ACT-R model only to accuracy data for comparison purposes, then to evaluate the fit of the ACT-R model to RT data
(constrained by its earlier fit to accuracy data).
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For fitting the SEF to d0 accuracy data, there are between three and six free parameters depending
on the SEF variant. As noted earlier, if there are two conditions, as is the case with the fan manipula-
tion of interest here (i.e., Fan 1 versus Fan 2), then there are eight possible SEF variants based on
whether each parameter (intercept, rate, or asymptote) is the same or different across conditions.
The model with the fewest free parameters assumes no difference between fan conditions for any
parameter and the model with the most free parameters assumes a difference between fan conditions
for every parameter, with the other models falling in between these extremes. There were no con-
straints on free parameter values.

5.2.2. Model fitting
For fitting the ACT-R model and the SEF to d0 accuracy data, we followed an approach involving

maximum likelihood estimation (Liu & Smith, 2009; for overviews, see Lewandowsky & Farrell,
2011, chap. 4; Myung, 2003), using a likelihood function based on the probability density function
for the normal distribution and minimizing the negative log-likelihood value.5 For fitting the ACT-R
model to mean RT data, we performed least-squares estimation, minimizing the root mean squared devi-
ation (RMSD) between data and model predictions. The ACT-R model and the SEF were both imple-
mented in MATLAB (The MathWorks, Inc., Natick, MA) and we used an implementation of the simplex
algorithm (Nelder & Mead, 1965) for parameter optimization. We used multiple sets of starting param-
eter values covering a large region of the parameter space to avoid local minima. All the modeling results
reported below are based on fits to individual-subject data, although we also include the results of fits to
group data. We report individual-subject parameter values and fit indices in tables, but to simplify the
visual presentation of the results, the means of the individual-subject predictions are shown in figures.
Individual-subject modeling results are provided in Appendix B.

5.2.3. Model comparison
We conducted model comparisons to determine the best SEF variant and to assess the adequacy of

the ACT-R model. Model comparisons for fits to response signal data often involve computing an ad-
justed R2 statistic for each model that takes into account the number of free parameters:
5 All
functio
McClell
separat
Append
R2 ¼ 1�
Pn

i¼1ðdi � d̂iÞ2=ðn� kÞ
Pn

i¼1ðdi � �dÞ2=ðn� 1Þ
; ð10Þ
where di is data point i; d̂i is the model’s prediction for data point i, �d is the mean of the data points, n
is the number of data points, and k is the number of free parameters in the model. For models with
identical fits, Eq. (10) will yield a higher R2 value for the model with fewer free parameters. Although
we report R2 values, we focus on a more principled approach to model comparison involving
information criterion measures that quantify goodness of fit while penalizing model complexity
(Lewandowsky & Farrell, 2011; Liu & Smith, 2009; Wagenmakers & Farrell, 2004). The two measures
we use are the Akaike information criterion (AIC), given by:
AIC ¼ �2 ln Lþ 2kþ 2kðkþ 1Þ
ðn� k� 1Þ ; ð11Þ
and the Bayesian information criterion (BIC), given by:
BIC ¼ �2 ln Lþ k ln n; ð12Þ
where L is the likelihood value, k is the number of the free parameters, and n is the number of data
points. Eq. (11) is a variant of the AIC that includes a correction for small sample size (the last term
in the equation), which is recommended when the ratio of data points to free parameters (n/k) is less
than 40 (Wagenmakers & Farrell, 2004). The AIC and the BIC are commonly used for model selection
ACT-R model fits reported in this article were repeated by fitting raw accuracy data (proportion correct) with a likelihood
n based on the probability mass function for the binomial distribution (Lewandowsky & Farrell, 2011; see also Usher &
and, 2001). These fits were to all 32 cells in the 2 (probe) � 2 (fan) � 8 (lag) experimental design and involved making
e predictions for targets and for foils, as well as allowing bias to be a free parameter. The results of these fits are reported in
ix B.
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and comparison purposes, allowing one to choose the simplest model that provides an adequate fit to
the data (the model with the lowest AIC or BIC value is to be preferred). In the present context, model
selection involves determining which SEF variant is the best descriptive model of the data and model
comparison involves determining whether the ACT-R model fits as well as the best SEF variant.

To facilitate model selection and comparison, we consider two measures based on the AIC and the
BIC. The first measure is the rank of a model’s fit to data. One can assign a rank from 1 to 9 to the ACT-R
model and the eight SEF variants based on the AIC and the BIC values for their fits to each individual-
subject data set, with lower ranks corresponding to lower AIC and BIC values (i.e., better fits). One can
then compute the mean rank of a given model across subjects to get a sense of how well it fares when
compared with the other models. The second measure is the model weight, which is the probability
that a given model is the best model in the set being compared (Liu & Smith, 2009; Wagenmakers,
2007; Wagenmakers & Farrell, 2004). The weight for model i, wi, is calculated as:
Wi ¼
exp½�0:5DiðICÞ�PJ
j¼1 exp½�0:5DjðICÞ�

; ð13Þ
where IC is the value of either the AIC or the BIC, and Di(IC) is the difference between the IC value of
model i and the lowest IC value from the set of J models. One can compute the mean weight of a model
across subjects to get sense of its overall probability of being the best model.

Finally, one can directly compare the fits of two models by calculating the likelihood ratio in favor
of one model over the other, which is simply the ratio of their model weights (Glover & Dixon, 2004;
Liu & Smith, 2009; Wagenmakers & Farrell, 2004). We use likelihood ratios to compare the fits of the
ACT-R model with and without a threshold as a way of determining whether an internal deadline is
necessary during retrieval. To provide a summary of the likelihood ratio across subjects, we report
the group likelihood ratio, which is the product of the individual-subject likelihood ratios, and the
average likelihood ratio, which is the geometric mean of the individual-subject likelihood ratios
(Liu & Smith, 2009).
5.2.4. Simulation
The ACT-R model we fit to the data is completely specified by Eqs. (1)–(3) and (5)–(9). Although

this analytic version of the model has the practical advantage of making model fitting fast and accu-
rate, it has the disadvantage of underrepresenting the amount of variability in processing. More spe-
cifically, the model has just one source of variability—the distribution of retrieval times—but there is
undoubtedly variability in the times associated with other processes. To determine the extent to
which these sources of variability may be important, the analytic model fits are accompanied by sim-
ulation results for comparison.

Simulation of the model involved six sources of variability: retrieval time, stimulus encoding time,
response signal encoding time, guessing time, guessing accuracy, and response execution time. The
variability in retrieval time (and, by extension, the probability of retrieval) was simulated by sampling
from a logistic distribution for activation noise and adding it to the activation of the fact retrieved on
each trial (i.e., Eq. (6) was not computed in the simulation). The variability in the times for stimulus
encoding, response signal encoding, guessing, and response execution was simulated by sampling
from a uniform distribution specific to each process, with the boundaries of the distribution being
t ± t/2, where t is the mean time for the process (see Anderson, Taatgen, & Byrne, 2005; Meyer & Kieras,
1997). The variability in guessing accuracy was simulated by sampling a random number between 0
and 1 from a uniform distribution, then determining whether it was above or below the bias
parameter.

The model was simulated for each subject using that subject’s best-fitting parameter values from
the analytic fits. A total of 3.2 million trials were simulated per subject, representing 100,000 trials for
each of the 32 cells in the 2 (probe) � 2 (fan) � 8 (lag) experimental design. The simulation fit indices
are reported in parentheses beside the analytic fit indices in the tables of modeling results (see also
Appendix B).



Table 3
ACT-R model parameter values and fit indices for fits to d0 accuracy data with a threshold in Wickelgren and Corbett (1977).

Subject Parameter Fit index

F s tstim s AIC BIC R2

PB 589 0.41 211 �0.89 21.6 (18.6) 21.0 (18.0) .959 (.958)
EC 967 0.25 240 0.43 15.4 (16.0) 14.9 (15.4) .956 (.955)
SS 731 0.58 295 �0.10 21.9 (21.5) 21.4 (21.0) .875 (.874)
CL 766 0.36 114 0.30 17.6 (17.5) 17.0 (17.0) .892 (.893)
CM 1391 0.25 32 0.26 15.9 (16.0) 15.4 (15.4) .954 (.954)
SJ 910 0.68 176 �0.13 18.7 (17.4) 18.1 (16.8) .888 (.893)
Mean 892 0.42 178 �0.02 18.5 (17.8) 18.0 (17.3) .921 (.921)
Group 945 0.42 166 0.06 4.0 (4.3) 3.5 (3.7) .981 (.981)

Note: ‘‘Mean’’ indicates the mean of the individual-subject values and ‘‘Group’’ indicates the value from a fit to the group data.
Values in parentheses are from simulation of the model using the parameters obtained from the analytic fits to the data.
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5.3. Modeling results

5.3.1. Wickelgren and Corbett (1977)
The means of the individual-subject predictions for d0 accuracy from the best-fitting ACT-R model

(with a threshold) appear as solid lines in Fig. 2. It is evident that the ACT-R model provides an excel-
lent fit to the data, not only capturing the basic shape of each speed–accuracy tradeoff function, but
also reproducing the large difference in asymptotic accuracy at the longest lags and the modest differ-
ence in the rate of rise to the asymptote across fan conditions. These fan effects were produced by the
model because Fan 2 items are retrieved more slowly than are Fan 1 items due to less associative acti-
vation for the former than for the latter (see Eqs. (1)–(3)). The rate difference predicted by the model is
a direct reflection of the difference in retrieval time. The asymptote difference predicted by the model
reflects a combined effect of the difference in retrieval time and the threshold. Recall that the thresh-
old determines the failure time (Eq. (7)), which is an internal deadline for retrieval to finish. For a spe-
cific threshold, the probability that retrieval finishes before the internal deadline is lower for Fan 2
items than it is for Fan 1 items because retrieval times are longer for the former than for the latter.
Given that retrieval accuracy is directly related to the probability of retrieval (Eq. (8)), it follows that
asymptotic accuracy will be lower for Fan 2 items than for Fan 1 items.

The best-fitting parameter values (for F, s, tstim, and s) and fit indices (AIC, BIC, and R2) for individual
subjects are presented in Table 3. All the parameter values seem reasonable, with the sole exception of
a very short stimulus encoding time of 32 ms for subject CM.6 The AIC and the BIC values are not par-
ticularly interpretable in isolation, so we discuss them only in the context of model comparisons below.
The ACT-R model yielded good fits in terms of R2, with a mean R2 = .921 for the individual-subject fits and
R2 = .981 for the group fit. The fit indices from simulations of the model (see Table 3) are similar to the
analytic fit indices, indicating that the lack of extra variability in the analytic version of the model was
not detrimental to its fits.

The predictions in Fig. 2 are for the ACT-R model with a threshold, which fit better than did the
model without a threshold (i.e., with s = �1). Individual-subject likelihood ratios favored the thresh-
old model over the no-threshold model for all six subjects. The group likelihood ratio, expressed in
terms of the threshold model over the no-threshold model, equaled 3.1 � 1027 for AIC and
4.1 � 1028 for BIC, and the average likelihood ratio equaled 3.8 � 104 for AIC and 5.9 � 104 for BIC.
These results are not surprising because large empirical differences in asymptotic accuracy can only
be captured by using an internal deadline set by a threshold. The presence of an internal deadline
seems reasonable when facts are briefly studied and may never be retrieved due to their low activa-
tion, even when there is a long time available for retrieval.
6 If stimulus encoding time is constrained to be P100 ms, then there is a modest decrement in the quality of the fit to the data
from subject CM (AIC = 17.5, BIC = 16.9, R2 = .947; cf. Table 3).



Table 4
Shifted exponential function parameter values and fit indices for fits to d0 accuracy data in Wickelgren and Corbett (1977).

Subject Model Parameter Fit index

d1 d2 1/b1 1/b2 k1 k2 AIC BIC R2

PB 1d–2b–1k 460 460 350 596 5.05 5.05 17.6 17.1 .980
EC 2d–1b–2k 543 604 292 292 4.02 2.09 18.5 16.3 .966
SS 2d–1b–2k 542 451 364 364 3.90 2.36 11.1 9.0 .961
CL 1d–2b–2k 417 417 155 381 3.35 2.36 16.4 14.3 .919
CM 2d–1b–2k 441 567 369 369 4.46 2.56 15.7 13.6 .960
SJ 2d–2b–1k 496 360 162 654 2.73 2.73 17.3 15.1 .902
Group 1d–1b–2k 463 463 356 356 3.92 2.45 3.6 3.0 .986

Note: ‘‘Group’’ indicates the value from a fit to the group data. The parameters are the intercept (d), rate (b), and asymptote (k)
for the Fan 1 and Fan 2 conditions (denoted by the subscripts 1 and 2, respectively). The parameter values and fit indices are for
the model variant with the lowest BIC value.
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The means of the individual-subject predictions for d0 accuracy from the best SEF variant appear as
dashed lines in Fig. 2. The best variant across all subjects (based on the rank and model weight statis-
tics presented below) was the one in which the asymptote and the intercept (but not the rate) differed
between fan conditions, consistent with what Wickelgren and Corbett (1977) found with their fits. The
mean R2 = .935 for this variant and its mean parameter values were d1 = 455 ms, d2 = 498 ms,
1/b = 312 ms, k1 = 4.01, and k2 = 2.72, where the subscripts 1 and 2 denote the Fan 1 and Fan 2 condi-
tions, respectively. However, a similar fit was obtained with a variant similar to the ACT-R model,
where the asymptote and the rate (but not the intercept) differed between fan conditions. Table 4
shows the best-fitting parameter values and fit indices for the best variant (based on BIC values) for
each individual subject (which did not necessarily correspond to the best variant over all subjects).
For four of the six subjects and for the group, the best variant involved different asymptotes between
fan conditions, indicating a fan effect on memory strength. For all six subjects, the best variant in-
volved either different intercepts or different rates (or both) between fan conditions, indicating a
fan effect on retrieval dynamics. Interestingly, the best variant for the fit to the group data involved
only different asymptotes (see Table 4), providing an example of a group fit not corresponding exactly
with the individual-subject fits (Cohen, Sanborn, & Shiffrin, 2008) and supporting our decision to focus
on modeling individual-subject data.

We assessed the adequacy of the ACT-R model (with a threshold) by comparing its fit with those of
the eight SEF variants. The mean rank statistics appear in Fig. 8A and the mean model weights appear
in Fig. 8B. In terms of rank, the ACT-R model compares favorably with the two SEF variants mentioned
above (involving different asymptotes and either different intercepts or different rates). The ACT-R
model has the lowest mean rank based on AIC, being ranked in the top 3 for four of the six subjects,
and it has the third-lowest mean rank based on BIC, being ranked in the top 3 for two of the six sub-
jects. In terms of model weight, the results are similar. The ACT-R model has the highest mean weight
based on AIC and the third-highest mean weight based on BIC. These model comparison results indi-
cate that the ACT-R model produced quantitative fits that were as good as those of the best SEF
variants.
5.3.2. Our experiment
The means of the individual-subject predictions for d0 accuracy from the best-fitting ACT-R model

(without a threshold) appear as solid lines in Fig. 4. The ACT-R model provides an excellent fit to the
data, reproducing the very high accuracy at the longest lags and the difference in the rate of rise in
accuracy between fan conditions. The very high accuracy was predicted because no threshold was
used for these fits (justification is provided below), meaning that there was no internal deadline that
prevented retrieval from finishing at long lags. Consequently, the probability that retrieval finished
was near 1.0 at the long lags, resulting in accuracy that was at or near ceiling (with very small
differences in proportion correct at long lags being magnified when expressed in terms of d0) and
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Fig. 8. Model comparison results for the fits to data from Wickelgren and Corbett (1977). The first eight pairs of bars refer to
different variants of the shifted exponential function involving either one or two intercepts (d), rates (b), and asymptotes (k) for
the Fan 1 and the Fan 2 conditions. The last pair of bars refers to the ACT-R model. A: Rank statistics (lower is better). B: Model
weights (higher is better).
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no difference in asymptote between fan conditions. The fan effect was produced by the ACT-R model
for the reasons discussed earlier.

The best-fitting parameter values (for F, s, and tstim) and fit indices (AIC, BIC, and R2) for individual
subjects are presented in Table 5. All the parameter values seem reasonable.7 The ACT-R model yielded
good fits in terms of R2, with a mean R2 = .939 for the individual-subject fits and R2 = .992 for the group
fit. Once again, the fit indices from simulations of the model (provided in parentheses in Table 5) are sim-
ilar to the analytic fit indices.

The predictions in Fig. 4 are for the ACT-R model without a threshold, which fit better than did the
model with a threshold. Individual-subject likelihood ratios favored the no-threshold model over the
threshold model for most of the subjects (eight subjects based on AIC; seven subjects based on BIC).
The group likelihood ratio, expressed in terms of the no-threshold model over the threshold model,
equaled 8180.9 for AIC and 108.9 for BIC, and the average likelihood ratio equaled 2.5 for AIC and
7 Direct comparisons between the parameter values for the model fits to our experiment data and to Wickelgren and Corbett’s
(1977) data are complicated by the many methodological differences between the experiments. For example, the largest difference
in parameter values is for stimulus encoding time (tstim), with means of 178 and 386 ms for the fits to Wickelgren and Corbett’s
data and to our data, respectively. We suspect this difference in parameter values may reflect a difference in the complexity of the
test probes. In Wickelgren and Corbett’s experiment the probe was simply a pair of words, whereas in our experiment it was a
question of the form Is the person in the location? It likely took subjects longer to read the probe in our experiment than in
Wickelgren and Corbett’s experiment, which would be reflected in a longer stimulus encoding time in the model.



Table 5
ACT-R model parameter values and fit indices for fits to d0 accuracy data without a threshold in our experiment.

Subject Parameter Fit index

F s tstim AIC BIC R2

1 268 0.75 407 17.0 (21.1) 17.3 (21.4) .954 (.946)
2 494 0.54 249 30.2 (34.5) 30.5 (34.8) .914 (.902)
3 1071 0.55 239 19.4 (19.9) 19.7 (20.3) .923 (.921)
4 654 0.72 497 14.4 (17.8) 14.7 (18.2) .952 (.945)
5 997 0.52 450 26.8 (27.1) 27.1 (27.4) .918 (.916)
6 334 0.68 462 29.1 (29.5) 29.4 (29.8) .904 (.901)
7 1562 0.42 189 13.5 (13.3) 13.8 (13.6) .963 (.964)
8 1461 0.54 444 18.4 (20.1) 18.7 (20.4) .941 (.937)
9 864 0.47 445 11.9 (12.8) 12.2 (13.1) .977 (.975)

10 705 0.65 479 21.8 (24.9) 22.1 (25.2) .945 (.934)

Mean 841 0.58 386 20.3 (22.1) 20.6 (22.4) .939 (.934)
Group 937 0.53 351 5.0 (5.4) 5.3 (5.7) .992 (.991)

Note: ‘‘Mean’’ indicates the mean of the individual-subject values and ‘‘Group’’ indicates the value from a fit to the group data.
Values in parentheses are from simulation of the model using the parameters obtained from the analytic fits to the data.

Table 6
Shifted exponential function parameter values and fit indices for fits to d0 accuracy data in our experiment.

Subject Model Parameter Fit index

d1 d2 1/b1 1/b2 k1 k2 AIC BIC R2

1 1d-2b-1k 521 521 407 667 4.65 4.65 19.8 19.2 .962
2 1d-2b-1k 634 634 125 525 4.64 4.64 23.4 22.9 .979
3 1d-2b-1k 665 665 364 1151 4.06 4.06 13.7 13.2 .978
4 2d-2b-1k 663 763 555 845 4.00 4.00 22.0 19.9 .940
5 2d-1b-1k 668 908 838 838 4.54 4.54 26.2 25.6 .928
6 2d-1b-1k 604 701 532 532 4.84 4.84 23.0 22.4 .966
7 1d-2b-1k 642 642 806 1808 4.80 4.80 16.2 15.6 .968
8 1d-2b-1k 757 757 693 1672 3.96 3.96 19.2 18.6 .950
9 2d-1b-1k 730 958 589 589 4.48 4.48 15.3 14.7 .970

10 1d-2b-1k 717 717 304 913 3.90 3.90 22.6 22.0 .931
Group 1d-2b-1k 639 639 622 1206 4.52 4.52 9.2 8.7 .988

Note: ‘‘Group’’ indicates the value from a fit to the group data. The parameters are the intercept (d), rate (b), and asymptote (k)
for the Fan 1 and Fan 2 conditions (denoted by the subscripts 1 and 2, respectively). The parameter values and fit indices are for
the model variant with the lowest BIC value.
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1.6 for BIC. These results are not surprising because the very high empirical accuracy at long lags sug-
gests that retrieval was not subject to an internal deadline (or it was subject to an internal deadline
that exceeded the longest external deadline). The lack of a role of an internal deadline seems reason-
able when facts are well-learned and can ultimately be retrieved if there is sufficient time available for
retrieval.

The means of the individual-subject predictions for d0 accuracy from the best SEF variant appear as
dashed lines in Fig. 4. The best variant across all subjects (based on the rank and model weight statis-
tics presented below) was the one in which only the rate (and neither the asymptote nor the intercept)
differed between fan conditions, consistent with the ACT-R model. The mean R2 = .956 for this variant
and its mean parameter values were d = 675 ms, 1/b1 = 387 ms, 1/b2 = 917 ms, and k = 4.48, where the
subscripts 1 and 2 denote the Fan 1 and Fan 2 conditions, respectively. Table 6 shows the best-fitting
parameter values and fit indices for the best variant (based on BIC values) for each individual subject
(which did not necessarily correspond to the best variant over all subjects). For all 10 subjects, the best
variant involved either different intercepts or different rates (or both) between fan conditions, indicat-
ing a fan effect on retrieval dynamics. For six of the subjects and for the group, the best variant in-
volved different rates rather than different intercepts. For none of the 10 subjects did the best
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Fig. 9. Model comparison results for the fits to data from our experiment. The first eight pairs of bars refer to different variants
of the shifted exponential function involving either one or two intercepts (d), rates (b), and asymptotes (k) for the Fan 1 and the
Fan 2 conditions. The last pair of bars refers to the ACT-R model. A: Rank statistics (lower is better). B: Model weights (higher is
better).
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variant involve different asymptotes between fan conditions. This result may seem paradoxical given
that fan is assumed to affect memory strength, which is reflected in the strength of association be-
tween items in memory in ACT-R and thought to be reflected in the asymptote of the speed–accuracy
tradeoff function (as measured by the SEF). We contend that fan does affect memory strength, but
there will be no fan effect on the asymptote when low and high fan items can both be retrieved accu-
rately from memory, given sufficient time for retrieval. Such a situation exists when the materials are
well-learned, as they were in our experiment, and subjects do not set an internal deadline for retrieval,
as suggested by the results for the no-threshold ACT-R model.

We assessed the adequacy of the ACT-R model (without a threshold) by comparing its fit with those
of the eight SEF variants. The mean rank statistics appear in Fig. 9A and the mean model weights ap-
pear in Fig. 9B. In terms of rank, the ACT-R model compares favorably with the best SEF variant men-
tioned above (involving different rates). The ACT-R model is tied with that SEF variant for the lowest
mean rank based on AIC, being ranked in the top 2 for seven of the 10 subjects, and it has the second-
lowest mean rank based on BIC, being ranked in the top 2 for seven of the 10 subjects. In terms of mod-
el weight, the results more strongly favor the ACT-R model, which has the highest mean weights based
on both AIC and BIC. These model comparison results indicate that the ACT-R model produced quan-
titative fits that were as good as those of the best SEF variant.

Recall that the ACT-R model also makes predictions about RT (Eq. (9)), for which individual-subject
data were available from our experiment. The means of the individual-subject predictions for RT from
the best-fitting ACT-R model (without a threshold) appear as solid lines in Fig. 5. The ACT-R model not



Table 7
ACT-R model parameter values and fit indices for fits to reaction time data without a threshold in our experiment.

Subject Parameter Fit index

trespx RMSD R2

1 172 3.5 (4.0) .962 (.950)
2 191 7.0 (7.1) .880 (.875)
3 207 7.1 (7.3) .900 (.894)
4 165 5.6 (5.5) .931 (.933)
5 174 7.6 (7.1) .814 (.835)
6 180 6.8 (6.6) .725 (.739)
7 201 6.7 (6.8) .891 (.888)
8 169 6.9 (6.7) .759 (.769)
9 205 2.2 (2.5) .987 (.984)

10 160 4.6 (4.4) .942 (.948)

Mean 182 5.8 (5.8) .879 (.881)
Group 182 2.8 (2.9) .976 (.974)

Note: ‘‘Mean’’ indicates the mean of the individual-subject values and ‘‘Group’’ indicates the value from a fit to the group data.
Values in parentheses are from simulation of the model using the parameters obtained from the analytic fits to the data.
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only provides a good fit to the shape of the RT function in Fig. 5A, but it also correctly predicts the
change in the fan effect across lags in Fig. 5B (although the model overestimates the magnitude of
the fan effect at intermediate and long lags). What is remarkable about these predictions is that they
are zero-parameter, quantitative predictions of the ACT-R model. The only free parameter in the fit
was for response execution time, which functioned merely as an intercept shift for overall RT.

The model explains the RT function in Fig. 5A in terms of the contribution of guessing time to RT
(see Eq. (9)). At short lags, retrieval rarely finishes in the time available, so the model has to guess (see
Fig. 6B). At long lags, retrieval almost always finishes in the time available, so the model rarely has to
guess (see Fig. 6A). Given that it takes some time to guess (tguess = 50 ms), it follows from Eq. (9) that RT
will become shorter across lags as guessing becomes less frequent. Note that Eq. (9) and the changing
contribution of guessing time to RT reflect the fact that there is a discrete point in time when retrieval
is finished and the assumption that guessing is contingent on unfinished retrieval. The model’s predic-
tion of the change in the fan effect across lags in Fig. 5B arises from differences in the contribution of
guessing time to RT between fan conditions. At the shortest lag, retrieval almost never finishes for Fan
1 or Fan 2 items, which means that guessing occurs approximately equally often in both conditions. As
a result, there is a similar contribution of guessing time to RT for both conditions, producing almost no
fan effect. However, at the intermediate lags, retrieval finishes more often for Fan 1 items than for Fan
2 items, which means that guessing occurs more often for Fan 2 items. As a result, there is a larger
contribution of guessing time to RT for Fan 2 items, producing a fan effect. The fan effect decreases
as the lag becomes longer because the difference in the probability of retrieval between Fan 1 and
Fan 2 items diminishes. By the longest lag, retrieval almost always finishes for both Fan 1 and Fan
2 items, which means that guessing rarely occurs in both conditions. As a result, the lack of a contri-
bution of guessing time to RT is similar for both conditions, producing almost no fan effect. Thus, the
shape of the RT function and the change in the fan effect across lags are natural predictions of the
model (as evidenced by the fact that they are zero-parameter predictions) based on the relative con-
tributions of retrieval and guessing to performance over time.

The best-fitting parameter values (for trespx) and fit indices (RMSD and R2) for individual subjects
are presented in Table 7. All the parameter values seem reasonable. The ACT-R model yielded good fits
in terms of RMSD, with a mean RMSD = 5.8 ms, and in terms of R2, with a mean R2 = .879. The fit indi-
ces from simulations of the model (provided in parentheses in Table 7) are similar to the analytic fit
indices, indicating that the lack of extra variability in the analytic version of the model was not det-
rimental to its fits to RT data.

5.3.3. Summary
Our ACT-R model provided an excellent account of the d0 accuracy data from Wickelgren and

Corbett (1977) and from our experiment. It captured the shapes of the speed–accuracy tradeoff
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functions in both experiments, including fan effects on asymptotic accuracy and the rate of rise in
accuracy across lags (see Figs. 2 and 4). It produced these results with only three or four free param-
eters (depending on whether a threshold was involved) and no free parameters that distinguished be-
tween fan conditions. Its fits were as good as those of the best SEF variant(s) for each experiment (see
Figs. 8 and 9), indicating that its quantitative predictions were satisfactory. An important advantage of
our ACT-R model over the SEF is that the former is a process model that provides a psychological
explanation of the data based on a cognitive theory, whereas the latter is more of a descriptive model
that specifies a speed–accuracy tradeoff function without explaining how it is realized in a complete
information-processing stream. One example of the advantage of using a complete process model is
that our ACT-R model could also provide an account of the RT data from our experiment. It captured
the shape of the RT function and the changes in the fan effect across lags. These results were zero-
parameter, quantitative predictions of the model. Collectively, the modeling results show that our
ACT-R model is capable of accounting for fine-grained data from the response signal procedure.
6. General discussion

The purpose of the present study was to investigate fan effects on the time course of associative
recognition and to develop an ACT-R model that could explain them. We focused on speed–accuracy
tradeoff functions obtained with the response signal procedure in a previous experiment involving a
fan manipulation (Wickelgren & Corbett, 1977) and in a new experiment. When materials were stud-
ied briefly, fan had a large effect on asymptotic accuracy at long lags and a modest effect on retrieval
dynamics. When materials were well-learned, fan predominantly affected the rate of rise in accuracy
across lags. We found that both data patterns could be explained by applying the standard ACT-R
model of the fan effect to the response signal procedure. Memory retrieval plays a central role in
the model, with high fan resulting in weak associative activation that slows memory retrieval, thereby
decreasing the probability that retrieval finishes in time and producing a speed–accuracy tradeoff
function. We fit the model to the data from Wickelgren and Corbett and from our experiment, com-
paring its fits with those of the SEF that is commonly used to describe response signal data. Our
ACT-R model provided an excellent account of the data from both experiments, yielding quantitative
fits to the accuracy data that were as good as those of the best SEF variant, as well as good quantitative
fits to the RT data. To our knowledge, the present study represents the first successful application of
ACT-R to response signal data, thereby expanding the scope of the theory to account for fine-grained
behavioral data concerning the time course of associative recognition.

6.1. Comparisons with other models of response signal data

Several process models have been developed for or applied to response signal data. These models
include the cascade model (McClelland, 1979), the continuous activation model (Dosher, 1982, 1984a),
the diffusion model (Ratcliff, 1978, 1988, 2006, 2008), a dual-process integration model (Göthe &
Oberauer, 2008), the exemplar-based random walk model (Nosofsky, Little, Donkin, & Fific, 2011),
the leaky competing accumulator model (Usher & McClelland, 2001), REM models (Diller, Nobel, &
Shiffrin, 2001; Malmberg, 2008; Wagenmakers et al., 2004), and the tandem random walk model
(Nikolić & Gronlund, 2002). Dosher (1976, 1981, 1984a) has also simulated speed–accuracy tradeoff
functions for a serial search model (based on Anderson, 1974; Anderson & Bower, 1973; Thorndyke
& Bower, 1974), a spreading activation model (based on Collins & Loftus, 1975), and the random
storage model of Landauer (1975). In this section we discuss some of the similarities and differences
between these models and our ACT-R model.

6.1.1. Discrete versus continuous processing
Dosher (1981, 1982, 1984a) noted that empirical speed–accuracy tradeoff functions are compatible

with memory retrieval being either a discrete or a continuous process. Most models of response signal
data assume that retrieval is continuous, with activation or evidence accruing over time (e.g., Diller
et al., 2001; Dosher, 1982, 1984a; McClelland, 1979; Nikolić & Gronlund, 2002; Nosofsky et al.,
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2011; Ratcliff, 1978, 1988, 2006, 2008; Usher & McClelland, 2001; Wagenmakers et al., 2004). For
example, in Ratcliff’s diffusion model, evidence is sampled continuously from memory and accumu-
lated in favor of making either a ‘‘yes’’ or a ‘‘no’’ recognition response. When the accumulated evidence
favors one response over the other by a relative difference criterion, the favored response has been
selected and retrieval is finished. The speed–accuracy tradeoff function produced by the model de-
pends on the distribution of finishing times for retrieval (the sampling process is stochastic) and
whether partial information (i.e., the evidence accumulated at any point prior to the end of retrieval)
is available for making a decision when retrieval has not finished.

In contrast, our ACT-R model and the aforementioned model simulations by Dosher (1976, 1981,
1984a) assume that retrieval is a discrete, all-or-none process: It is either finished or not finished in
the time available for retrieval, with no intermediate stage of progress (e.g., a fact cannot be partly re-
trieved from memory). However, similar to a continuous model, a discrete model can produce a
speed–accuracy tradeoff function by having a distribution of finishing times for retrieval. In our
ACT-R model, retrieval times follow a log–logistic distribution controlled by the level of activation
noise (see Eq. (6) and Fig. 7). Although we have presented a discrete version of our ACT-R model, it
may be possible to develop a continuous version that yields similar results. Anderson (2007, pp.
131–134) explained how the standard equation for retrieval time in ACT-R (Eq. (3)) can be related
to the finishing time of a continuous evidence accumulation process (viz., a leaky accumulator mod-
el).8 (Van Maanen & Van Rijn, 2007, 2010; Van Maanen, Van Rijn, & Taatgen, in press) developed a variant
of the declarative memory retrieval mechanism in ACT-R that is based on a continuous sampling process.
Thus, the discrete–continuous processing dichotomy may not be critical for modeling speed–accuracy
tradeoff functions in general or for the formulation of our ACT-R model in particular.

6.1.2. The role of partial information
A related issue concerns the role of partial information in response selection when retrieval does

not have time to finish. There is no partial information in our ACT-R model because retrieval is a dis-
crete, all-or-none process. Consequently, when retrieval does not finish, the model makes an unin-
formed guess that is affected only by a response bias (i.e., a general tendency to guess ‘‘yes’’ or
‘‘no’’). In contrast, continuous models of response signal data allow for the possibility of responding
based on partial information (for relevant discussion, see Meyer et al., 1988). Returning to the example
of the diffusion model, if retrieval has not finished (i.e., the criterion for response selection has not
been reached) by the time of the response signal, then the model can respond based on the evidence
it has accumulated up to that point, choosing to go with the response for which there is more evidence
(e.g., Ratcliff, 2006, 2008). An alternative approach is to use partial information to make an informed
or biased guess. For example, in Nikolić and Gronlund’s (2002) tandem random walk model, if retrieval
has not finished in the time available, then the accumulated evidence is used to set a starting-point
bias in favor of the response with more partial information for a subsequent guessing process. How-
ever, the availability of partial information in these models need not imply its use. Partial information
could be ignored and a continuous model could make an uninformed guess in the same way as our
ACT-R model. In the few instances where partial information and guessing versions of continuous
models have been compared, it has been found that both versions yield very similar fits to response
signal data (e.g., Nosofsky et al., 2011; Ratcliff, 2006, 2008). Thus, the absence of partial information
in our ACT-R model may not be crucial for modeling speed–accuracy tradeoff functions.

6.1.3. Explanations of RT data
Despite the interest in modeling speed–accuracy tradeoff functions, very little attention has been

paid to explaining RT data from the response signal procedure. As noted earlier, RT typically becomes
shorter as the lag becomes longer in response signal experiments (e.g., see Fig. 3B). This RT function is
generally thought to reflect either variation in response preparedness across lags (i.e., subjects are
8 The relationship can be interpreted in terms of a retrieval process whereby there is continuous accumulation of evidence for
retrieving an item from memory, but the item is only delivered to the retrieval buffer in ACT-R when its accumulated evidence
reaches a threshold. This process is analogous to models of eye movements in which evidence accumulates for making a saccade
but the saccade itself is ballistic (e.g., Hanes & Schall, 1996).
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more prepared to respond at long lags than at short lags) or some sort of dual-task interference effect
(i.e., task processing is impaired or postponed by having to process the response signal, especially at
short lags when the two processing streams are likely to overlap; Pashler, 1994). However, as pointed
out by Reed (1976), RT data may provide useful information for evaluating models (see also Nikolić &
Gronlund, 2002; Ratcliff, 2006). Indeed, in our experiment we observed a fan effect on RT that varied
across lags (see Fig. 5) and our ACT-R model was able to predict it quantitatively with zero free
parameters.

Our ACT-R model explains the RT function in terms of the changing contribution of guessing time to
RT across lags, although it does not exclude the possibility that either response preparedness or dual-
task interference may play a role.9 As discussed earlier, retrieval rarely finishes at short lags, forcing the
model to guess (see Fig. 6B), whereas retrieval almost always finishes at long lags, making guessing
unnecessary (see Fig. 6A). Given that it takes some time to guess (a point that is overlooked in many
models), it follows from Eq. (9) that RT will become shorter across lags as guessing becomes less
frequent, with the difference in RT between the shortest and the longest lags being approximately equal
to the guessing time. For modeling the RT data from our experiment, we set the guessing time,
tguess, equal to 50 ms, which is the default time for firing a single production in ACT-R (Anderson,
2007). This turned out to be nearly optimal for predicting the magnitude of the change in RT across lags
(54 ms; see Fig. 5A). While there are other experiments in which the differences between the longest and
shortest RTs were in the same ballpark (e.g., Corbett, 1977; Hintzman & Curran, 1997; Hintzman et al.,
1998; Ratcliff, 2006; Wickelgren & Corbett, 1977), there are others in which differences greater than
100 ms were found (e.g., Dosher, 1976, 1981, 1982, 1984a). We suspect the discrepancies between
studies are primarily methodological, reflecting differences in the instructions, motivation, and feedback
given to subjects about their RTs, coupled with varying criteria for excluding long RTs from data analyses.
However, it is also possible that guessing may take longer than 50 ms in some situations. Thus, to accom-
modate larger RT differences, it might be preferable to allow guessing time to be a free parameter when
fitting certain data sets.
6.2. Consideration of response signal evidence for dual processes in recognition

The ACT-R model presented in this article assumes that associative recognition reflects a single pro-
cess: retrieval of an associative chunk from declarative memory. This single-process account was suf-
ficient for explaining the time course of recognition in contexts where subjects had to discriminate
between studied and rearranged pairs of items. However, there are response signal studies involving
other types of discriminations that implicate more than one process in recognition. A representative
example is a study by Rotello and Heit (2000). In their Experiment 1, subjects studied a list of word
pairs, then they were tested with three kinds of probes: targets (studied word pairs), rearranged foils
(alternative pairings of studied words), and new foils (completely new word pairs). The test phase in-
volved the response signal procedure and the task was to recognize whether the probe words had
been studied together. Rotello and Heit found that accuracy increased monotonically across lags for
targets and for new foils, whereas it decreased across the early lags and then increased across the late
lags for rearranged foils (as reflected by an initial increase and then a decrease in the false alarm rate).
The nonmonotonic time-course function for rearranged foils was interpreted as evidence for two pro-
cesses involved in recognition: an early process that discriminated between studied words (which
composed the targets and the rearranged foils) and non-studied words (which composed the new
foils), and a late process that discriminated between studied and non-studied word pairs (targets
and rearranged foils, respectively).

Nonmonotonic time-course functions of this sort have been observed in several response signal
studies (Dosher, 1984b; Gronlund & Ratcliff, 1989; Göthe & Oberauer, 2008; Hintzman & Curran,
1994; McElree, Dolan, & Jacoby, 1999; McElree & Dosher, 1989; Ratcliff & McKoon, 1982, 1989; Rotello
& Heit, 2000; for a review, see Rotello, 2000). One interpretation of these functions is that they reflect
9 Nikolić and Gronlund (2002) modeled the RT function in a similar way, albeit with a more elaborate guessing process that was
supplemented by a dual-task interference effect.
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the retrieval of item and associative information at different points in time, with item information
being retrieved more quickly than associative information. Applied to Rotello and Heit’s experiment,
the retrieval of item information was the early process that led to the increase in the false alarm rate
for rearranged foils because they were recognized as being composed of studied words, whereas the
retrieval of associative information was the late process that led to the subsequent decrease in the
false alarm rate because the words were recognized as not having been studied together. The retrieval
of associative information to reject the rearranged foils is the recall-to-reject strategy implemented in
our ACT-R model. Rotello and Heit argued that their nonmonotonic time-course functions represented
evidence that such a strategy is used in associative recognition (see also Rotello, 2000).

According to the preceding interpretation, the two processes underlying nonmonotonic time-
course functions do not necessarily involve different retrieval mechanisms; rather, they involve the
retrieval of different kinds of information (viz., item and associative). An alternative but related inter-
pretation of nonmonotonic time-course functions is that they reflect two qualitatively different recog-
nition processes: familiarity and recollection. According to many dual-process theories of recognition
(e.g., Atkinson & Juola, 1974; Diana, Reder, Arndt, & Park, 2006; Jacoby, 1991; Mandler, 1980;
Yonelinas, 1994; for a review, see Yonelinas, 2002), familiarity reflects a fast assessment of a probe’s
continuous memory strength (often modeled as a signal-detection process), whereas recollection re-
flects a slower, recall-based mechanism by which qualitative or associative information about the
probe is retrieved. Applied to Rotello and Heit’s (2000) experiment, familiarity was responsible for
the early increase in the false alarm rate for rearranged foils because studied words were represented
more strongly in memory than were non-studied words, whereas recollection was responsible for the
subsequent decrease in the false alarm rate because the retrieval of associative information enabled
rejection of rearranged foils. Thus, the main difference between the two dual-process interpretations
concerns the first process (retrieval of item information versus familiarity), whereas the second pro-
cess (retrieval of associative information versus recollection) is essentially the same in both cases.

In contrast with the modeling work cited earlier, computational models of nonmonotonic time-
course functions are relatively rare. Malmberg (2008) presented simulation results for a dual-process
REM model and showed that it produced a nonmonotonic time-course function, although he did not
compare its predictions with experimental data. Göthe and Oberauer (2008) presented analytic results
for variants of a dual-process model based on either integration of accumulated evidence from famil-
iarity and recollection or dominance of an all-or-none recollection process over a continuous familiar-
ity signal. Both model variants were able to produce the nonmonotonic time-course function observed
in their data. However, their model provides only an abstract characterization of the underlying
familiarity and recollection processes (e.g., evidence accumulation for each process is modeled with
an SEF). Ratcliff (1980) derived an expression from the diffusion model for a nonmonotonic time-
course function based on a change in the rate of evidence accumulation during retrieval (which might
occur if new information becomes available later in processing) and it has been shown to do fairly well
at capturing the shapes of empirical nonmonotonic time-course functions (e.g., Dosher, 1984b;
Gronlund & Ratcliff, 1989; McElree & Dosher, 1989; Rotello & Heit, 2000). However, even though
the diffusion model is a process model, its applications to nonmonotonic time-course functions have
tended to be more descriptive than explanatory (e.g., the diffusion model is neutral with respect to
what kind of information changes the rate of evidence accumulation).

Our ACT-R model, in its present form, does not produce nonmonotonic time-course functions be-
cause there is only one retrieval process and only associative information is retrieved. It may be
possible to address this limitation by creating a dual-process version of the model. Following the
first dual-process interpretation described earlier, the retrieval of associative information (the pro-
cess currently in our model) could be preceded by the retrieval of item information (for relevant
empirical work concerning the fan effect, see Anderson, 1975). Applied to Rotello and Heit’s
(2000) experiment, item information would serve as the basis for rejecting new foils and falsely
accepting rearranged foils at short to intermediate lags, whereas associative information would
serve as the basis for rejecting rearranged foils at long lags. This extension to the model seems fea-
sible in principle, although future work will be needed to determine the best way of implementing
both retrieval processes and to assess the extended model’s adequacy in accounting for empirical
nonmonotonic time-course functions.
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6.3. Prospects for modeling RT distributions

By showing how ACT-R can be applied successfully to speed–accuracy tradeoffs in response
signal data, the present study provides a foundation for further applications of ACT-R to fine-
grained temporal data. In particular, it allows one to make predictions for RT distributions in
free-response paradigms, wherein response signals are absent and subjects are free to respond
as soon as they have selected a response. Subjects tend to show considerable variability in their
responding, as reflected in RT distributions that are often unimodal and positively skewed (e.g.,
see Luce, 1986).

Our ACT-R model for response signal data can be adapted to the free-response paradigm by having
response execution immediately follow memory retrieval in the information-processing stream.
Assuming there is activation noise in memory, retrieval times will follow a log–logistic distribution
(see Eq. (6)), which under many parameterizations is unimodal and positively skewed (see Fig. 7).
However, the overall RT distribution produced by the model also depends on the distributions of times
for stimulus encoding and response execution. To produce the simulation results mentioned earlier,
we assumed each process had a uniform distribution of finishing times, with the boundaries of the dis-
tribution being t ± t/2, where t is the mean time for the process (see Anderson et al., 2005; Meyer &
Kieras, 1997). This assumption was made for simplicity and to limit the number of free parameters.
However, it would be reasonable to consider alternative distributions (e.g., exponential or gamma)
for these processes when modeling free-response RT distributions.

Another important consideration concerns the modeling of errors and error RT distributions. In
our ACT-R model for response signal data, errors arise solely from guessing, which is contingent on
whether retrieval beats the external deadline (tavail) determined by the response signal and the
internal deadline (tfailure) set for the retrieval process. Given that there is typically no external
deadline in the free-response paradigm, guessing occurs only if retrieval takes longer than the
internal deadline (i.e., tretrieve > tfailure), resulting in errors that are slower on average than correct
responses.

In empirical data from choice RT tasks in free-response paradigms, errors can be slower or faster
than correct responses depending on experimental conditions such as task difficulty and speed–accu-
racy emphasis (e.g., Luce, 1986; Ratcliff & Rouder, 1998). For our ACT-R model to produce fast errors,
one would have to change assumptions about the guessing process. One approach would be to remove
the contingency of guessing on unfinished retrieval (e.g., by eliminating the internal deadline) and
have a probabilistic guessing process that either runs in isolation (i.e., the model guesses without
attempting retrieval on some trials; e.g., Luce, 1986; Ollman, 1966; Yellott, 1967, 1971) or races in par-
allel against retrieval (in which case, guessing time serves as an internal deadline for retrieval; Yellott,
1971). If the guessing process is faster than retrieval, then errors (which come only from guessing)
would be faster than correct responses (which come from guessing and retrieval) and the error RT dis-
tribution would reflect the distribution of guessing times.

For example, consider an alternative version of our ACT-R model for response signal data in which a
guessing process is initiated early during a trial and runs in parallel with stimulus encoding and mem-
ory retrieval. Assume that the guessed response is used only if retrieval has not finished by the time
the response signal is encoded; otherwise, the retrieved response is used, even if the guessed response
is available first. In other words, use of the outcome of guessing—rather than the initiation of the
guessing process—is contingent on unfinished retrieval. This alternative model would produce the
same speed–accuracy tradeoff function in the response signal procedure as does our original model
because in both cases the contribution of guessing to accuracy depends on the probability that retrie-
val finishes in time (see Eqs. (6) and (8)). However, in the context of a free-response paradigm, where-
in a response can be made as soon as either guessing or retrieval has finished, the alternative model
would produce errors that are faster than correct responses because guessing would sometimes finish
before retrieval. Whether this alternative or some other variant of our ACT-R model could capture the
full pattern of behavioral data (viz., the probabilities of correct and error responses and their corre-
sponding RT distributions) in a free-response paradigm involving associative recognition is an intrigu-
ing issue that warrants further investigation.
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Appendix A

Persons and locations used for the facts in our experiment.
Person
 Location
Actor
 Farmer
 Pirate
 Airport
 Garage
 Office

Chef
 Gardener
 Queen
 Attic
 Hallway
 Park

Coach
 Hippie
 Scientist
 Bank
 Hotel
 Prison

Cowboy
 Inventor
 Sheriff
 Barn
 Kitchen
 School

Dancer
 Judge
 Soldier
 Castle
 Laboratory
 Stadium

Detective
 Maid
 Spy
 Church
 Library
 Studio

Doctor
 Musician
 Teacher
 Clinic
 Museum
 Temple

Engineer
 Pilot
 Tourist
 Factory
 Nightclub
 Theater
Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/
j.cogpsych.2011.11.001.
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Nikolić, D., & Gronlund, S. D. (2002). A tandem random walk model of the SAT paradigm: Response times and accumulation of

evidence. British Journal of Mathematical and Statistical Psychology, 55, 263–288.
Nosofsky, R. M., Little, D. R., Donkin, C., & Fific, M. (2011). Short-term memory scanning viewed as exemplar-based

categorization. Psychological Review, 118, 280–315.
Ollman, R. (1966). Fast guesses in choice reaction time. Psychonomic Science, 6, 155–156.
Pachella, R. G. (1974). The interpretation of reaction time in information-processing research. In B. H. Kantowitz (Ed.), Human

information processing: Tutorials in performance and cognition (pp. 41–82). Hillsdale, NJ: Erlbaum.
Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116, 220–244.
Pirolli, P. L., & Anderson, J. R. (1985). The role of practice in fact retrieval. Journal of Experimental Psychology: Learning, Memory,

and Cognition, 11, 136–153.



160 D.W. Schneider, J.R. Anderson / Cognitive Psychology 64 (2012) 127–160
Postman, L. (1976). Interference theory revisited. In J. Brown (Ed.), Recall and recognition (pp. 157–181). New York: Wiley.
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.
Ratcliff, R. (1980). A note on modeling accumulation of information when the rate of accumulation changes over time. Journal of

Mathematical Psychology, 21, 178–184.
Ratcliff, R. (1988). Continuous versus discrete information processing: Modeling accumulation of partial information.

Psychological Review, 95, 238–255.
Ratcliff, R. (2006). Modeling response signal and response time data. Cognitive Psychology, 53, 195–237.
Ratcliff, R. (2008). Modeling aging effects on two-choice tasks: Response signal and response time data. Psychology and Aging, 23,

900–916.
Ratcliff, R., & McKoon, G. (1982). Speed and accuracy in the processing of false statements about semantic information. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 8, 16–36.
Ratcliff, R., & McKoon, G. (1989). Similarity information versus relational information: Differences in the time course of retrieval.

Cognitive Psychology, 21, 139–155.
Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9, 347–356.
Rawson, K. A., & Dunlosky, J. (2011). Optimizing schedules of retrieval practice for durable and efficient learning: How much is

enough? Journal of Experimental Psychology: General, 140, 283–302.
Reed, A. V. (1973). Speed–accuracy trade-off in recognition memory. Science, 181, 574–576.
Reed, A. V. (1976). List length and the time course of recognition in immediate memory. Memory & Cognition, 4, 16–30.
Rotello, C. M. (2000). Recall processes in recognition memory. In D. L. Medin (Ed.). The psychology of learning and motivation (Vol.

40, pp. 183–221). San Diego, CA: Academic Press.
Rotello, C. M., & Heit, E. (2000). Associative recognition: A case of recall-to-reject processing. Memory & Cognition, 28, 907–922.
Rotello, C. M., Macmillan, N. A., & Van Tassel, G. (2000). Recall-to-reject in recognition: Evidence from ROC curves. Journal of

Memory and Language, 43, 67–88.
Schneider, D. W., & Anderson, J. R. (2011). A memory-based model of Hick’s law. Cognitive Psychology, 62, 193–222.
Schouten, J. F., & Bekker, J. A. M. (1967). Reaction time and accuracy. Acta Psychologica, 27, 143–153.
Snodgrass, J. G., & Corwin, J. (1988). Pragmatics of measuring recognition memory: Applications to dementia and amnesia.

Journal of Experimental Psychology: General, 117, 34–50.
Sohn, M.-H., Goode, A., Stenger, V. A., Carter, C. S., & Anderson, J. R. (2003). Competition and representation during memory

retrieval: Roles of the prefrontal cortex and the posterior parietal cortex. Proceedings of the National Academy of Sciences, 100,
7412–7417.

Sohn, M.-H., Goode, A., Stenger, V. A., Jung, K.-J., Carter, C. S., & Anderson, J. R. (2005). An information-processing model of three
cortical regions: Evidence in episodic memory retrieval. NeuroImage, 25, 21–33.

Stevens, M., Lammertyn, J., Verbruggen, F., & Vandierendonck, A. (2006). Tscope: A C library for programming cognitive
experiments on the MS Windows platform. Behavior Research Methods, 38, 280–286.

Surprenant, A. M., & Neath, I. (2009). Principles of memory. New York: Psychology Press.
Thorndyke, P. W., & Bower, G. H. (1974). Storage and retrieval processes in sentence memory. Cognitive Psychology, 6, 515–543.
Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model.

Psychological Review, 108, 550–592.
Van Maanen, L., Van Rijn, H., & Taatgen, N. A. (in press). Accumulators in context: An integrated theory of context effects on

memory retrieval. Cognitive Science.
Van Maanen, L., & Van Rijn, H. (2007). An accumulator model of semantic interference. Cognitive Systems Research, 8, 174–181.
Van Maanen, L., & Van Rijn, H. (2010). The locus of the Gratton effect in picture–word interference. Topics in Cognitive Science, 2,

168–180.
Verde, M. F. (2004). Associative interference in recognition memory: A dual-process account. Memory & Cognition, 32,

1273–1283.
Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14,

779–804.
Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin & Review, 11, 192–196.
Wagenmakers, E.-J., Steyvers, M., Raaijmakers, J. G. W., Shiffrin, R. M., van Rijn, H., & Zeelenberg, R. (2004). A model for evidence

accumulation in the lexical decision task. Cognitive Psychology, 48, 332–367.
Watkins, O. C., & Watkins, M. J. (1975). Buildup of proactive inhibition as a cue-overload effect. Journal of Experimental

Psychology: Human Learning and Memory, 104, 442–452.
White, A. S., Cerella, J., & Hoyer, W. J. (2007). Strategy transitions during cognitive skill learning in younger and older adults:

Effects of interitem confusability. Memory & Cognition, 35, 2106–2117.
Wickelgren, W. A. (1977). Speed–accuracy tradeoff and information processing dynamics. Acta Psychologica, 41, 67–85.
Wickelgren, W. A., & Corbett, A. T. (1977). Associative interference and retrieval dynamics in yes–no recall and recognition.

Journal of Experimental Psychology: Human Learning and Memory, 3, 189–202.
Wickelgren, W. A., Corbett, A. T., & Dosher, B. A. (1980). Priming and retrieval from short-term memory: A speed accuracy trade-

off analysis. Journal of Verbal Learning and Verbal Behavior, 19, 387–404.
Yellott, J. I. (1967). Correction for guessing in choice reaction time. Psychonomic Science, 8, 321–322.
Yellott, J. I. (1971). Correction for fast guessing and the speed–accuracy tradeoff in choice reaction time. Journal of Mathematical

Psychology, 8, 159–199.
Yonelinas, A. P. (1994). Receiver-operating characteristics in recognition memory: Evidence for a dual-process model. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 20, 1341–1354.
Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and

Language, 46, 441–517.
Zbrodoff, N. J. (1995). Why is 9 + 7 harder than 2 + 3? Strength and interference as explanations of the problem-size effect.

Memory & Cognition, 23, 689–700.


	Modeling fan effects on the time course  of associative recognition
	1 Introduction
	2 The fan effect and ACT-R
	3 The response signal procedure
	4 A new response signal experiment on the fan effect
	4.1 Method
	4.1.1 Subjects
	4.1.2 Apparatus
	4.1.3 Materials
	4.1.4 Procedure

	4.2 Results and discussion
	4.2.1 Study phase
	4.2.2 Test phase
	4.2.3 Summary


	5 An ACT-R model for the response signal procedure
	5.1 Model description
	5.1.1 Encoding
	5.1.2 Retrieval
	5.1.3 Guessing
	5.1.4 Responding
	5.1.5 Predictions
	5.1.6 Summary

	5.2 Modeling details
	5.2.1 Model parameters
	5.2.2 Model fitting
	5.2.3 Model comparison
	5.2.4 Simulation

	5.3 Modeling results
	5.3.1 Wickelgren and Corbett (1977)
	5.3.2 Our experiment
	5.3.3 Summary


	6 General discussion
	6.1 Comparisons with other models of response signal data
	6.1.1 Discrete versus continuous processing
	6.1.2 The role of partial information
	6.1.3 Explanations of RT data

	6.2 Consideration of response signal evidence for dual processes in recognition
	6.3 Prospects for modeling RT distributions

	Acknowledgments
	Appendix A
	Appendix B Supplementary material
	References


