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A great deal of research focuses on how humans and animals learn
from trial-and-error interactions with the environment. This re-
search has established the viability of reinforcement learning as
a model of behavioral adaptation and neural reward valuation.
Error-driven learning is inefficient and dangerous, however.
Fortunately, humans learn from nonexperiential sources of infor-
mation as well. In the present study, we focused on one such form
of information, instruction. We recorded event-related potentials
as participants performed a probabilistic learning task. In one
experiment condition, participants received feedback only about
whether their responses were rewarded. In the other condition,
they also received instruction about reward probabilities before
performing the task. We found that instruction eliminated par-
ticipants’ reliance on feedback as evidenced by their immediate
asymptotic performance in the instruction condition. In striking con-
trast, the feedback-related negativity, an event-related potential
component thought to reflect neural reward prediction error, con-
tinued to adapt with experience in both conditions. These results
show that, whereas instruction may immediately control behavior,
certain neural responses must be learned from experience.

Reinforcement learning (RL) formalizes the notion that humans
and animals learn from trial-and-error interactions with the

environment (1). According to many RL models, differences be-
tween actual and expected outcomes, or reward prediction errors,
provide teaching signals. These signals convey information about
the magnitude and valence of the difference between actual and
expected rewards. By using reward prediction errors to revise ex-
pectations, RL models increasingly select advantageous actions.
Behavioral studies furnished early support for RL in the form of the
“law of effect” (2). This law states that actions that are followed by
rewards will be repeated. Single-cell recordings from animals pro-
vided further support by showing that responses of midbrain dopa-
mine neurons to outcomes scale according to the differences
between actual and expected rewards (3). Neuroimaging experi-
ments have since extended this result to humans by demonstrating
that blood–oxygen level-dependent (BOLD) responses in the stria-
tum and prefrontal cortex also mirror reward prediction errors (4).
On the basis of these findings, RL has emerged as a prominent

theory of behavioral adaptation and neural reward valuation. As
it stands, however, RL is an incomplete theory. Individuals learn
from nonexperiential sources of information as well. For exam-
ple, by using language to acquire knowledge about outcome
likelihoods, humans can avoid costly mistakes. This raises the
question, How does information provided by instruction mediate
trial-and-error learning?
Several theories seek to explain how the brain uses instruction

and experience to select actions (5–8). These theories agree that
instruction engages the prefrontal cortex and medial temporal
lobes (PFC/MTL), whereas experience engages the basal ganglia
(BG) and their dopaminergic afferents. These theories disagree,
however, on whether and how instruction and experience are
combined. According to some accounts, the relationship between
learning systems is antagonistic. For example, activation of the
PFC/MTL is sometimes associated with deactivation of the BG
(5, 9–11). According to other accounts, learning systems interact.
For example, knowledge representations in the PFC/MTL may

bias the BG to learn what is described by instruction regardless
of what is experienced (6–8). According to still other accounts,
learning systems operate independently until a response is re-
quired. For example, the PFC/MTL and the BG may learn in
parallel, but the system that possesses greater certainty may
override the other at the moment of action selection (6, 12, 13).
In the present study, we used scalp-recorded event-related

potentials (ERPs) to explore how information provided by in-
struction mediates trial-and-error learning. We focused on an
ERP component called the feedback-related negativity (FRN),
a frontocentral negativity that appears 200–350 ms after the
display of negative performance feedback relative to positive
feedback (14). The FRN appears sometimes as a negative de-
flection following losses and sometimes as a positive deflection
following wins (15). Several features of the FRN indicate that it
is a neural manifestation of reward prediction error. First, the
FRN is sensitive to violations of reward probability and magnitude
(16, 17). Second, the FRN is associated with posterror adjustments
(18). Third, the amplitude of the FRN changes with experience
and in a manner consistent with prediction errors produced by RL
models (16). Namely, FRN amplitude, defined as the difference
between waveforms following losses and wins, increases for im-
probable outcomes and decreases for probable outcomes. Fourth,
and finally, converging methodological approaches indicate that
the FRN originates from the anterior cingulate cortex (ACC) (14,
19, 20), a region implicated in cognitive control and behavioral
selection (21).
These ideas have been synthesized in the reinforcement learn-

ing theory of the error-related negativity (RL-ERN) (22), which
holds that midbrain dopamine neurons transmit a prediction error
signal to the ACC. This signal reinforces or punishes actions that
preceded outcomes. By this view, the FRN tracks operations of the
BG system and its dopaminergic afferents (23). Specifically, the
FRN tracks reward prediction errors generated by an RL tech-
nique such as temporal-difference learning.
We asked how instruction and feedback modulate expression

of the FRN in a probabilistic learning task (Fig. 1). In each trial,
participants selected from two cues that were rewarded with
different probabilities, P = {0%, 33%, and 66%}. They could
increase their earnings by selecting the cue that was more likely
to be rewarded within each pair (i.e., the 66% cue when it was
paired with the 33% or the 0% cues and the 33% cue when it was
paired with the 0% cue). In the no instruction condition, partic-
ipants received feedback only about whether their choices were
rewarded. In the instruction condition, they also viewed the cues
and received a description of their associated reward probabili-
ties before performing the task.
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On the basis of the idea that the FRN tracks reward prediction
errors generated by temporal-difference learning, we evaluated
three hypotheses. First, if instruction engages prefrontal regions
and disengages reward valuation regions that incrementally learn
from experience, instruction will diminish the FRN. [This hy-
pothesis rests on the assumption that the FRN tracks a neural
learning signal (for reviews, see refs. 22 and 24), an assumption
that is strengthened by the fact that the FRN is maximal when
participants perceive a relationship between their actions and trial
outcomes (25, 26).] Second, if instruction does not disengage re-
ward valuation regions, and if information provided by instruction
penetrates reward valuation regions, an FRN will appear in both
conditions. The FRN will immediately reflect stated reward
probabilities in the instruction condition, whereas the FRN will
gradually change to reflect experienced probabilities in the no
instruction condition. Third, if information provided by instruc-
tion neither disengages nor penetrates reward valuation regions,
an FRN will appear in both conditions. The FRN will gradually
change to reflect experienced reward probabilities in both con-
ditions. We also hypothesized that temporal-difference learning
would aptly characterize choice behavior when participants re-
ceived only trial-and-error feedback. We expected that such a
model would fail to account for behavior when participants also
received information about reward probabilities, in which case
they would rely on instruction rather than experience.

Results
Behavioral Results. Response accuracy, defined as the percentage
of trials where participants selected the cue that was more likely
to be rewarded, increased with experience in the no instruction
condition. Conversely, accuracy began and remained at asymp-
tote in the instruction condition (Fig. 2). A 2 (condition) × 2
(block half) × 3 (cue pair) ANOVA revealed significant effects
of condition, F1,19 = 45.02, P < 0.0001, block half, F1,19 = 41.08,
P < 0.0001, and cue pair, F2,38 = 16.31, P < 0.0001. The inter-
action between condition and cue pair was significant, F2,38 =
9.45, P < 0.0001, because the effect of cue pair was far greater in
the no instruction condition. The interaction between condition
and block half was also significant, F1,19 = 32.62, P < 0.0001,
because behavioral learning occurred only in the no instruction
condition. When we divided blocks into quarters, the interaction
between condition and block quarter remained significant, F3,57 =
22.29, P < 0.0001. Response accuracy increased with block quarter
in the no instruction condition, F3,57 = 31.63, P < 0.0001, but
did not change in the instruction condition, F3,57 = 0.59, P > 0.1.
This conclusion is strengthened by the finding that participants
were more likely to select previously rewarded cues in the no

instruction condition, whereas they were insensitive to the prior
sequence of outcomes in the instruction condition (SI Materials
and Methods and Figs. S1 and S2).

ERP Results. Participants displayed an FRN for improbable out-
comes (losses after 66 cues minus wins after 33 cues) and probable
outcomes (losses after 33 cues minus wins after 66 cues) in both
conditions (Fig. 3). A 2 (condition) × 2 (outcome likelihood) × 3
(sites FCz, Cz, and CPz) ANOVA of FRN amplitude revealed
significant effects of outcome likelihood, F1,19 = 28.50, P < 0.0001,
and site, F2,38 = 10.13, P < 0.001, but not of condition, F1,19 = 0.53,
P > 0.1. The FRN was greater for improbable than for probable
outcomes and was maximal at frontocentral sites. No interactions
involving the factor of condition approached significance (all P >
0.1), indicating that the FRN appeared similarly in both conditions.
We measured the FRN at site FCz and over the first and

second halves of experiment blocks (Fig. 4). If the FRN was
sensitive to experience, we reasoned that the FRN would in-
crease for improbable outcomes as participants learned that
those events were unlikely and that the FRN would decrease for
probable outcomes as participants learned that those events were
likely. A 2 (condition) × 2 (outcome likelihood) × 2 (block half)
ANOVA revealed a significant effect of outcome likelihood,
F1,19= 28.87,P< 0.0001, but not of condition,F1,19= 0.43,P> 0.1,
or block half, F1,19 = 0.07, P > 0.1. Critically, the interaction
between outcome likelihood and block half was significant,
F1,19 = 5.82, P < 0.05, but the three-way interaction was not,
F1,19 = 0.03, P > 0.1, because neural learning occurred in both
conditions. When we divided blocks into quarters, the interaction
between outcome likelihood and block quarter remained sig-
nificant, F3,57 = 3.18, P < 0.05, whereas the three-way in-
teraction again was not, F3,57 = 1.16, P > 0.1. To establish when
the FRN for probable and improbable outcomes first differed,
we applied paired t tests to the block quarter data. In the no
instruction condition, curves diverged in the second quarter and
remained different thereafter (P < 0.05, corrected). In the in-
struction condition, curves diverged in the third quarter and
remained different thereafter (P < 0.05, corrected).

Model Results. Participants’ choices appeared to depend on ex-
perience only in the no instruction condition. In contrast, the
FRN appeared to depend on experience in both conditions. These
results apply to the aggregate data. To determine whether trial-by-
trial behavioral and neural responses depended on experience,
instruction, or both, we explored predictions of three RL models.
The learning model began without knowledge of the relative cue
values and used reward prediction errors to learn which cues to
select. The start model began with knowledge of the relative cue
values and ignored reward prediction errors. Finally, the full
model began with knowledge of the relative cue values, but con-
tinued to use reward prediction errors to revise expectations.

Fig. 1. Trial procedure. Participants sequentially viewed two cues followed
by a response screen. After participants selected a cue, they received feed-
back about whether their choice was rewarded.

Fig. 2. Response accuracy (±1 SEM) by condition, block half, and cue pair.
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Table 1 contains parameter estimates and model fits to the
behavioral data. When comparing models, we used the Bayesian
information criterion (BIC) to account for the trade-off between
goodness of fit and model complexity. Smaller BIC scores pro-
vide greater evidence in favor of a model. In the no instruction
condition, BIC scores were smaller for the learning model than
for the start model, t(19) = 4.87, P < 0.001, and the full model,
t(19) = 3.90, P < 0.001. Thus, inclusion of learning improved the
fit to the behavioral data in the no instruction condition, whereas
inclusion of distinct start values did not justify the increased model
complexity. In the instruction condition, BIC scores were smaller
for the start model than for the learning model, t(19) = 10.62,
P < 0.0001, and the full model, t(19) = 20.25, P < 0.0001. Thus,
inclusion of start values improved the fit to the behavioral data in
the instruction condition, whereas inclusion of learning did not
justify the increased model complexity.
We considered a start model that scaled instructed values

linearly and allowed only selection noise to vary (β= 1.0, γ= 1.0,
and τ = free). This fixed start model is a nested version of the
current, free start model. Using the likelihood-ratio test, we
found that the free start model fit most participants better than
the fixed start model in both conditions (instruction, 11/20; no
instruction, 14/20; P < 0.05). Aggregating data likelihoods over
participants, the free start model provided a far better fit in both
conditions (instruction, χ218 = 106.83, P < 0.0001; no instruction,
χ218 = 272.94, P < 0.0001). We also considered a learning model
that initialized cues to a nonzero, uniform value (α=free, τ= free,
Qstart = free). This free learning model is a generalized version of
the current, fixed learning model. Using the likelihood-ratio test,
we found that the free learning model did not fit any partici-
pant better than the fixed learning model in either condition (all
P > 0.1). This conclusion was confirmed upon aggregating data
likelihoods over participants (all P > 0.1).
Table 2 contains parameter estimates and model fits to the neural

data. In the no instruction condition, BIC scores were smaller
for the learning model than for the start model, t(19) = 11.01,
P < 0.0001, and the full model, t(19) = 75.51, P < 0.0001. Likewise,
in the instruction condition, BIC scores were smaller for the
learning model than for the start model, t(19) = 6.54, P < 0.0001,
and the full model, t(19) = 15.52, P < 0.0001. Thus, inclusion of
learning improved the fit to the neural data in both conditions,
whereas inclusion of distinct start values did not justify the increased
model complexity.
Although differences between BIC scores among the neural

models may appear modest, these differences, or log Bayes
factors, approximate the average log odds in favor of a model at
the level of the individual (27). The log Bayes factors provided
positive to very strong evidence (ΔBIC> 2) for the learningmodel
over the start model for nearly all participants in both conditions

(instruction, 18/20; no instruction, 20/20). Additionally, the log
Bayes factors provided positive to very strong evidence for the
learning model over the full model for all participants in both
conditions. As a further test, we estimated the single set of pa-
rameters that maximized the data likelihood over all participants
and for each model, but allowed the slope (b1) and intercept (b2)
terms to vary among individuals. The aggregate log Bayes factors
provided strong evidence for the learning model over the start
model (instruction, 7.57; no instruction, 80.78) and the full model
(instruction, 10.77; no instruction, 18.19).
In the no instruction condition, the learning model provided

the best account for behavior and for the FRN. The learning
rates estimated from the behavioral and neural data did not
differ, t(19) = 0.84, P > 0.1. In the instruction condition, the start
model provided the best account for behavior, but the learning
model provided the best account for the FRN. Interestingly, the
learning rates estimated from the neural data in the no instruc-
tion and instruction conditions did not differ, t(19)= 0.97, P> 0.1,
and were correlated across individuals (R2 = 0.54, P < 0.001). We
investigated the effect of setting the neural learning rates in both
conditions to values estimated from behavior in the no instruction
condition. This method should worsen the BIC scores if the
learning rates differed, but improve the scores if they were the
same. When we fixed the neural learning rates to the behavioral
learning rates, the BIC scores decreased in the no instruction
condition, t(19) = 2.27, P < 0.05, and the instruction condition,
t(19) = 8.82, P < 0.0001. Together, these results indicate that
neural learning rates in both conditions coincided with the be-
havioral learning rates in the no instruction condition.
In fitting the models to the neural data, we estimated slope

(b1) and intercept (b2) terms to scale model prediction errors
to the observed voltages at FCz (Table 2). Prediction errors

Fig. 3. ERPs for improbable losses (green), probable losses (blue), probable wins (black), and improbable wins (red) by condition at FCz. FRN (calculated as the
difference between loss and win waveforms) for improbable outcomes (long-dashed line) and probable outcomes (short-dashed line) is shown. Scalp maps
show topography of the FRN by condition and outcome likelihood. Time is from 200 to 350 ms with respect to feedback onset.

Fig. 4. FRN (±1 SEM) at FCz by condition, block half, and outcome likelihood.
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produced by the learning model clearly related to observed
voltages: The values of b1 were significantly greater than zero for
all but one participant in both conditions. Although b1 did not
differ between conditions, t(19) = 0.96, P > 0.1, b2 was larger in
the no instruction condition, t(19) = 4.86, P < 0.001. This result
is seen in the fact that the differences between waveforms were
maintained across conditions, but that all waveforms were more
positive in the no instruction condition (Fig. 3).
We estimated separate slope and intercept terms using the av-

erage voltage at each site and over three time windows (0–150 ms,
200–350 ms, and 400–550 ms). This method allowed us to deter-
mine whether b1 and b2 varied by scalp location and time (Fig. 5).
A 2 (condition)× 3 (time)× 3 (sites FCz, Cz, andCPz)ANOVAof
b1 revealed amain effect of time, F2,38 = 27.43, P< 0.0001, but not
of condition, F1,19 = 1.23, P> 0.1, or site, F2,38 = 2.25, P> 0.1. The
b1 values were maximal at frontal sites and from 200 to 350 ms in
both conditions, evidenced by a significant interaction between site
and time, F4,76 = 30.47, P < 0.0001. The topography and timing of
the b1 effect coincide with the FRN. A 2 (condition) × 3 (time) × 3
(site) ANOVA of b2 revealed main effects of condition, F1,19 =
19.85, P< 0.0001, time, F2,38 = 101.20, P< 0.0001, and site, F2,38=
5.11, P < 0.05. The b2 values were maximal at posterior sites and
from 400 to 550 ms. The topography and timing of the b2 effect
coincide with the P300, a late posterior ERP component evoked
by stimulus processing (28). Unlike b1 values, b2 values were
greater in the no instruction condition than in the instruction
condition. Collectively, these results show that instruction di-
minished the P300 but did not affect the FRN.

Discussion
The goal of this studywas to understand how instruction influences
trial-and-error learning. We found that instruction eliminated
participants’ reliance on feedback as evidenced by their immediate
asymptotic performance in the instruction condition. In striking
contrast, the FRN continued to change with experience in both
conditions.
Several theories seek to explain how the brain uses instruction

and experience to select actions. These theories disagree on
whether and how instruction and experience are combined.
According to some accounts, the relationship between learning
systems is antagonistic (5, 9–11). In one experiment that supports
such accounts (5), the BOLD response to feedback in the nucleus
accumbens and the ventromedial prefrontal cortex decreased
following instruction. The decreased BOLD response in these
regions was functionally correlated with an increased BOLD re-
sponse in the dorsolateral prefrontal cortex, suggesting that the
dorsolateral prefrontal cortex controlled the degree to which re-
ward valuation regions processed outcomes. Additional support
for such accounts comes from fMRI experiments that have
revealed a negative association between MTL and striatal

activation (10). Moreover, pharmacological deactivation of the
MTL abolishes explicit learning and facilitates reinforcement
learning supported by the striatum (11).
According to other accounts, learning systems interact (6–8, 29).

In one experiment that supports such accounts (29), the BOLD
response in the striatum reflected value estimates generated by
a temporal-difference learning model. The BOLD response fur-
ther reflected predictions generated by a model that used in-
formation about state transitions and reward probabilities, rather
than stored value estimates, to prospectively calculate expected
action values. This result suggests that top–down information
provided by an internal world model influenced striatal reward
computations. Additional support for such accounts comes from
the finding that people overweigh outcomes that are compatible
with instruction, indicating that knowledge representations in the
PFC bias the BG to learn what is described by instruction (6, 7).
Moreover, genetic polymorphisms associated with enhanced
striatal dopaminergic functioning predict the degree to which
people overweigh outcomes that are compatible with instruction,
suggesting that striatal learning is sensitive to information con-
tained in the PFC (8).
According to still other accounts, learning systems operate in-

dependently until a response is required (6, 12, 13). In one ex-
periment that supports such accounts (13), the BOLD response in
the striatum reflected the output of a temporal-difference learning
model. In contrast, the BOLD response in the lateral prefrontal
cortex reflected the output of a model that learned about state
transitions and used this information to reason about probable
outcomes. The latter model accounted for participants’ initial
behavior, whereas the former accounted for their asymptotic be-
havior. This result is consistent with animal conditioning studies
that have shown that goal-directed and habit learning occur si-
multaneously in separate neural circuits and that behavior grad-
ually transitions from the goal-directed to the habit system (30).
This result is also consistent with the finding that neurons in the
PFC and BG adapt at different rates during reversal learning (31).
ERP studies have been largely uninformative with respect to

this issue because no study has hitherto examined the effects of
instruction on EEG activity. Several ERP studies have examined
the effects of experience on the FRN, however. These studies
have consistently found that the FRN is sensitive to outcome
valence and likelihood (14–19, 22–26). We replicated these
results in the no instruction condition and showed that the FRN
can evolve in the absence of behavioral change in the instruction
condition. This result is consistent with accounts in which dif-
ferent neural systems operate independently until a response is
required (12). These accounts traditionally distinguish between
model-free and model-based RL. Model-free RL is mediated by
the BG and uses temporal-difference learning to associate states
and actions with rewards. Model-based RL, on the other hand, is
mediated by the PFC/MTL and uses information about state

Table 2. Average individual parameter estimates and model fits
for ERP data from FCz

Condition Model BIC α β γ b1 b2

No instruction Full 1,990 0.14 2.37 3.84 3.95 7.32
Learning 1,978 0.14 0.00* 0.00* 3.85 7.09
Start 1,988 0.00* 2.72 6.60 3.68 7.43

Instruction Full 1,974 0.18 2.57 5.10 3.71 6.08
Learning 1,963 0.20 0.00* 0.00* 3.54 5.36
Start 1,970 0.00* 4.81 6.43 3.54 6.11

Parameters include learning rate (α), curvature and elevation of the prob-
ability weighting function (β and γ), and the slope (b1) and intercept (b2)
used to scale model prediction errors to observed voltages.
*Fixed values.

Table 1. Average individual parameter estimates and model fits
for behavioral data

Condition Model BIC α τ β γ

No instruction Full 408 0.08 0.15 0.05 5.44
Learning 402 0.09 0.17 0.00* 0.00*
Start 436 0.00* 0.05* 0.09 0.91

Instruction Full 238 0.01 0.11 3.79 1.63
Learning 271 0.10 0.14 0.00* 0.00*
Start 228 0.00* 0.05* 1.03 0.87

Parameters include learning rate (α), selection noise (τ), and curvature and
elevation of the probability weighting function (β and γ).
*Fixed values. Setting β = 0.00 and γ = 0.00 in the learning model initializes
all utility values to zero. Setting α = 0.00 in the start model prevents learning,
and setting τ = 0.05 forces unique estimates of β and γ that maximize the
likelihood of the data.
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transitions and reward probabilities to prospectively calculate ex-
pected outcomes. According to one proposal, the cognitive system
arbitrates between model-free and model-based controllers on the
basis of the relative uncertainty of their estimates (12). In our task,
instruction provided accurate information about reward proba-
bilities. As such, the model-based system possessed greater cer-
tainty and controlled behavior in the instruction condition.
This result raises the question of whether the FRN contributes

to behavioral adaptation or simply tracks a parallel neural pro-
cess. In the instruction condition, the FRN quite clearly tracked
a parallel neural process. A standard practice in neuroimaging
research is to fit computational models to behavioral data and to
then identify neural signals that correlate with latent model
variables such as reward prediction error (32). This approach
assumes that the same model produces the behavioral and neural
results. By fitting models separately to the behavioral and neural
data, we challenged this assumption. In doing so, we found that
different models accounted for participants’ choices and for the
FRN in the instruction condition.
Establishing a relationship between the FRN and reward

prediction errors is complicated by the fact that prediction errors
depend on an individual’s unique history of experience. We used
computational models to account for the effects of experience on
participants’ expectations. This method allowed us to examine
the trial-by-trial correspondence between EEG activity and re-
ward prediction errors. We found that reward prediction errors
were positively associated with EEG activity in both conditions.
The strength of the association was maximal at frontocentral
sites and from 200 to 350 ms, coinciding with the topography and
timing of the FRN. This result supports the notion that the FRN
tracked reward prediction error in both conditions.
EEG activity was not identical between conditions, however.

All outcomes were more positive in the no instruction condition
than in the instruction condition. This effect was captured by the
greater intercept term in the no instruction condition (Table 2).
The interceptwasmaximal at posterior sites and from400 to 550ms,
coincidingwith the topography and timing of the P300. Factors such
as stimulus probability, stimulus significance, and attention alter
P300 amplitude (28). One interpretation of this result, then, is that
feedbackwasmore significant andparticipants paid closer attention
to feedback when it provided information about how to respond. In
a related study (25), the P300 was larger when participants viewed
outcomes in a choice task than when they passively viewed identical
outcomes. There too, feedback may have been more significant
and participants may have paid more attention to feedback when
behavioral adaptation was possible.
Superficially, our results appear to contradict thoseofLi et al. (5),

who found that the BOLD response to feedback in the nucleus
accumbens and the ventromedial prefrontal cortex decreased fol-
lowing instruction. We can think of two reasons for the apparent
difference between our results and theirs. First, our participants

received instruction only at the start of epochs, whereas their par-
ticipants received instruction on every trial. To the extent that the
ACC is responsible for ongoing performance monitoring (21),
participants may have paid less attention to feedback when exoge-
nous signals provided information about reward contingencies on
every trial. Second, Li et al. focused on the nucleus accumbens,
whereas the FRN is thought to arise from the ACC (14, 22, 24).
Although midbrain dopamine neurons target both structures, and
although reward learning engages each (19, 33), the ACC and nu-
cleus accumbens may respond differently to instruction.

Conclusion
We asked how information provided by instruction influences
trial-and-error learning. We found that instruction about reward
probabilities eliminated the effect of feedback on behavior. In
striking contrast, the FRN continued to change with experience in
both conditions. These results advance theories of neural reward
valuation by showing that the FRN conforms to error signals
produced by temporal-difference learning. More importantly,
these results advance theories of learning by showing that although
instruction may immediately control behavior, certain neural
responses must be acquired from experience.

Materials and Methods
Participants. Twenty students participated on a paid volunteer basis (13 males
and 7 females, ages ranging from 19 to 28 y, with a mean age of 23 y). All
were right-handed, and none reported a history of neurological impairment.

Stimuli and Procedure. Participants sequentially viewed two cues followed by
a choice screen (Fig. 1). They had 1,000 ms to select the cue that appeared first
or second by choosing the box that contained the number 1 or 2. Participants
responded by pressing F or J on a keyboard, using their left and right index
fingers.When they responded before the deadline, the selected option turned
green. Otherwise, both options turned red. At the end of the trial, feedback
appeared. The symbols # and * denoted positive and negative feedback and
were counterbalanced across participants. The symbol ! appeared when par-
ticipants failed to respond before the deadline (<2% of trials). In addition to
receiving US$10.00, participants received performance-based payment. Posi-
tive feedback was worth 1 point, and 50 points were worth $1.00.

Each participant completed a no instruction condition and an instruction
condition. The no instruction condition consisted of four epochs of 120 trials.
Each epoch contained three cues that were rewarded with different prob-
abilities, P = {0%, 33%, and 66%}. Participants never received reward after
choosing the 0 cue, they received reward with 33% after choosing the 33
cue, and they received reward with 66% after choosing the 66 cue. Two cues
appeared in each trial, creating three unique pairs (66/33, 66/0, and 33/0)
that occurred with equal frequencies. Although no cue was rewarded with
100% probability, participants could increase their earnings by selecting the
cue that was more likely to be rewarded within each pair. Cues were 2D gray
shapes, and no cue appeared in more than one epoch.

The instruction conditionwas identical to the no instruction conditionwith
the following exception. At the start of each epoch, participants viewed the
cues and received a description of their associated reward probabilities.
Before continuing, they completed a quadruple dropout test to ensure they
had memorized the reward probabilities. Condition order was counter-
balanced, and participants completed all epochs of one condition before
advancing to the next. Because condition order did not affect the behavioral
or neural results, we excluded this factor from further analyses.

EEG Recording and Analysis. EEG data were recorded and processed according
to standard protocols (SI Materials and Methods). We created feedback-
locked ERPs for trials where participants selected the 66 cue or the 33 cue.
Because neural responses depended only on the selected option (i.e., neural
responses after the 66 cue did not depend on whether it was paired with the
33 or the 0 cue, and neural responses after the 33 cue did not depend on
whether it was paired with the 66 or the 0 cue), we excluded the factor of
cue pair from further analyses. To isolate the FRN, we compared losses and
wins that were equally likely (16, 26). We created a probable outcome dif-
ference wave (losses after 33 cues minus wins after 66 cues) and an improb-
able outcome difference wave (losses after 66 cues minus wins after 33 cues).
The FRN is typically maximal from 200 to 350 ms and at frontocentral sites
(14–19, 22–26). As such, we measured the FRN as mean voltage of the

Fig. 5. Topography of regression coefficients by condition and time.
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difference waves from 200 to 350 ms after feedback onset. We analyzed
data from three midline sites (FCz, Cz, and CPz), and we applied the
Greenhouse–Geisser correction when factors had more than two levels.

Computational Models. We compared predictions of three RL models that
learned from instruction, experience, or both. In each trial, two cues appeared.
The probability of selecting a cue, πa was determined by a soft-max decision
rule (1),

πa ¼
exp

�
Qa

.
τ

�

P
b∈AðsÞ

exp
�
Qb

.
τ

� :

Selection noise (τ) controlled the degree of randomness in choices. After each
outcome, r, the model computed a reward prediction error, δ = r – Qa. The
model used the reward prediction error to update the utility of the selected
cue,Qa←Qa + α·δ. Learning rate (α) controlled theweightingof eachoutcome.
The model received rewards of +1 and 0 for positive and negative feedback,
respectively. This process constitutes an action-value model because it treats
prediction error as the difference between reward and the value of the pre-
viousaction.Analternatemodel, actor/critic, calculates thedifferencebetween
reward and the value of the previous state (1). Supplementary analyses in-
dicated that the FRN depended on the difference between the outcome and
the previous action rather than the previous state, however (SI Text).

Empirical studies have shown that decision makers do not treat stated
probabilities linearly (34). As such, we converted instructed probabilities to
starting utility values using a two-parameter weighting function,

Qa ¼ β·P γ
a

β·P γ
a þ ð1− PaÞγ :

The γ- and β-parameters control the curvature and elevation of the weighting
function, respectively. Together, γ and β determine the differences between

the starting values of the three cues. Other two-parameter weighting
functions would yield identical results.

We used the behavioral data to estimate separate parameter values for
each participant and condition. To do so, we presented the models with the
history of choices and rewards that the participant experienced. For each trial,
t, we calculated the probability that the model would make the same choice
as the participant, pk(t). We used the simplex optimization algorithm with
multiple start points to identify parameter values that maximized the log
likelihood of the observed choices, LLE = ∑t ln(pk(t)). The full model con-
tained four free parameters (α, τ, β, and γ), the learning model contained
two free parameters (α and τ), and the start model contained two free
parameters (β and γ). To compare models, we used the BIC, defined as −2·LLE
+ p·ln(n). For each participant and condition, the model predicted ∼480 data
points. We calculated separate BIC scores for each participant and condition.
We also considered a model with separate learning rates for wins and losses
and a model with an instruction confirmation bias (6–8). Neither addition
improved model performance.

We also used the neural data to estimate separate parameter values for
each participant and condition. For each trial, we calculated the observed
voltage at FCz from 200 to 350 ms and the reward prediction error that the
model generated on the basis of the participant’s selection and the outcome.
We then estimated slope and intercept terms to scale model prediction
errors to observed voltages, Voltage = b1·PE + b2. We found parameter
values that minimized the mean squared error (MSE) between the expected
and observed voltages. The full model contained five free parameters (α, β,
γ, b1, and b2), the learning model contained three free parameters (α, b1,
and b2), and the start model contained four free parameters (β, γ, b1, and
b2). To compare models, we used the BIC, defined as n·ln(MSE) + p·ln(n). We
calculated separate BIC scores for each participant and condition.
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